
Robot and Smart Systems
Manara University

Fall 2022
Instructor: Iyad Hatem

Data Structures and Algorithms in

C++
Class Meeting

2

Course Objectives

 The primary goal of this class is to learn a

useful subset of C++ programming language

and fundamental data structures and algorithms

expressed in C++.

 You will learn best practices for developing

reliable software.

 You will acquire software development skills

that are valued by employers.

3

Not Course Objectives

 Complete knowledge of C++

◼ C++ is a huge, complex language!

◼ The class will hit the important features.

◼ You can learn the rest by yourself from

online tutorials or the textbooks.

◼ We will briefly touch the new features

of C++ 11 and 14.

 Advanced data structures and algorithms

 Advanced algorithm analysis

4

Required Textbooks

 Problem Solving with C++, 10th edition

◼ Author: Walter Savitch

◼ Publisher: Pearson, 2017

◼ ISBN: 978-0134448282

 Data Structures Using C++, 2nd edition

◼ Author: D.S. Malik

◼ Publisher: Cengage Learning, 2010

◼ ISBN: 978-0324782011

You are responsible for doing the chapter readings

before each class, as indicated in the class schedule.

5

Software to Install

 Install an integrated development environment

(IDE) for C++ development on the Mac or Linux

platform, such as:

◼ Eclipse CDT (C/C++ Development Tooling):

https://eclipse.org/cdt/

 You can choose your favorite IDE.

https://eclipse.org/cdt/

6

Software to Install, cont’d

7

C++ on the Mac and Linux Platforms

 GNU C++ is usually pre-installed on the Mac

and Linux platforms.

 No further action required!



8

C++ on Windows 10

 The Windows platform has proven to be

problematic for this class.

◼ Difficult to install the Cygwin environment correctly.

◼ Difficult to install C++ libraries successfully.

◼ Serious compatibility challenges.

 Avoid using Microsoft’s Visual C++ on Windows

for this class.

◼ You run the risk of writing programs

that will not port to other platforms.

9

C++ on Windows 10, cont’d

 Install the Windows Subsystem for Linux (WSL).

◼ See https://docs.microsoft.com/en-

us/windows/wsl/install-win10

 Recommended: Install the Ubuntu distribution.

◼ See https://www.microsoft.com/en-

us/p/ubuntu/9nblggh4msv6?activetab=pivot:overview

tab

We will not provide support for Windows.

If you insist on running Windows,

you are on your own!

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6?activetab=pivot:overviewtab

10

Useful Tutorials

 “Install Ubuntu on Windows 10 and on

VirtualBox”

◼ http://www.cs.sjsu.edu/~mak/tutorials/InstallUbuntu.p

df

 “Configure Ubuntu for Software Development”

◼ http://www.cs.sjsu.edu/~mak/tutorials/ConfigureUbun

tu.pdf


 “Install Eclipse for Java and C++ Development”

◼ http://www.cs.sjsu.edu/~mak/tutorials/InstallEclipse.p

df

http://www.cs.sjsu.edu/~mak/tutorials/InstallUbuntu.pdf
http://www.cs.sjsu.edu/~mak/tutorials/ConfigureUbuntu.pdf
http://www.cs.sjsu.edu/~mak/tutorials/InstallEclipse.pdf

11

C++ 2011 Standard

 We will use the 2011 standard version of C++.

 You must set this standard explicitly for your

project in Eclipse or your chosen IDE.

 On the command line:

g++ foo.cpp --std=c++11 –o foo

Two hyphens!

12

Set the C++ 2011 Standard in Eclipse

 Right-click on your project in the project list

at the left side of the window.

 Select “Properties” from

the drop-down context menu.

 In the left side of the properties window,

select “C/C++ Build” ➔ “Settings”.

 In the Settings dialog,

select “GCC C++ Compiler” ➔ “Dialect”.

 For “Language standard” select “ISO C++ 11”.

 Click the “Apply” button, answer “Yes”,

and then click the “OK” button.

Remember to do

all these steps

for every C++ project

in Eclipse.

13

Assignments

 You will get lots of programming practice!

◼ A main programming assignment each week.

◼ Several small practice programs that emphasize

specific skill needed to solve the main assignment.

 We will use the online CodeCheck system

which will automatically check your output

against a master.

◼ You will be provided the URL for each assignment.

◼ You can submit as many times as necessary

to get satisfactory output.

14

Assignments, cont’d

 Assignments will be due the following week,

before the next lecture.

 Solutions will be discussed at the next lecture.

 Assignments will not be accepted after solutions

have been discussed in class.

◼ Late assignments will receive a 0 score.

15

Individual Work

 You may study together.

 You may discuss the assignments together.

 But whatever you turn in must be your individual

work.

16

Academic Integrity

 Copying another student’s work or sharing your

work is a violation of academic integrity.

 Violations will result in harsh penalties

by the university.

◼ Academic probation.

◼ Disqualified for TA positions in the university.

◼ Lose internship and OPT sponsorship

at local companies.

 Instructors are obligated to report violations.

17

Moss

 Department policy is for programming

assignments to be run through Stanford

University’s Moss application.

◼ Measure of software similarity

◼ Detects programming plagiarism

◼ http://theory.stanford.edu/~aiken/moss/

 Moss is not fooled by

◼ Renaming variables and functions

◼ Reformatting code

◼ Re-ordering functions
Example Moss output:

http://www.cs.sjsu.edu/~mak/Moss/

http://theory.stanford.edu/~aiken/moss/
http://www.cs.sjsu.edu/~mak/Moss/

18

Exams

 The midterm and final examinations will be

open book and conducted online.

 Instant messaging, e-mails, texting, tweeting,

file sharing, or any other forms of

communication with anyone else during the

exams violates academic integrity.

19

Exams, cont’d

 There can be no make-up midterm examination

unless there is a documented medical

emergency.

 Make-up final examinations are available

only under conditions dictated by University

regulations.

20

Final Class Grade

 65% assignments

 15% midterm

 20% final exam

 The class is graded CR/NC.
◼ Students who have a weighted score above

the passing threshold at the end of the semester will
receive the CR grade.

 We expect least 80% of students will pass.
◼ In some past semesters when I’ve taught this class,

the pass rate has been higher than 95% in the past.

21

Take Roll

22

Fast Pace!

 This class will move forward at a fast pace.

 Lectures will consist of:

◼ New PowerPoint slides by the instructor

◼ PowerPoint slides from the textbook publishers

◼ Program examples and live demos

◼ Questions, answers, and discussion

 Lecture materials will be posted to the class

webpage: http://www.cs.sjsu.edu/~mak/CMPE180A/index.html

http://www.cs.sjsu.edu/~mak/CMPE180A/index.html

23

Discussion Forum

 Please use the Discussions feature of Canvas.

◼ Ask questions

◼ Answer questions

◼ Chat

 If you have a question, please ask it in the

Discussions feature .

◼ Others may have the same question.

◼ I’ll only have to answer the question once.

◼ Other students can provide answers before I do.

24

What is C++

 An object-oriented programming (OOP)

language.

◼ Supports encapsulation, inheritance, polymorphism.

◼ Based on the C language with added OOP features.

 A powerful but complex language!

◼ Lots of features.

◼ Somewhat arcane syntax.

◼ Easy to make programming errors.

◼ Things happen automatically at run time

that you may not expect.

25

A Useful Subset of C++

 We will only learn a useful subset of C++.

◼ Very few people (not including your instructor)

know the entire language.

 Among professional C++ programmers,

everybody knows a different subset,

depending on experience, training,

and application domains.

26

What Happened?

 We may have to figure out together

what happened when …

◼ You’ve accidentally stumbled onto

an obscure language feature.

◼ Your program runs slower than expected.

◼ Your program mysteriously crashes.

 Your program may appear to run fine on your

machine but then crash in CodeCheck.

◼ It’s usually because your program attempted

to access protected memory via a bad pointer.

27

Our First C++ Program

 The infamous “Hello, world!” program.

 Compiled and run on the command line:

#include <iostream>

using namespace std;

int main()

{

cout << "Hello, world!" << endl;

return 0;

}

helloworld.cpp

~/programs/HelloWorld: g++ helloworld.cpp --std=c++11 -o helloworld

~/programs/HelloWorld: ./helloworld

Hello, world!

28

Algorithms and Program Design

 Display 1.4

◼ Compiling and Running a C++ Program

 Display 1.5

◼ Preparing a C++ Program for Running

 Display 1.7

◼ Program Design Process

Savitch_ch_01.ppt: slides 57– 60

29

Sample C++ Program: Pods and Peas

 “A Sample C++ Program”

 Display 1.8

◼ Pods and peas program

Savitch_ch_01.ppt: slides 34 – 44

Savitch_ch_01.ppt: slide 61

30

Identifiers and Variables

 Identifiers are names.

 Variables represent values that can change.

◼ Variables have names (variable identifiers).

 Declare variables before you use them.

◼ A declaration tells what is the

variable’s datatype

(integer, float, double,

character, boolean, etc.).

◼ A declaration can also give an

initial value to the variable.

int n;

double ratio;

bool is_prime;

char ch;

string name;

int length = 0;

double temp = 98.6;

string name = "Frank";

31

Keywords

 Keywords are reserved by C++

and you cannot use them as identifiers.

◼ Examples: if for while

32

Assignment Statements

 At run time, be sure to initialize a variable

(give it a value) before you use it.

◼ Either initialize the variable when you declare it.

 Example:

◼ Or execute an assignment statement.

 Example:

 Do not confuse = (assignment)

with == (equality comparison).

i = 10; // assign the value of 10 to variable i

if (i == 10) // test whether or not i is equal to 10

int i = 5;

i = 10;

33

Break

34

Output Stream

 Values written by the program at run time.

 Standard output stream: cout

◼ Default: the display

 Example:

◼ Insert (write) the string “x equals” followed by

the value of variable x followed by a carriage return

(endl) to the display.

cout << "x equals " << x << endl;
insertion

operator

35

Formatting Real Numbers for Output

 Call methods of cout to format real numbers.

 cout.setf(ios::fixed);

◼ Use fixed-point notation (not scientific).

 cout.precision(2);

◼ How many places after the decimal point (e.g., 2).

◼ You can also write:

#include <iostream>

#include <iomanip>

...

cout << fixed << setprecision(16);

36

Input Stream

 Data read by the program at run time.

 Standard input stream: cin

◼ Default: the keyboard

 Example:

◼ Extract (read) the next two values from the keyboard
and assign the values to x and y, respectively.

cin >> x >> y; extraction operator

37

Input From cin



◼ Read values into multiple variables.

◼ The input values should be separated

by one or more spaces.

 The values are not read

until you press the return key.

◼ Therefore, you can backspace

and make corrections.

cin >> v1 >> v2 >> v3;

38

#include and using namespace

 #include <iostream>

◼ Include the definitions of cin and cout

in your program.

 using namespace std;

◼ Make the standard namespace std

available to the program.

◼ The names cin and cout and other important

names reside in the standard namespace.

39

Some Basic Data Types

 A datatype (also: data type) determines

◼ what kind of data values

◼ what operations are allowed

 Data type int for integer values

without decimal points.

◼ Examples: 0 2 45 -64

 Data type short for small integer values.

 Data type long for very large integer values.

40

Some Basic Data Types, cont’d

 Data type double for real numbers.

◼ Fixed-point notation: 34.1 23.0034 -1.0 89.9

◼ Scientific notation: 3.67e17 5.89E-6 -7.23e+12

 Data type float for less precision

and smaller magnitude.

 Data type char for individual characters.

◼ Examples: 'a' 'Z'

◼ Use only single quotes for character constants

in a program.

41

Some Basic Data Types, cont’d

 Data type bool for the Boolean values

true and false.

 The Boolean value false is stored as

the integer 0.

 The Boolean value true is stored as

the integer 1.

42

cin Skips Input Blanks

 The statements

when given the input
will set ch1 to 'A' and ch2 to 'B'.

char ch1, ch2;

cin >> ch1 >> ch2;

A B

cin uses blanks and line feeds

to separate input data values,

but otherwise it skips the

blanks and line feeds.

43

String Type

 #include <string>

◼ Required if your program uses strings.

 Enclose string values with double quotes

in your program.

◼ Example: "Hello, world!"

 To input a string from cin that includes spaces,

all in one line: string str;

getline(cin, str);

44

Type Compatibilities and Conversions

 int pi = 3.14;

◼ double→ int is invalid. You cannot set

a double value into an int variable .

 Some valid conversions:

◼ int→ double

◼ char→ int

◼ int→ char

◼ bool→ int

◼ int→ bool Any nonzero integer value is stored as true.

Zero is stored as false.

45

Arithmetic

 Arithmetic operators: + - * / %

 Integer / result if both operands are integer.

◼ Quotient only.

◼ Example: The value of 11/3 is 3.

 Use the modulo operator % to get a remainder.

◼ Example: The value of 11%3 is 2.

 Double / result (includes fractional part)

if either or both operands are double.

46

Operator Shorthand

 n += 5 shorthand for n = n + 5

 n -= 5 shorthand for n = n - 5

 n *= 5 shorthand for n = n*5

 n /= 5 shorthand for n = n/5

 n %= 5 shorthand for n = n%5

47

The if Statement

 Example if statement:

 Example if else statement:

if (n <= 0)

{

cout << "Please enter a positive number." << endl;

}

if (hours > 40)

{

gross_pay = rate*40 + 1.5*rate*(hours - 40);

}

else

{

gross_pay = rate*hours;

}

48

while Loops

 Example while loop:

 Example do while loop:

while (count_down > 0)

{

cout << "Hello ";

count_down = count_down - 1;

}

do

{

cout << "Hello ";

count_down = count_down - 1;

} while (count_down > 0)

49

Named Constants

 It’s good programming practice

to give names to constants:

 Easier for humans to read the program.

 Easier to modify the program.

 Convention: Use ALL_CAPS

with underscores if necessary

for the names of constants.

const double PI = 3.1415626;

50

Boolean Operators

 Relational operators: == != < <= > >=

 And: &&

 Or: ||

 Not: !

 Short-circuit operation: p && q

◼ q is not evaluated if p is false

 Short-circuit operation: p || q

◼ q is not evaluated if p is true

51

Precedence Rules

Savitch_ch_03.ppt: slides 8-13

52

Enumeration Types

 A data type with values defined by
a list of constants of type int

◼ Examples:

enum Direction {NORTH, SOUTH, EAST, WEST};

enum MonthLength{JAN_LENGTH = 31,

FEB_LENGTH = 28,

MAR_LENGTH = 31,

…

DEC_LENGTH = 31};

53

Nested if Statements

 Example:

if (net_income <= 15000)

{

tax_bill = 0;

}

else if ((net_income > 15000) && (net_income <= 25000))

{

tax_bill = (0.05*(net_income - 15000));

}

else // net_income > $25,000

{

five_percent_tax = 0.05*10000;

ten_percent_tax = 0.10*(net_income - 25000);

tax_bill = (five_percent_tax + ten_percent_tax);

}

54

The switch Statement

 Use a switch statement instead of nested if

statements to compare a single integral value

for equality.

◼ Note the need
for the break

statements.

◼ Note the
default case

at the bottom.

int digit;

...

switch(digit)

{

case 1: digit_name = "one"; break;

case 2: digit_name = "two"; break;

case 3: digit_name = "three"; break;

case 4: digit_name = "four"; break;

case 5: digit_name = "five"; break;

case 6: digit_name = "six"; break;

case 7: digit_name = "seven"; break;

case 8: digit_name = "eight"; break;

case 9: digit_name = "nine"; break;

default: digit_name = ""; break;

}

55

The Increment and Decrement Operators

 ++n

◼ Increase the value of n by 1.

◼ Use the increased value.

 n++

◼ Increase the value of n by 1.

◼ Use the value before the increase.

56

The Increment and Decrement Operators, cont’d

 --n

◼ Decrease the value of n by 1.

◼ Use the decreased value.

 n--

◼ Decrease the value of n by 1.

◼ Use the value before the decrease.

57

for Loops

 Example:

int sum = 0;

for (int n = 1; n <= 10; n++)

{

sum = sum + n;

}

cout << "The sum of the numbers 1 to 10 is "

<< sum << endl;

Note that variable n

is local to the loop body.

58

for Loops, cont’d

 The for loop uses the same components as

the while loop, but in a more compact form.

Initialization Action

Boolean Expression

Update Action

for (n = 1; n <= 10; n++)

59

The break Statement

 Use the break statement to exit a loop

before “normal” termination.

 Do not overuse!

◼ Well-designed loops should end normally.

 This use of break in a for statement

is different from the necessary use of break

in a switch statement.

60

Nested Loops

 If you have an “outer loop” that contains an

“inner loop”, then for each iteration (execution)
of the outer loop, the inner loop goes through

all of its iterations.

 This concept extends to more than just one loop

inside another.

◼ Loops can nest deeply, although usually

there are no more than three loops.

 Nested loops are a very common in programs.

61

Nested Loops, cont’d

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

for (int i = 1; i <=2; i++)

{

for (int j = 9; j <= 12; j++)

{

cout << "i = " << i

<< ", j = " << j << endl;

}

}

return 0;

}

i = 1, j = 9

i = 1, j = 10

i = 1, j = 11

i = 1, j = 12

i = 2, j = 9

i = 2, j = 10

i = 2, j = 11

i = 2, j = 12

nestedloop.cpp

62

Loop Considerations

 Choosing the right kind of loop to use

 Designing loops

 How to control a loop

 How to exit from a loop

 Nested loops

 Debugging loops

Savitch: Chapter 3

