

جَــامعة الـــــنارة

MANARA UNIVERSITY

١,١ الدوال

تعریف: لتكن A و B مجموعتین غیر خالیتین من مجموعة الأعداد الحقیقیة A. إذا أمكننا أن نقرن كل عنصر x من المجموعة A ، وفق قاعدة ما ، بعنصر وحید f(x) من المجموعة A نكون قد عرفنا دالة حقیقیة للمتحول x علی المجموعة A و تأخذ قیمها فی المجموعة A و یرمز لها بالرمز A مجموعة ویرمز لها بالرمز A

<u>مثال:</u> بفرض

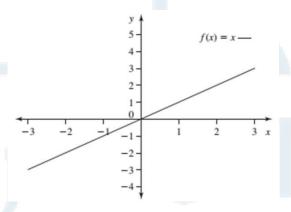
$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to x^2$$

عندئذ منطقة تعريف f هي المجموعة R و منطقة القيم هي المجال $[0,\infty)$ لأن مربع العدد الحقيقي غير سالب، أي أن $f(R)=[0,\infty)$.

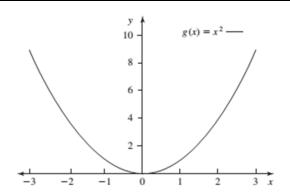
 $: f: A \rightarrow B$ تعريف: تسمى الدالة

- $x \in A$ لكل f(x)=f(-x) لكل ا- ١
- $x \in A$ لكل f(-x)=-f(x) لكل f(-x)=-f(x)

 $x\in R$ لكل f(-x)=-x=-f(x) لكل f(-x)=x لكل الدالة الد



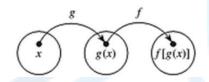
 $x \in R$ لكل $f(-x) = (-x)^2 = x^2 = f(x)$ لكل $g(x) = x^2, x \in R$ لكل مثال: الدالة



 $g(A) \subset B$ عيث g دالة معرفة على المجموعة g وكانت f دالة معرفة على المجموعة g حيث g بالعلاقة:

$$(f \circ g)(x) = f[g(x)], \forall x \in A$$

g و f تسمى مركب الدالتين

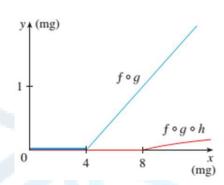


وجد: $g(x) = x^2 + 1$. $x \in R$ و $f(x) = \sqrt{x}$. $x \ge 0$ أوجد: $a)(f \circ g)(x)$ b) $(g \circ f)(x)$

الحل: من أجل إيجاد
$$g(x) = x^2 + 1$$
 و $f(u) = \sqrt{u}$ عندئذ: $g(x) = x^2 + 1$ و $g(x) = f(u) = f(x^2 + 1) = \sqrt{x^2 + 1}$ $g(u) = f(x^2 + 1) = \sqrt{x^2 + 1}$ عندئذ: $g(x) = \sqrt{x}$ ومن أجل إيجاد $g(x) = y = g(u) = g(x) = g(x)$

ولإيجاد مجموعة تعريف الدالة $g\circ g$ ننظر إلى مجموعة تعريف f (والتي هي $g(0,\infty)$) ومجموعة قيمها هي $g(0,\infty)$. إن مجموعة قيم f محتواه في مجموعة تعريف g (والتي هي $g(0,\infty)$)، بالتالي مجموعة تعريف الدالة $g\circ g$ هي المجال $g(0,\infty)$.

الكمية التي لم تتم تصفيتها في الكبد هي x mg ، نعتبر أن الكمية التي تصل إلى جوف الجيب هي الكمية التي لم تتم تصفيتها في الكبد هي x>1 . f(x)=x-1 mg



أولاً: استخدم تركيب الدوال للحصول على الدالة التي تربط الجرعة الفموية بالكمية من الدواء الواصلة إلى جوف الجيب.

ثانياً: لنفترض أن المضاد الحيوي تم إعطاؤه عن طريق حقنة. أوجد الدالة التي تربط الجرعة بكمية الدواء الواصل إلى جوف الجيب.

الحل:

أولاً: كمية الدواء التي لم تتم تصفيتها في الكبد هي:

$$g(h(x)) = \frac{1}{4}h(x) = \frac{1}{4}\left(\frac{8x}{x+8}\right) = \frac{2x}{x+8}$$

$$\frac{2x}{x+8} > 1 \Leftrightarrow 2x > x+8 \Leftrightarrow x > 8$$
 والآن:

وبالتالي إذا كان x>8 فإن كمية الدواء التي تصل إلى جوف الجيب هي :

$$f(g(h(x))) = f\left(\frac{2x}{x+8}\right) = \frac{2x}{x+8} - 1 = \frac{x-8}{x+8}$$

وفي حال كان f(g(h(x))) = 0 فإن الكمية الواصلة إلى جوف الجيب:

$$f(g(h(x))) = \begin{cases} \frac{x-8}{x+8} & \text{if } x > 8\\ 0 & \text{if } x \le 8 \end{cases}$$

ثانياً: إذا تم إعطاء الدواء عن طريق حقنة فالكمية الواصلة إلى جوف الجيب:

$$f(g(x)) = \begin{cases} \frac{1}{4}x - 1 & \text{if } x > 4\\ 0 & \text{if } x \le 4 \end{cases}$$

۲٫۱ دوال كثيرات الحدود (Polynomial functions)

بفرض أن a_0,a_1 , $a_2,...,a_n$ حيث $f(x)=a_0+a_1x+a_2x^2+...+a_nx^n$ ثوابت و عدد صحيح موجب تسمى الدالة f كثير حدود في المتحول f إذا كان f غان أنها من الدرجة f موجب تسمى الدالة f كثير حدود أنها من الدرجة .n

(Rational functions) الدوال الكسرية (Rational functions)

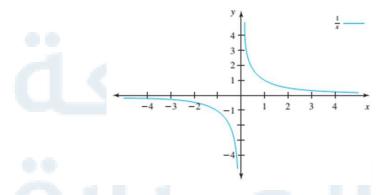
الدالة الكسرية هي الدالة الناتجة عن قسمة كثيرتي حدود p(x) و p(x)

$$f(x) = \frac{p(x)}{q(x)}; for q(x) \neq 0$$

من الأمثلة الهامة على التوابع الكسرية هو

القطع الزائد:

$$y = \frac{1}{x}$$
; $x \neq 0$



٤,١ دوال القوى

هي الدوال من الشكل x^r حيث r عدد حقيقي.

 $y=x^{1/3},x\in\mathbb{R}$

$$y = x^{5/2}, x \ge 0$$

 $y = x^{1/2}, x \ge 0$

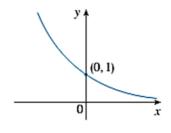
$$y = x^{-1/2}, x > 0$$

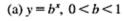
أمثلة:

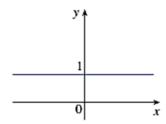
۱,ه الدوال الأسيّة (Exponential functions)

. $f(x)=a^x$; $a \neq 0,1$ الدالة الأسية هي الدالة من الشكل

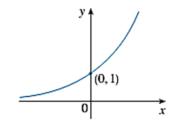
 $y = b^x$ فإن بيان الدالة $y = \left(\frac{1}{b}\right)^x$ هو مجرد انعكاس لبيان الدالة $y = b^x$ فإن بيان الدالة الدالة $y = b^x$ بالنسبة للمحور ٧.







(b) $y = 1^x$



(c)
$$y = b^x$$
, $b > 1$

قوانين القوى:

1.
$$b^{x+y} = b^x b^y$$
 2. $b^{x-y} = \frac{b^x}{b^y}$ 3. $(b^x)^y = b^{xy}$ 4. $(ab)^x = a^x b^x$

3.
$$(b^x)^y = b^{xy}$$

$$4. \left(ab\right)^x = a^x b^x$$

الأسية

الدالة

. $f(x) = e^x$; e = 2.71828 الطبيعية: هي الدالة

مثال: اكتب المقادير الآتية بأبسط شكل:

1)
$$\frac{4^{-3}}{2^{-8}}$$

2)
$$\frac{1}{\sqrt[3]{x^4}}$$

1)
$$\frac{4^{-3}}{2^{-8}}$$
 2) $\frac{1}{\sqrt[3]{x^4}}$ 3) $\frac{x^{2n}x^{3n-1}}{x^{n+2}}$ 4) $\frac{\sqrt{a\sqrt{b}}}{\sqrt[3]{ab}}$

4)
$$\frac{\sqrt{a\sqrt{b}}}{\sqrt[3]{ab}}$$

الحل:

1)
$$\frac{4^{-3}}{2^{-8}} = \frac{(2^2)^{-3}}{2^{-8}} = \frac{2^{-6}}{2^{-8}} = 2^{-6} \times 2^8 = 2^{-6+8} = 2^2 = 4$$

2)
$$\frac{1}{\sqrt[3]{x^4}} = \frac{1}{(x^4)^{1/3}} = \frac{1}{(x^{1/3})^{4/3}} = x^{-4/3}$$

3)
$$\frac{x^{2n} x^{3n-1}}{x^{n+2}} = \frac{x^{5n-1}}{x^{n+1}} = x^{5n-1} x^{-n-2} = x^{5n-n-1-2} = x^{4n-3}$$

4)
$$\frac{\sqrt{a\sqrt{b}}}{\sqrt[3]{ab}} = \frac{\left(ab^{1/2}\right)^{1/2}}{\left(ab\right)^{1/3}} = \frac{a^{1/2}b^{1/4}}{a^{1/3}b^{1/3}} = \left(a^{1/2}b^{1/4}\right) \cdot \left(a^{-1/3}b^{-1/3}\right) = a^{\frac{1}{2} - \frac{1}{3}}b^{\frac{1}{4} - \frac{1}{3}} = a^{\frac{1}{6}}b^{\frac{-1}{12}}$$

۱,۱ الدوال العكسية (Inverse functions)

يقال عن الدالة f أنها دالة متباينة على

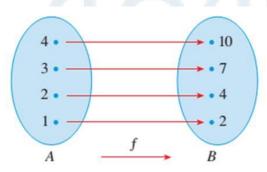
المجموعة A إذا تحقق الشرط:

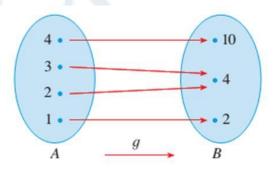
$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

أو الشرط:

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

 $x_1^3 \neq x_2^3$ فإن $f(x) = x_1$ دالة مباينة لأنه إذا كان $f(x) = x_1^3$ فإن $f(x) = x_1^3$ ما الدالة $f(x) = x_1^3$ فهي غير متباينة لأن:





تعريف: لتكن $f:A \to B$ دالة متباينة مجموعة قيمها f(A) عندئذ للدالة العكسية $f:A \to B$ مجموعة التعريف f(A) و مجموعة القيم و م

$$f^{-1}(y) = x \Leftrightarrow y = f(x), \forall y \in f(A)$$

 f^{-1} مجموعة تعريف أ f^{-1} تساوي مجموعة قيم

مجموعة قيم f^{-1} تساوي مجموعة تعريف f .



. $f(x) = x^3 + 1$, $x \ge 0$ مثال: أوجد معكوس الدالة

الحل: لإيجاد الدالة العكسية، نقوم بإجراء ثلاث خطوات:

y = f(x)نکتب ۱- نکتب

$$y = x^3 + 1$$

۲- نوجد x بدلالة y:

$$x^3 = y - 1 \Longrightarrow x = \sqrt[3]{y - 1}$$

إن مجموعة قيم f هي المجال $[1,\infty)$ وهذا المجال سيكون مجموعة تعريف الدالة f^{-1} ومنه نجد أن:

$$f^{-1}(y) = \sqrt[3]{y-1}, \quad y \ge 1$$

۳- نبدل کل x ب y و کل y ب x. نجد أن:

$$y = f^{-1}(x) = \sqrt[3]{x-1}, \quad x \ge 1$$

٧,١ دالة اللوغاريتم:

تعريف: تسمى الدالة العكسية للدالة $f(x) = a^x$ دالة اللوغاريتم ذي الأساس a ونكتب:

$$f^{-1}(x) = \log_a x$$

$$a^{\log_{a} x} = x \text{ for } x > 0$$

نلاحظ أن:

$$\log_a a^x = x \text{ for } x \in \mathbb{R}$$

$$\log_a(s.t) = \log_a(s) + \log_a(t)$$
 خواص دالة اللوغاريتم:
$$\log_a(s/t) = \log_a(s) - \log_a(t)$$

$$\log_a(s^r) = r \log_a(s) \qquad ; \quad r \in \mathbb{R}$$

 $\log_2 80 - \log_2 5$ مثال: أوجد قيمة المقدار

$$\log_2 80 - \log_2 5 = \log_2 \left(\frac{80}{5}\right) = \log_2 16 = \log_2 2^4 = 4$$

اللوغاريتم الطبيعي: إذا كان أساس دالة اللوغاريتم يساوي e فإننا ندعوها بدالة اللوغاريتم الطبيعي ونكتب:

$$\log_e x = \ln x$$

مثال: اكتب كلاً مما يلي بأبسط شكل:

(a)
$$\log_2[8(x-2)]$$
 (b) $\log_3 9^x$ (c) $\ln e^{3x^2+1}$

الحل:

$$\log_2[8(x-2)] = \log_2 8 + \log_2(x-2) = \log_2 2^3 + \log_2(x-2) = 3 + \log_2(x-2)$$

b)

$$\log_3 9^x = \log_3 3^{2x} = 2x$$

$$\ln e^{3x^2+1} = (3x^2+1)\ln e = 3x^2+1$$

MANARA UNIVERSITY

العلاقة بين اللوغاريتم الطبيعي واللوغاريتم:

من أجل أى a > 0, $a \neq 1$ يكون:

$$\log_a x = \frac{\ln x}{\ln a}$$

مثال: اكتب كلاً مما يلى بدلالة e :

(a)
$$2^x$$
 (b) 10^{x^2+1} (c) $\log_3 x$ (d) $\log_2 (3x-1)$

الحل:

(a)
$$2^x = \exp(\ln 2^x) = \exp(x \ln 2) = e^{x \ln 2}$$

(b)
$$10^{x^2+1} = \exp(\ln 10^{x^2+1}) = \exp[(x^2+1)\ln 10] = e^{(x^2+1)\ln 10}$$

(c)
$$\log_3 x = \frac{\ln x}{\ln 3}$$

(d)
$$\log_2(3x-1) = \frac{\ln(3x-1)}{\ln 2}$$

تمارين

ا - أوجد حل كلا من المعادلات الآتية:

1)
$$3^{\log_9(5x-5)} = 5$$
, 2) $\left(\frac{1}{25}\right)^{x+2} = 5^{x+5}$, 3) $\log_{x-5} 49 = 2$

4)
$$\log_5(7-x) = \log_5(3-x) + 1$$
, 5) $x^{\log x} = 1000x^2$

الدوال الآتية زوجية أم فردية أم لا زوجية ولا فردية: II

1)
$$f(x) = 4x^3 - 4x$$
, 2) $g(x) = 9 - 5x^3$, 3) $h(x) = \sqrt{x^2 + 1}$, 4) $k(x) = |x| + 3$

III - أوجد مجموعة تعريف كلا من الدوال الآتية:

1)
$$f(x) = \sqrt{1-x^2}$$
, 2) $g(x) = \sqrt{3+x} + \sqrt[4]{7-x}$, 3) $h(x) = \log x$, 4) $k(x) = \frac{a+x}{a-x}$