

كلية الصيدلة مقرر البيولوجيا

المحاضرتين التاسعة والعاشرة

الأساس الجزيئي للمادة الوراثية والتعبير الوراثي

Molecular Basis of Hereditary and Gene Expression

د. على منصور

المَـنارة

MANARA UNIVERSITY

Molecular Basis of Hereditary الأساس الجزيئي للمادة الوراثية (I DNA and the importance of Proteins الحمض النووي DNA وأهمية البروتين

يوجد أربع أنواع من الجزيئات الضخمة في الخلايا: الدسم، السكريات، البروتينات والحموض النووية. تدخل البروتينات في بنية الخلايا وتساعدها على إنجاز التفاعلات الكيميائية لإنتاج المواد الكيميائية اللازمة لها. نذكر من أنواع البروتينات: البروتينات القنوية، البروتينات الناقلة، المستقبلات البروتينية والأنزيمات. وتنجز الأنزيمات، كنوع من البروتينات، تفاعلات كيميائية هامة جداً في الخلايا ولا تستطيع الخلية أن تعيش مدة طويلة إذا لم تستطع تصنيع البروتينات التي تحتاجها.

Four common types of macromolecules are present in the cells-lipids, carbohydrates, proteins, and nucleic acids. Proteins provide structure and they help the cells to accomplish chemical reactions to produce needed chemicals. Types of proteins include: channel Proteins, carrier proteins, receptor proteins and enzymes. For example, Enzymes (types of proteins) carry out so important chemical reactions, and the cell will not live long if it cannot reliably create the proteins it needs for survival.

تعد معظم خصائص المتعضيات متعددة الخلايا ناتجة مباشرة عن البروتينات. تحوي الحموض النووية المعلومات اللازمة لصناعة البروتينات وتأتي قدرة الخلية على صنع بروتين محدد من المعلومات الوراثية المخرّنة في الحمض الريبي النووي المنقوص الأوكسجين DNA والذي يحوي مخطط لصنع البروتينات التي تحتاجها الخلايا إذ يحوي على المورثات والتي هي عبارة عن رسائل خاصة حول كيفية تركيب بروتين ما.

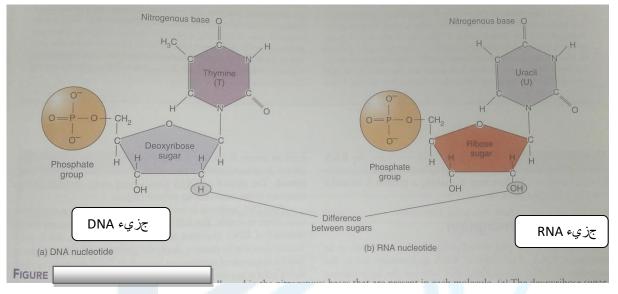
Most of the characteristics of multicellular organisms are the direct result of proteins. Nucleic acids contain the information needed to make

proteins. The cell's ability to make a particular protein comes from the genetic information stored in the cell's deoxyribonucleic acid or DNA. DNA is a nucleic acid that contains the blueprint for making the proteins the cell needs. DNA contains genes, which are specific messages about how to construct a protein.

وظيفة وبنية الـ DNA Structure and Function DNA

إنّ الـDNA قادر على إنجاز شيئين مهمين جدّاً للمتعضية وهما:

أولاً، إنّ DNA عبارة عن المادة الكيميائية المستعملة لإمرار المعلومات الوراثية إلى الجيل التالى من المتعضيات.


ثانياً، يحدد DNA خصائص المتعضية عن طريق التحكم بتركيب البروتينات. وبسسب كون DNA ينظم تركيب البروتين، فهو يملك تأثير كبير في استقلاب الخلية. إنّ الأساس لفهم كيف ينجز DNA هذه المهمة هو بفهم بنيته الكيميائية.

DNA is able to accomplish two very important things for an organism. First, it is the chemical used to pass genetic information on to the next generation of organisms. Second, DNA determines an organism's characteristics by controlling the synthesis of proteins. Because DNA controls protein synthesis, DNA has a great deal of influence over cell's metabolism. The key to understanding how DNA accomplishes this task is in its chemical structure.

DNA Structure DNA بنية

إنّ DNA هو واحد من مجموعة جزيئات تدعى الحموض النووية وهي جزيئات متعددة مصنوعة من وحدات مكررة تدعى النيكليوتيدات. يتركب كل نيكليوتيد من جزيء سكر، ومجموعة فوسفات، وأساس أزوتي (شكل 1). يحوي كل نيكليوتيد من نيكليوتيدات DNA على سكر خاص واحد وهو السكر الريبي المنقوص الأوكسجين، وواحد من أربع أسس أزوتية وهي الأدنين (A)، الغوانين (G)، السيتوزين (G)، والتيمين (G) والتيمين (G).

شكل 1: بنية نيكليوتيد الـ DNA بالمقارنة مع بنية نيكليوتيد الـ RNA

Figure1: Structures of DNA and RNA Nucleotides

DNA is one member of a group of molecules called nucleic acids. Nucleic acids are large polymers made of many repeating units called nucleotides. Each nucleotide is composed of a sugar molecule, a phosphate group, and a nitrogenous base (figure 9.1). DNA nucleotides contain one specific sugar, deoxyribose, and one of four different nitrogenous bases: Adenine (A), guanine (G), cytosine (C), and thymine (T).

يمكن أن تنضم النيكليوتيدات لتشكل جزيء DNA خطي طويل والذي يمكن أن يقترن مع جزيء DNA خطي أخر. يشكل شريطي الـ DNA المقترنين حلزون مضاعف ذو سكريات وفوسفات في الجانب الخارجي، والأسس الأزوتية إلى داخل الحلزون. تساعد النيكليوتيدات على ثبات البنية الحلزونية بتشكيل روابط كيميائية ضعيفة تدعى روابط الهيدروجين بين الأسس الأزوتية المتقابلة. يعتمد تشكيل الحلزون المضاعف على النيكليوتيدات من كل شريط والمقترنة بطريقة محددة لتشكيل الروابط الكيميائية. يقترن دائماً الأدنين مع التيمين (C=G) والغوانين مع السيتوزين (C=G).

شكل 2: الأنواع الأربع من ألأسس الأزوتية الموجودة في DNA

Figure 2: the four nitrogenous bases that occur in DNA

The DNA nucleotides can combine into a long linear DNA molecule that can pair with another linear DNA molecule. The two paired strands of DNA form a double helix, with the sugars and phosphates on the outside and the nitrogenous bases in the inside of the helix. The nucleotides help stabilize the helical structure by formic weak chemical interactions, called hydrogen bonds. The formation of the double helix depends on the nucleotides from each strand of DNA pairing in a particular way to form

hydrogen bonds. Adenine pairs with thymine and guanine pairs with cytosine.

أساس الإقتران في تضاعف الـ Base of Pairing in DNA DNA Replication

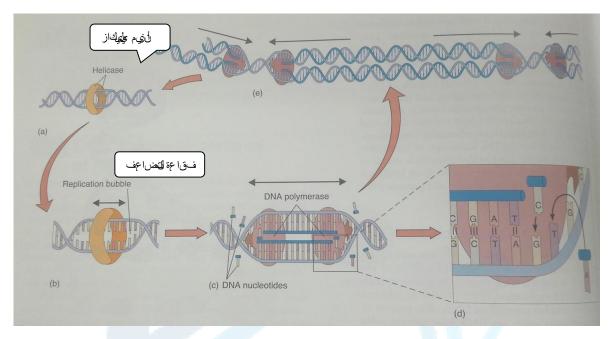
عندما تنمو الخلية وتنقسم، تنتج خليتين بنتين. تحتاج كلا الخليتين إلى DNA لتستمر، لذلك يتم نسخ جزيئات DNA للخلية الأم ليتم تأمين نسخة إلى كل خلية جديدة. تعتمد عملية تضاعف DNA على أسس قواعد الاقتران لـ DNA و على عدّة أنزيمات، وتكون العملية العامة لتضاعف الـ DNA هي نفسها تقريباً في جميع الخلايا.

When a cell grows and divides, two new cells result. Both cells need DNA to survive, so the DNA of the parent cell is copied. One copy is provided to each new cell. The process of DNA replication relies on DNA base pairing rules and many enzymes. The general process of DNA replication is the same in most cells.

- 1- يبدأ تضاعف DNA عندما تبدأ أنزيمات تدعى هيليكاز (كاسرة الحلزون) بالارتباط بDNA وتفصل شريطي DNA ويشكل هذا فقاعة التضاعف (شكل B0).
- 2- عندما تفصل أنزيمات هيليكاز شريطي DNA، يقوم أنزيم أخر يدعى DNA بوليميراز، بدمج نيكليوتيدات DNA الحرة لتشكيل شريط DNA الجديد. تدخل النيكليوتيدات كل موقع تبعأ لقواعد اقتران الأسس:
 - أدنين (A) يقترن مع تيمين (T) وغوانين (G) مع السيتوزين (C) (شكل 3).
- 5- في خلايا بدائيات النوى، تبدأ هذه العملية في مكان واحد فقط على طول جزيء DNA الخلية ويدعى هذا المكان أصل التضاعف. في خلايا حقيقيات النوى، تبدأ عملية التضاعف في مواقع مختلفة في نفس الوقت على طول جزيء الـDNA. عندما تلتقي نقاط تضاعف DNA مع بعضها، فهي ترتبط ويتم تشكيل شريط جديد من DNA (شكل وبالنتيجة يتشكل جزيئي DNA متطابقين مضاعفي الشريط.

DNA replication begins as enzymes, called helicases, bind to the DNA and separate the two strands of DNA. This forms a replication bubble (figure 3a and 3b).

As helicases separate the two DNA strands, another enzyme, DNA polymerase incorporates DNA nucleotides into the new DNA strand. Nucleotides enter each position according to base-pairing rules-adenine (A) pairs with thymine (T), guanine (G) pairs with cytosine (C) (figure 3c and d).


In prokaryotes cells, this process starts at only one place along the cell's DNA molecule. This place is called the origin of replication. In eukaryotic cells, the replication process starts at the same time in several different places along the DNA molecule. As the points of DNA replication meet each other, they combine and a new strand of DNA is formed (figure 9.3e). The result is two identical, double-stranded DNA molecules.

تتشكل الشرائط الجديدة من DNA على شرائط DNA القديمة (شكل 3e). وبهذه الطريقة، فالأسس الأزوتية المكشوفة من DNA الأصلى تخدم كنموذج يُبنى عليه DNA الجديد.

يمنح إتمام عملية تضاعف DNA حلزونين مضاعفين يملكان تتابع نيكليوتيدات متطابق بسبب كون عملية تضاعف DNA تتم بدقة عالية. ويقدر بأنّ الخطأ يحدث مرة واحدة لكل DNA من النيكليوتيدات. وبسبب كون معدل الخطأ صغير، يعتبر تضاعف الـ DNA بشكل أساسي خال من الأخطاء. يقوم جزء من أنزيمات DNA بوليميراز التي تقوم بمضاعفة DNA بتفحص جزيء DNA المتشكل حديثاً على أسس الإقتران الصحيح. وعندما يتم اكتشاف اقتران غير صحيح، يزيح أنزيم DNA بوليميراز النيكليوتيد الخطأ ويقوم باستبداله. ويتم في النهاية إمرار جزيئات DNA المصنوعة حديثاً إلى الخلايا البنات.

شكل3: تضاعف جزيء الـ Figure 3: Replication of DNA DNA

The new strands of DNA form on each of the old DNA strands (figure 3e). In this way, the exposed nitrogenous bases of the original DNA serve as the pattern on which the new DNA is formed. The completion of DNA replication yields two double helices, which have identical nucleotide sequences, because the DNA replication process is highly accurate. It has been estimated that there is only one error made for every 2*10° nucleotides. Because this error rate is small, DNA replication is considered to be essentially error—free. A portion of the DNA polymerase that carries out DNA replication also edits the newly created DNA molecule for the correct base pairing. When an incorrect match is detected, DNA polymerase removes the incorrect nucleotide and replaces it. Newly made DNA molecules are eventually passed on to the daughter cells.

MANARA UNIVERSITY

تصحيح المعلومات الوراثية The repair of genetic information

تحدث الأخطاء والضرر أحياناً لحلزون DNA، وعلى كل يسمح ترتيب اقتران الأسس الأزوتية بتصحيح الضرر على شريط واحد بقراءة الشريط المتبقي الغير متضرر. فعلى سبيل المثال، إذا حصل الضرر لجزء من شريط DNA الذي يُقرأ في الأصل AGC (ربما يتغير إلى TCG)، فالمعلومات الصحيحة لا تزال توجد في جزء الشريط المقابل الذي يُقرأ TCG. وباستعمال الأنزيمات لقراءة الشريط غير المتضرر، تستطيع الخلية إعادة بناء جزء شريط AGC وفق قاعدة الإقتران الذي يقرن A مع T و C مع C.

Errors and damage do occasionally occur to the DNA helix. However, the pairing arrangement of the nitrogenous bases allows damage on one strand to be corrected by reading the remaining undamaged strand. For example, if damage occurred to a strand that originally read AGC (perhaps it changed to AAC), the correct information is still found on the other strand that reads TCG. By using enzymes to read the undamaged strand, the cell can rebuild the AGC strand with the pairing rule that A pairs with T and G pairs with C.

رامزة The DNA codon DNA

يعتبر DNA هام بسبب كونه وسيلة موثوقة لتخزين المعلومات الوراثية. إنّ ترتيب الأسس الأزوتية في DNA هو المعلومات الوراثية التي ترمز البروتينات. وهذا مشابه لكيفية عرض الأحرف المعلومات في الجمل. بالنسبة للخلية، تتألف أبجدية الرسائل من أربع أسس أزوتية (4 أحرف) وهي: T، G، C، A. كل تتابع من ثلاث نيكليوتيدات (3 أحرف) هو رامزة (كلمة) لترميز حمض أميني واحد في البروتين النهائي. مثال: الرامزة AAC التي ترمز الحمض الأميني أسبارجين. يمكن أن يكون طول المعلومات اللازمة لترميز بروتين ما، آلاف النيكليوتيدات. فالبروتينات مصنوعة من سلسلة من الحموض الأمينية المتوافقة مع روامز في DNA.

DNA is important because it serves as a reliable way of storing genetic information. The order of the nitrogenous bases in DNA is the genetic information that codes for proteins. This is similar to how letters present information in sentences. For the cell, the letters of its alphabet consist only of the nitrogenous bases A, G, C, and T. The information needed to code for one protein can be thousands of nucleotides long. The nucleotides are read in sets of three. Each sequence of three nucleotides

(gene) is a codeword for a single amino acid in the final protein. Proteins are made of a series of amino acids corresponds to order of the codewords in DNA.

بنية ووظيفة الـ RNA structure and function RNA

الـ RNA هو نوع أخر من الحموض النووية الهامة في إنتاج البروتين. تكون نيكليوتيدات RNA مختلفة عن نيكليوتيدات DNA. تحوي نيكليوتيدات RNA سكر ريبي يختلف عن السكر الريبي المنقوص الأوكسجين بمجموعة كيميائية موجودة في أحد ذرات الكربون (راجع شكل 1). يمتلك السكر الريبي منقوص الأوكسجين مجموعة H على ذرة الكربون الثانية.

RNA is another type of nucleic acid important in protein production. RNA's nucleotides are different from DNA's nucleotides. RNA's nucleotides contain a ribose sugar. Ribose and deoxyribose sugars differ by the chemical group that is present on one of the carbons (see figure 1). Ribose has an –OH group and deoxyribose has an-H group on the second carbon.

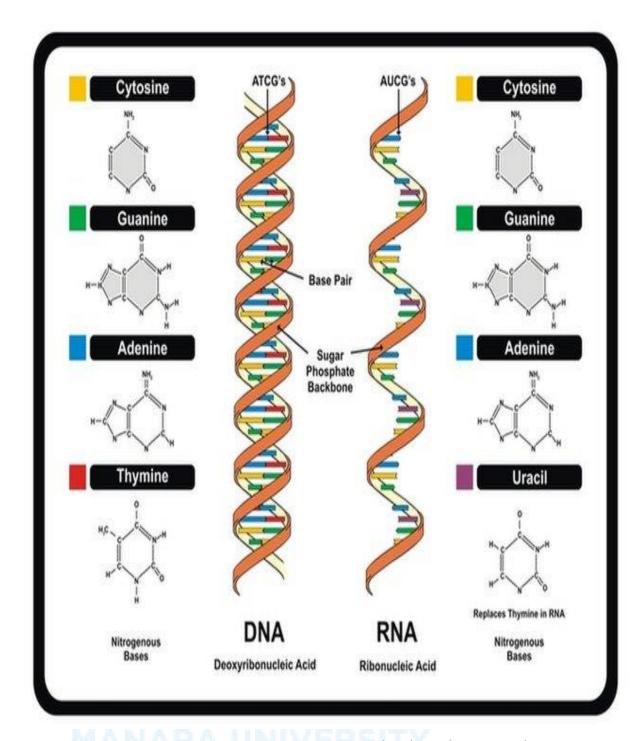
يحتوي الـ RNA على الأسس الأزوتية الأدنين (A)، الغوانين (G)، السيتوزين (C)، واليوراسيل (U). نلاحظ أنّ مجموعة الأسس الأزوتية في الـ RNA و الـ DNA مختلفة قليلاً حيث يحوى RNA يوراسيل بدلاً من التيمين في DNA.

RNA contains the nitrogenous bases uracil (U), guanine (G), cytosine (C), and adenine (A). Note that the sets of nitrogenous bases in DNA and RNA are also slightly different. RNA has uracil, whereas DNA has thymine.

تستعمل الخلايا RNA و DNA بشكل مختلف. يوجد DNA في نواة الخلية وهو المصدر الأصلي للمعلومات لصنع البروتينات. يُصنع RNA في النواة ويتحرك إلى سيتوبلاسما الخلية وحالما يصبح هناك يستطيع أن يساعد مباشرة في عملية تركيب البروتين.

Cells use DNA and RNA differently. DNA is found in the cell's nucleus and is the original source for information to make proteins. RNA is made in the nucleus and then moves into the cytoplasm of the cell. Once RNA is in the cytoplasm, it can directly help in the process of protein assembly.

يوجّه DNA تركيب البروتين باستعمال RNA حيث تأتي المعلومات التي تُرمّز البروتين في RNA مباشرة من DNA. يتم اصطناع RNA بواسطة الأنزيمات التي تقرأ المعلومات المُرَمِزة للبروتين في DNA. وبشكل مشابه لتضاعف DNA، يتبع تركيب RNA وفق قواعد اقتران الأزواج حيث تقترن نيكليوتيدات RNA مع نيكليوتيدات DNA: حيث يقترن الغوانين مع السيتوزين في تركيب RNA. يحوي RNA اليوراسيل بدلاً من التايمين في DNA ولذلك يقترن الأدنين في DNA مع اليوراسيل في RNA. أما التيمين في DNA فيقترن مع الأدنين في RNA (جدول 1).


DNA directs protein synthesis by using RNA. The protein coding information in RNA comes directly from DNA. RNA is made by enzymes that read the protein-coding information in DNA. Like DNA replication, RNA synthesis also follows base-pairing rules where the RNA nucleotides pair with the DNA nucleotides: guanine and cytosine still pair with the RNA synthesis but RNA contains uracil, not thymine, so adenine in DNA pairs with uracil in RNA. The thymine in DNA still pairs with adenine in RNA (table 1).

يختلف الـ RNA عن DNA ببعض الأمور الأخرى. عندما يتم تركيب RNA من DNA، ينتج فقط شريط واحد من RNA. ويختلف هذا عن DNA بسبب كون DNA مضاعف السلسة بالشكل النموذجي.

RNA differs from DNA in some other important ways. When RNA is synthesized from DNA, it exists only as single strand. This is different from DNA because DNA is typically double-stranded.

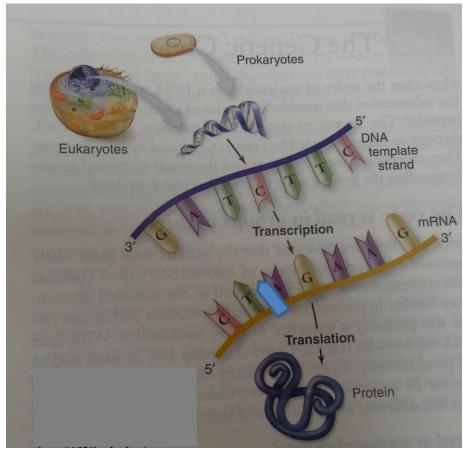
جدول 1: أسس اقتران الأسس الأزوتية في Table 1: Couples of Nitrogen Bases in DNA RNA هجدول 1: أسس اقتران الأسس الأزوتية في

II) التعبير الوراثي Gene expression

1) تلخيص التعبير المورثي Summarizing of gene expression

بسبب تعقيد التعبير المورثي، فمن المجدي تلخيص بعض نقاطه كما يلي:

- تحول عملية التعبير المورثي المعلومات في النمط الوراثي إلى نمط ظاهري.
- يتم إنتاج نسخة من mRNA عن طريق النسخ Transcription ويُستعمل mRNA في توجيه تركيب البروتين عن طريق الترجمة Translation، حيث يُنسخ على ثلاثيات الرامزات الوراثية له DNA في سوية النواة ثلاثيات مقابلة (مضادة) من جزيئات mRNA. ويعتبر mRNA بمثابة رسالة نتضمن المعلومات التي يُعتمد عليها في تحديد تتالي الحموض الأمينية في السلسلة البيبتيدية التي تُبنى على الجسيمات الريبية الموجودة في سيتوبلاسما الخلية. هذا يستلزم نقل mRNA عبر الثقوب النووية إلى السيتوبلاسما قبل الترجمة.
- يتم قراءة رامزات هذه الرسالة بوساطة أنواع tRNA التي تحمل الحموض الأمينية المُنشَّطة وذلك بتطابق الرامزات المقابلة لـ tRNA مع رامزات mRNA، ويترافق ذلك مع ربط الحموض الأمينية مع بعضها في السلسلة الببتيدية الآخذة في النمو بروابط ببتيدية. وهذا ما يُعرف بعملية الترجمة Translation التي تؤمن عملية تحويل تتالي الرامزات الوراثية إلى تتالي محدد من الأحماض الأمينية وإنتاج البروتين المسؤول لاحقاً عن صفة موروثة.
- يمكن أن يتم تقسيم كل من النسخ والترجمة إلى: مرحلة البدء، مرحلة الاستطالة، مرحلة الإنتهاء وهي مراحل إنتاج الجزيئات المتعددة على التوالي (وهي نفسها في عملية تضاعف الـDNA).
 - تلخيص كامل العملية لدى حقيقيات النوى بالشكل (4).


Because the complexity of gene expression, it is worth stepping back to summarize some key points:

- The process of gene expression converts information in the genotype into phenotype.
- A copy of the gene in the form of mRNA is produced by transcription, and the mRNA is used to direct the synthesis of a protein by translation. In the nucleus, three anti-codons of mRNA molecules are transcripted on genetic triplets codons.
- mRNA is considered as message includes genetic information which determine amino acids sequences in peptide chain which is synthesized on ribosomes in cell cytoplasm.
- Codes of this message are read by tRNA which carry catalyzed amino acids where anticodons of tRNA meet codons of mRN. This is associated with combining amino acids in growing peptide chain by peptide bonds. This known a translation process that provides converting sequences of genetic codons to specific sequence of amino acids which later express an inherited feature.
- Both transcription and translation can be broken down into initiation, an elongation cycle, and termination- processes that produce their respective polymers (the same is true for DNA replication).
- The entire eukaryotic process is summarized in figure (4).

الشكل 4: عمليتا النسخ والترجمة وصنع البروتين

Figure (4): Transcription and translation and protein synthesis

2) الشيفرة الوراثية The genetic code

يشفّر ترتيب النكليوتيدات في DNA المعلومات التي تعرّف الأحماض الأمينية في السلاسل المتعددة الببتيد. يتمثل كل حمضٍ أميني، يدخل في تركيب بروتين ما، بتتالٍ لثلاثة نيكلوتيدات (أو ثلاثية Triplet) في جزيء DNA نطلق عليها اسم الرامزة الوراثية Genetic code

تثالف الرامزة الواحدة من 3 نكليوتيدات، ولذلك يوجد 34 = 64 رامزة محتملة (حيث يوجد أربعة أنواع من النكليوتيدات) (الجدول 2).

- تعطي ثلاث روامز إشارة "توقف stop" ولا تعبر عن الأحماض الأمينية، هذه الروامز هي: UAA, UAG, UGA وتعد روامز التوقف ذات أهمية بالغة لأنها تفصل بين المورثات المختلفة.
- تعطي رامزة واحدة (AUG) إشارة "بدء start" وهي تشفر الحمض الأميني ميثيونين methioninen وتعدّ رامزة البدء في عملية النسخ؛ هذا يعني أن عملية الترجمة وبناء البروتين تبدأ دائماً بالحمض الأميني الميثونين.
 - وتشفّر الروامز الـ61، عشرين نوعاً من الحموض الأمينية.

الجدول (2): الحموض الأمينية ورامزات الـ mRNA المقابلة لها.

رامزات أو كودونات mRNA	الحمض الأميني
UUU (UUC	Phenylalanine فينيل آلانين
UUA 'UUG 'CUU 'CUC 'CUA 'CUG	لوسين Leucine
UCU 'UCC 'UCA 'UCG 'AGU 'AGC	Serine سيرين
UAU (UAC	تيروزين Tyrosine
UGU (UGC	Cysteine سيستئين
UGG	تريبتوفان Tryptophan
CCU 'CCC 'CCA 'CCG	برولین Proline
CAU (CAC	Histidine هيستيدين
CAA (CAG	غلوتامين Glutamine
CGU 'CGC 'CGA 'CGG 'AGA 'AGG	أرجنين Arginine
AUU 'AUC 'AUA	ایزولوسین Isoleucine
AUG	میتیونین Methionine
ACU 'ACC 'ACA 'ACG	تريونين Threonine

رامزات أو كودونات mRNA	الحمض الأميني
AAU 'AAC	Aspargine أسبار جين
AAG 'AAA	Lysine ليزين
GUG 'GUA 'GUC 'GUU	فالين Valine
GCG ·GCA ·GCC ·GCU	Alanine آلانين
GAC 'GAU	Aspartic acid حمض أسبارتي
GAG ·GAA	حمض غلوتاميGlutamic acid
GGG ·GGA ·GGC ·GGU	Slycine غلیسین

The order of nucleotides in DNA encodes information to specify the order of amino acids in polypeptides.

- A codon consists of 3 nucleotides. There are $4^3 = 64$ possible codons.
- The code uses adjacent codons with no spaces.
- Three codons (UAA, UAG, UGA) signal "stop," and they don't express amino acids; they are very impotant as they separate different genes.
- One codon (AUG) signal "start", and also encodes the methionine; it is a start codon in transcription. This means that translation and protein synthesis always begin in Methonine amino acid.
- The 61 codons encode the 20 amino acids (Table 2).

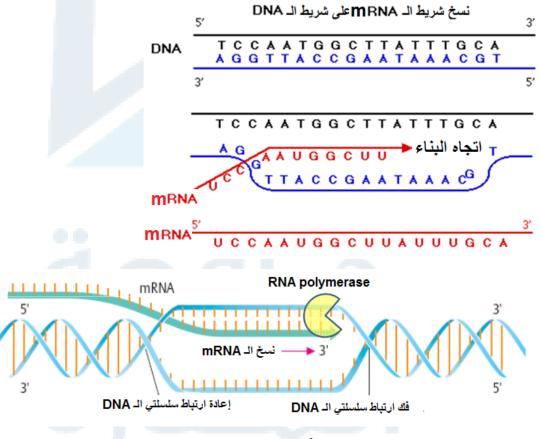
3) نسخ بدائيات النوى Prokaryotic transcriptions

- تملك بدائيات النوى أنزيم واحد من RNA بوليميراز. مراحم ما RNA
 - یستطیع أنزیم بولیمیراز ترکیب RNA.

- تبدأ وحدة النسخ في المحفز (الذي يحوي واحد أو أكثر من المورثات) ويقوم أنزيم RNA بوليميراز بفك منطقة قصيرة من DNA في المحفزات.
 - ينمو النسخ في سلسلة mRNA في اتجاه َ 5 إلى َ 3.
- تحوي فقاعة النسخ أنزيم RNA بوليميراز، قالب DNA ونسخة mRNA الأخذ بالنمو.
 - يتم ترجمة mRNA في بدائيات النوى إلى سلسلة متعددة الببتيد.
- Prokaryotes have a single RNA polymerase that exists in two forms; core polymerase and holoenzyme.
- Core polymerase can synthesize RNA. Holoenzyme, core plus σ factor, can initiate RNA at a promoter.
- A transcription unit begins with a promoter, contains one or more genes, and RNA polymerase unwinds a short region of DNA at promoters.
- Transcription of the mRNA chain grows in the 5' to 3' direction.
- A transcription bubble contains RNA polymerase, DNA template, and the growing mRNA transcript.
- In prokaryotes the mRNA is translated into a polypeptide.

4) النسخ لدى حقيقيات النوى Eukaryotic Transcription

إنّ تفاعل النسخ في حقيقيات النوى هو نفسها لدى بدائيات النوى، ولكن يوجد بعض الإختلافات المميزة. تتكون جزيئات RNA من سلاسل مفردة متباينة في طولها وهي تُنسخ على إحدى سلسلتي الـ DNA أو على كلتيهما معاً بفعل إنزيم RNA بوليميراز الذي يرتبط في نقاط محددة من شريط الـ DNA (شكل 3)، ويعمل على توجيه النيكلوتيدات التي تكون بحالة حرة في البلاسما النووية لترتبط مع بعضها وفق تتالي النيكلوتيدات الموجودة في شريط DNA، فيضع أمام كل أدنين يوراسيل، وأمام كل تيمين أدنين، ومقابل كل غوانين سيتوزين، ومقابل كل سيتوزين غوانين (شكل 5).

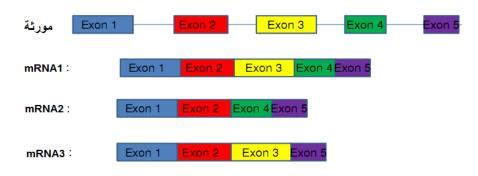

تملك حقيقيات النوى ثلاث أنواع من أنزيمات RNA بوليميراز: النوع I ينسخ rRNA؛ النوع II ينسخ mRNA وبعض snRNAs (حموض RNA الصغيرة الموجودة داخل النواة)؛ النوع III ينسخ tRNA.

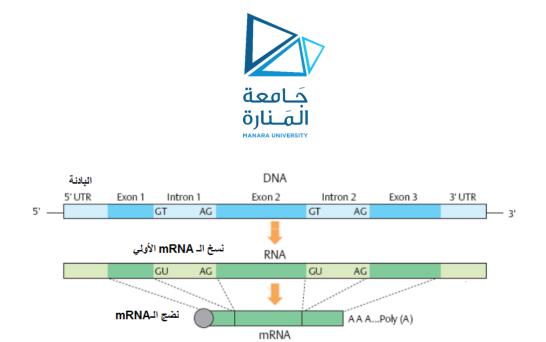
The transcription reaction in the eukaryotes is the same in prokaryotes, but there some distinct differences.

RNA molecules consist of single strands which are different in their length, and they are transcripted on one or both trands of DNA by RNA polymerase which are joined to DNA strand in certain points (figure 5), and it directs free nucleotides in nucleic plasma to join with each other according to nucleotide sequences which are present on DNA strand: A with U, T with A, C with G, and G with C.

• Eukaryotes have three RNA polymerases: I- transcribes rRNA; II transcribes mRNA and some snRNAs; III transcribes tRNA.

الشكل (5) تخطيط يوضح طريقة نسخ الـmRNA على إحدى سلسلتي الـ DNA


5) ربط mRNA- الأولى في حقيقيات النوى emRNA splicing- الأولى الم


إنّ الإختلاف الأساسي بين خلايا بدائيات وخلايا حقيقيات النوى هو أنّ مناطق ترميز البروتين في بدائيات النوى عير مستمرة بل يوجد في بدائيات النوى مستمرة بينما مناطق ترميز البروتين في حقيقات النوى غير مستمرة بل يوجد عندها ما يعرف بالإكسونات والإنترونات. الإكسونات Exons: الإكسون هو منطقة ترميز البروتينات في معظم مورثات حقيقيات النوى. الإنترونات SIntrons: الإنترون هو قطعة من جزيء DNA أو RNA التي لا ترمز البروتينات وتعترض تعاقب المورثات (الشكل 6).

- يتم تركيب جزيئات mRNA الأولية في النواة وبعد استبعاد الأنترونات ولصق الاكسونات ببعضها (شكل 5)، يتشكل جزيئات mRNA البالغة. تغادر هذه الجزيئات البالغة النواة إلى السيتوبلاسما لتتوضع على الجسيمات الريبية، وتشكل معها ما يعرف باسم الجسيمات المتعددة.
- يتم خلال عملية ربط mRNA البالغ، قطع النهاية 5 من الإنترون وضمّ النهاية 3 من الإكسون الأول إلى النهاية 5 من الأكسون التالي لتشكيل نسخة أقصر من mRNA (الناضج)، وهي النسخة التي تستخدم خلال الترجمة لإنتاج بروتين.
- وفي السيتوبلاسما تُترجم المعلومات المحمولة على شريط mRNA إلى تتالٍ معين من الحموض الأمينية أثناء تركيب البروتين، وتساهم كل رامزة في توضع حمض أميني واحد في السلسلة البيبتيدية.
- وهكذا فإن mRNA يلعب دوراً أساسياً في عمليات تركيب البروتين وذلك بنقله المعلومات الوراثية المشرفة على تركيب البروتينات من النواة إلى السيتوبلاسما.

يمكن لمورثة واحدة أن تشرف على بناء عدة أنواع من البروتينات وذلك بضم عدد من الاكسونات وحذف بعضها الآخر وذلك في مرحلة نضج الـ mRNA (شكل 7) ويعد هذا أحد مزايا امتلاك الإنترونات والإكسونات.

الشكل (6) تخطيط يظهر الآلية التي تمكن المورثة الواحدة في الإشراف على تكوين عدة أنماط من البروتينات

شكل 7: تتالى الإكسونات والإنترونات Figure7: Sequences of Exons and Introns in DNA

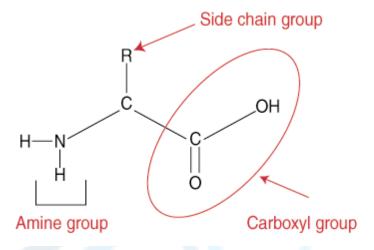
One of the most significant differences between prokaryotic and eukaryotic cells is that eukaryotic cells can make more than one type of protein from a single-coding region. Eukaryotic cells are able to do this because the protein coding regions of eukaryotic genes are organized differently than the genes found in prokaryotic (bacterial) cells. **Exons**: exon is a coding region in most eukaryotic genes. **Introns**: intron is segment of a DNA or RNA molecule that does not code for proteins and interrupts the sequence of genes) (figure 6).

- After completing synthesis of pre- mRNA molecules, and removing introns, and joining extrons with each other, the mature mRNAs are formed (figure 7). These mature molecules leave nucleus to cytoplasm to locate on ribosomes to form with ribosomes what call multiple particles.
- During splicing of mature mRNA, the 5' end of the intron is cut and becomes bound to the branch site, and the 3' end of the first exon is joined to the 5'endof the next exon to create a shorter version of the mRNA. This version that is used during translation to produce a protein
- During protein synthesis, the information carried on mRNA strand in the cytoplasm is translated into certain sequence of amino acids. Each codon participates in placing one amino acid in peptide chain.

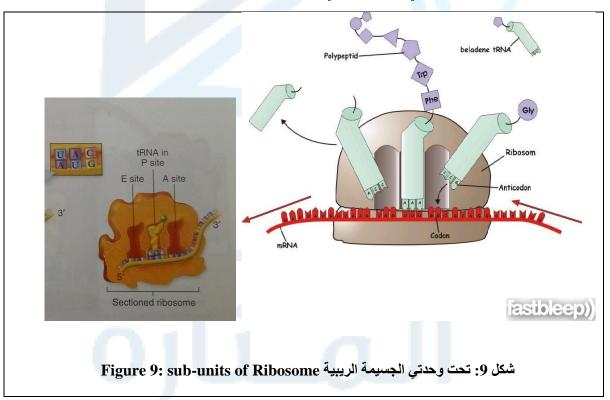
- mRNA plays a key role in protein synthesis by transferring genetic information responsible to protein synthesis from nucleus to cytoplasm.
- One gene can produce different proteins by joining exons and deleting others (fig. 7).

6) بنية tRNA والجسيمات الريبية tRNA and Ribosomes

على الرغم من أنّ الجسيم الريبي هو عضية أساسية في الترجمة، فهو يتطلب مشاركة mRNA وعوامل أخرى.


- يربط تفاعل الشحن charging الطرف الكربوكسيلي من الحمض الأميني إلى النهاية 3 من tRNA الصحيح (شكل 8).
 - يتم تنشيط هذا التفاعل بواسطة أنزيمات تدعى امينو أسيل-tRNA سنتيتاز.
- تستطيع الروامز المقابلة التابعة لجزيئات tRNA أن ترتبط إلى الروامز في mRNA وفق قواعد الإقتران.

تتألف الجسيمة الريبية من تحت وحدتين: واحدة صغيرة وواحدة كبيرة (شكل 8). ترتبط جزيئات tRNA إلى تحت الوحدة الصغيرة وتشارك في إزالة الترميز، بينما يرتبط جزيئات peptidyl transferase إلى تحت الوحدة الكبيرة التي تحتوي أنزيم ببتديل ترانزفيراز


- تمتلك الجسيمة الريبية ثلاث مواقع ربط لجزيئات tRNA (شكل 9).
- المنشط الحمض الأميني المنشط tRNA (A) الذي يحمل الحمض الأميني المنشط التالى الذي ستتم إضافته.
- ✓ يرتبط إلى موقع الببتيد (P) tRNA (P) الذي يحمل الحمض الأميني المرتبط إلى
 سلسلة الببتيد الأخذة بالنمو.
 - يرتبط إلى موقع الخروج tRNA(E) الذي حمل الحمض الأميني السابق.

MANARA UNIVERSITY

شكل 8: طرفي الحمض الأميني Both ends of amino acid

Although the ribosome is a key organelle in translation, requires the participation of mRNA, tRNA, and other factors.

- The charging reaction attaches the carboxyle terminus of amino acid to the 3' end of the correct tRNA (8).
- This is catalyzed by enzymes called aminoacyl-tRNA synthetases.
- The anticodon loop of tRNAs can base-pair to codons in mRNA.
- The ribosome consists of two subunits: large and small.

The small subunit binds to mRNA and is involved in decoding, while the large subunit contains the enzyme peptidyl transferase.

The ribosome has three tRN A-binding sites (figure 9).

- ✓ The A (acceptor site) binds to tRNA carrying the next amino acid to be added.
- ✓ The P (peptidyle site) binds to tRNA attached to the growing peptide chain.
- ✓ The E (exit site) binds to tRNA that carried the previous amino acid.

7) عملية الترجمة The process of translation

إنّ عملية تركيب البروتين معقدة ومكلفة طاقياً.

- في بدائيات النوى، يشكل معقد البداية مع تحت الوحدة الريبية الصغيرة و mRNA و tRNA بادئ خاص.
- تتشكل روابط الببتيد بين النهاية الأمينية من حمض أميني جديد والنهاية الكربوكسيلية من حمض أميني في السلسة الببتيدية الآخذة بالنمو (شكل 7).
 - يشمل تركيب البروتين حلقة من الأحداث:
- يتم إحضار جزيئات tRNAs المنشطة الجديدة إلى الجسيمات الريبية بواسطة عامل الاستطالة EF-Tu.
 - ✓ تتشكل الروابط الببتيدية بين الحمض الأميني الجديد والسلسة النامية.
- \checkmark تتزلق الجسيمة الريبية قريباً من mRNA وجزيئات tRNAs المربوطة مع الأحماض الأمينية .
 - يمكن أن يربط جزيء tRNA الناقل الواحد عدة رامزات.
 - يمكن تمييز رامزات التوقف بواسطة عوامل الفصل termination factors.

Protein synthesis is complex and energetically expensive.

- In prokaryotes the initiation complex forms with the small ribosomal subunit, mRNA, and a special initiator tRNA.
- Peptide bonds form between the amino end of the new amino acid and carboxyl end of the growing chain (7).
- Protein synthesis involves a cycle of events (7).
 - ✓ New charged tRNAs are brought to ribosomes by EF-Tu (elongation factor thermo unstable.)
 - ✓ A peptide bond forms between new amino acid and growing chain.
 - ✓ *The ribosome moves relative to mRNA and bound tRNAs.*
- One tRNA can bind multiple codons.
- Stop condons are recognized by termination factors.

8) التشوه: المورثات المحورة Mutation: Altered Genes

تشوه المورثة هو تغير دائم في تتابع نيكليوتيدات الـDNA التي تركّب المورثات ويختلف مثل هذا التتابع عند معظم البشر. تختلف التشوهات في الحجم: ويمكن أن تؤثر بأي جزء من شريط DNA وحتى القطعة الكبيرة من الصبغي التي تتضمن عدّة مورثات. ويمكن أن تستعمل التشوهات لفهم وظيفة المورثات.

- تشمل التشوهات النقطية تغير أساس واحد.
- تحول التشوهات القليلة الأهمية الرامزات إلى رامزات توقف.
 - تشمل تشوهات الإنزياح إضافة أو حذف أساس.
- يمكن أن تسبب تشوهات تمدد التكرار الثلاثي أمراضاً وراثية.
- تغير تشوهات الصبغيات بنية الصبغيات وهي نقطة البداية للتطور.

A gene mutation is a permanent alteration in the DNA sequence that makes up a gene, such that the sequence differs from what is found in

most people. Mutations range in size; they can affect anywhere from a single DNA building block (base pair) to a large segment of a chromosome that includes multiple **genes**. Mutations can be used to understand the function of genes.

- Point mutations involve the alteration of a single base.
- Nonsense mutations convert codons into stop codons.
- Frameshift mutations involve the addition or deletion of base.
- Triblet-repeat expansion mutations can cause genetic disease.
- Chromosomal mutations alter the structure of chromosomes.
- Mutations are the starting point of evolution.

