
Data Structures and Algorithms 
in C++

Class Meeting

Robot and Smart Systems
Manara University

Fall 2022
Instructor: Iyad Hatem



The C++ Division Operator

• Some of you may have discovered this while programming the solution to 
Assignment #1.

• If both operands of the / operator are integer constants or variables, then 
the result will be integer.
• Any fractional amount is truncated (not rounded).

• Examples: 7/3➔ 2 and  1/2➔ 0

• If one or both operands are double constants 
or variables, then the result will be double.
• Examples: 7/3.0➔ 2.333...  and  1.0/2.0➔ 0.5



Assignment #1: Sample Solution

• The built-in square root sqrt and the natural logarithm log functions 
are from the cmath library:

𝜋 =
12

190
𝑙𝑛 2 2 + 10 3 + 10

void Ramanujan_0()

{

double const1 = 12/sqrt(190);

double const2 = 2*sqrt(2) + sqrt(10);

double const3 = 3 + sqrt(10);

double pi = const1*log(const2*const3);

cout << " Estimate: " << pi << endl;

}

#include <cmath>



Assignment #1: Sample Solution, cont’d
• What does the (-1)n factor do?

• Whenever n is odd, the factor equals -1.

• Example: (-1)3 = (-1)(-1)(-1) = -1

• Whenever n is even, the factor equals +1.

• Example: (-1)4 = (-1)(-1)(-1)(-1) = +1

• Therefore, the factor alternates between 
adding and subtracting the term it multiplies.

4

𝜋
=

1

882
෍

𝑛=0

∞
−1 𝑛 4𝑛 !

4𝑛𝑛! 4

1123 + 21460𝑛

8822𝑛



Assignment #1: Sample Solution, cont’d
• It is inefficient to use the built-in power function for this purpose:

• Use a Boolean variable instead that 
alternates between true and false.

• Copying a mathematical formula directly 
can lead to inefficient or erroneous code.
• A formula that is not designed for computation can accumulate roundoff errors

when it is used inside of a loop. It can also have overflow errors.

4

𝜋
=

1

882
෍

𝑛=0

∞
−1 𝑛 4𝑛 !

4𝑛𝑛! 4

1123 + 21460𝑛

8822𝑛

pow(-1, n)

See: https://www.amazon.com/Java-Number-Cruncher-Programmers-Numerical/dp/0130460419/ref=sr_1_1?dchild=1&keywords=java+number+cruncher&qid=1598936278&s=books&sr=1-1

https://www.amazon.com/Java-Number-Cruncher-Programmers-Numerical/dp/0130460419/ref=sr_1_1?dchild=1&keywords=java+number+cruncher&qid=1598936278&s=books&sr=1-1


Assignment #1: Sample Solution, cont’d

void Ramanujan_2()

{

cout << " Iteration Estimate" << endl;

double four_over_pi;

double factor0 = ((double) 1)/882.0;

bool negate = false;

double sum = 0.0;

double prev = 0.0;

double diff = 0.0;

int n = 0;

4

𝜋
=

1

882
෍

𝑛=0

∞
−1 𝑛 4𝑛 !

4𝑛𝑛! 4

1123 + 21460𝑛

8822𝑛



Assignment #1: Sample Solution, cont’d
do

{

double factor1 = factorial(4*n)/pow((pow(4.0, n)*factorial(n)), 4);

double factor2 = (1123 + 21460*n)/pow(882.0, 2*n);

if (negate) factor1 = -factor1;

sum += factor1*factor2;

four_over_pi = factor0*sum;

cout << setw(11) << n+1 << " " << 4.0/four_over_pi << endl;

diff = abs(prev - four_over_pi);

prev = four_over_pi;

negate = !negate;

n++;

} while ((diff > TOLERANCE) && (n <= MAX_ITERATIONS));

}

4

𝜋
=

1

882
෍

𝑛=0

∞
−1 𝑛 4𝑛 !

4𝑛𝑛! 4

1123 + 21460𝑛

8822𝑛



Assignment #1: Sample Solution, cont’d

1

𝜋
= 12෍

𝑛=0

∞
−1 𝑛 6𝑛 !

3𝑛 ! 𝑛! 3

13591409 + 545140134𝑛

6403203
𝑛+

1
2

void Chudnovsky()

{

double one_over_pi;

double sum = 0.0;

double prev = 0.0;

double diff = 0.0;

bool negate = false;

int n = 0;



Assignment #1: Sample Solution, cont’d
do

{

double factor1 = factorial(6*n)/(factorial(3*n)*pow(factorial(n), 3));

double factor2 = (13591409 + 545140134*n)/pow(640320, 3*n + 1.5);

if (negate) factor1 = -factor1;

sum += factor1*factor2;

one_over_pi = 12*sum;

cout << setw(11) << n+1 << " " << 1.0/one_over_pi << endl;

diff = abs(prev - one_over_pi);

prev = one_over_pi;

negate = !negate;

n++;

} while ((diff > TOLERANCE) && (n <= MAX_ITERATIONS));

}

1

𝜋
= 12෍

𝑛=0

∞
−1 𝑛 6𝑛 !

3𝑛 ! 𝑛! 3

13591409 + 545140134𝑛

6403203
𝑛+

1
2



Assignment #1: Sample Solution, cont’d
arctan 𝑥 = 𝑥 −

𝑥3

3
+
𝑥5

5
−
𝑥7

7
+ ⋯

𝜋

4
= 4 arctan

1

5
− 𝑎𝑟𝑐𝑡𝑎𝑛

1

239

double arctangent(double x)

{

double arctan = x;

bool addsub = false;

double numerator = x;

double x_squared = x*x;

double term;

int odd = 3;

do

{

numerator *= x_squared;

term = numerator/odd;

if (addsub) arctan += term;

else arctan -= term;

odd += 2;

addsub = !addsub;

} while ((term > TOLERANCE) && (odd <= MAX_ITERATIONS));

return arctan;

}



Predefined Functions

• C++ includes predefined functions.

• AKA built-in functions

• Example: Math function sqrt

• Predefined functions are stored in libraries.

• Your program will need to include the appropriate library header files to 
enable the compiler to recognize the names of the predefined functions.

• Example:  #include <cmath>
in order to use predefined math functions like sqrt



Predefined Functions, cont’d

Savitch_ch_04.ppt: slides 8 – 12, 72



Random Numbers

• To generate (pseudo-) random numbers 
using the predefined functions, first include 
two library header files:

• “Seed” the random number generator:

• If you don’t seed, you’ll always get the same “random” sequence (which may be 
useful for debugging).

#include <cstdlib>

#include <ctime>

srand(time(0));



Random Numbers, cont’d

• Each subsequent call                returns a “random” number ≥ 0 and ≤ 
RAND_MAX.
• RAND_MAX is library-dependent but is guaranteed to be at least 32,767.

• Use + and % to scale to a desired number range.
• Example: Each execution of the expression

returns a random number 
with the value 1, 2, 3, 4, 5, or 6.

rand();

rand()%6 + 1



Type Casting
• Suppose integer variables i and j are initialized to 5 and 2, respectively.

• What is the value of the division i/j ?

• What if we wanted to have a quotient 
of type double?
• We want to keep the fraction.



Type Casting, cont’d
• One way is to convert one of the operands 

(say i) to double. 
• Then the quotient will be type double.

• Why won’t the following work?

double quotient = static_cast<double>(i)/j;

double quotient = static_cast<double>(i/j);



Programmer-Defined Functions

• In addition to using the predefined functions, you can write your own 
functions.

• Programmer-defined functions are critical 
for good program design.

• In your C++ program, you can call a programmer-defined function only 
after the function has been declared or defined.



Function Declarations
• A function declaration specifies:

• The function name.

• The number, order, and data types 
of its formal parameters.

• The data type of its return value.

• Example:

double total_cost(double unit_cost, int count);



Function Definitions, cont’d
• After you’ve declared a function, 

you must define it.
• Write the code that is executed 

whenever the function is called.

• A return statement terminates execution 
of the function and returns a value to the caller.

• Example:

double total_cost(double unit_cost, int count)

{

double total = count*unit_cost;

return total;

}



Function Calls

• Call a function that you wrote just as 
you would call a predefined function.

• Example:

int how_many;

double how_much;

double spent;

how_many = 5;

how_much = 29.99;

spent = total_cost(how_much, how_many);



Void Functions
• A void function performs some task 

but does not return a value.

• Therefore, its return statement terminates the function execution 
but does not include a value.
• A return statement is not necessary for a void function if the function 

terminates “naturally” 
after it finishes executing the last statement.

• Example void 
function definition:

void print_TF(bool b)

{

if (b) cout << "T";

else   cout << "F";

}



Void Functions, cont’d

• A call to a void function cannot be part of an expression, since the 
function doesn’t return 
a value.

• Instead, call a void function as a statement 
by itself.

• Example:

bool flag = true;

print_TF(flag);



Coding Convention with Functions

• First declare all your functions.

• Document each declaration with a comment that describes:
• What the function does.

• What is each function parameter.

• What is the return value.

• Code the main function.

• Define the functions.
• Don’t repeat the declaration’s comment.

• Only document each function’s internal operations.



Coding 
Convention with 
Functions, cont’d

#include <iostream>

using namespace std;

/**

* Add two integers and return their sum.

* @param n1 the first integer

* @param n2 the second integer

* @return their sum.

*/

int make_sum(int n1, int n2);

/**

* Print an integer value;

* @param n the value to print.

*/

void print(int n);

int main()

{

int i = 5, j = 7;

int sum = make_sum(i, j);

print(sum);

} 

int make_sum(int n1, int n2)

{

return n1 + n2; // return their sum

}

void print(int n)

{

cout << "The value is " << n << endl;

}

The declarations tell you what
the functions will do and provide
the overall structure of the
program without all the details.

Function definitions.



Break



Top-Down Design

• Top-down design is an important 
software engineering principle.

• Start with the topmost subproblem 
of a programming problem.
• Write a function for solving the topmost subproblem.

• Break each subproblem into smaller subproblems.
• Write a function to solve each subproblem.

• This process is called stepwise refinement.



Top-Down Design, cont’d

• The result is a hierarchical decomposition 
of the problem.

• AKA functional decomposition



Top-Down Design Example

• Write a program that inputs from the user that are positive integer 
values less than 1000.

• Translate the value into words.

• Example: 
• The user enters 482

• The program writes four hundred eighty-two

• Repeat until the user enters a value ≤ 0.



Top-Down Design Example, cont’d

• What is the topmost problem?

• Read numbers entered by the user 
until the user enters a value ≤ 0.

• Translate each number to words.

• This is a high-level description of what 
the program is supposed to do.



Refinement 1

• Loop to read and print the numbers.

• Call a translate function, 
but it doesn’t do anything yet.

translator1.cpp



Refinement 2

• How to translate a number into words?
• Break the number into separate digits.

• Translate the digits into words such as one, two, ..., ten, eleven, twelve, ...,  
twenty, thirty, etc.

• Refine the translate function to handle
some simple cases:
• translate_ones: 1 through 9

• translate_teens: 11 through 19

translator2.cpp



Refinement 3

• The translate function takes a 3-digit number and separates out the 
hundreds digit.

• Translate the hundreds digit.
• translate_hundreds

• Do this simply by translating the hundreds digits 
as we did a ones digit. Then append the word hundred.



Refinement 3, cont’d

• Translate the last two digits:

• We can already translate a teens number.

• Otherwise, break apart the two digits 
into a tens digit and a ones digit.
• translateTens: 10, 20, 30, ..., 90

• We can already translate a ones digit.

translator3.cpp



Refinement 4

• Add a hyphen between twenty, thirty, etc. 
and a ones word.
• Example: twenty-one



Refinement 5

• Break a 6-digit number into a 3-digit first part and a 3-digit second 
part.

• Translate the first part and 
then append the word thousand.

• Translate the second part.



Refinement 6?  7?

• Insert commas into numbers?
• Example: 12,345

Number? 300010

300010 : three hundred thousand ten
Extra space!



Scope and Local Variables

• Any variable declared inside a function is 
local to that function.

• The scope of the variable is that function.

• The variable is not accessible 
from outside the function.

• A variable with the same name declared inside another function is a different
variable.

• The same is true for any variable 
declared inside the main function.



Block Scope
• You can declare variables inside of a block.

• A block of code is delimited by { and }.

• The variables are local to the block.
• Example:

if (x < y)

{

int i;

...

}



Global Constants and Variables

• If a constant or a variable is declared 
outside of and before the main and the 
function definitions, then that constant 
or variable is global and accessible 
by the main and any function.

• Global variables are not recommended.
• If a function modifies a global variable, 

that can affect other functions.

• Such “side effects” of a function can make a program error-prone and 
difficult to maintain.

• Global constants are OK.



Overloading Function Names

• A function is characterized by both its 
name and its parameters.
• A function’s signature includes the number, order, and data types of the formal 

parameters.

• You can overload a function name by defining another function with the 
same name but with a different signature.
• When you call a function with a shared name, 

the arguments of the call determine which function you mean.



Overloading Function Names, cont’d

• Example declarations:

• Example calls:

• Be careful with automatic type conversions of arguments when 
overloading function names.
• See the Savitch text and slides.

double average(double n1, double n2);

double average(double n1, double n2, double n3);

double avg2 = average(x, y);

double avg3 = average(x, y, z);



Pass by Value

• By default, arguments to a function are 
passed by value.
• AKA call by value

• A copy of the argument’s value 
is passed to the function.

• Any changes that the function makes to the parameters do not affect the 
calling arguments.
• Example: The faulty swap function.



Pass by Value, cont’d

• Why doesn’t this function do 
what was intended?

void swap(int a, int b)

{

int temp = a;

a = b;

b = temp;

}

Demo

swaps.cpp



Pass by Reference

• If you want the function to be able to change the value of the caller’s 
arguments, you must use pass by reference.
• AKA call by reference

• The address of the actual argument 
is passed to the function.
• Example: The proper exchange function.



Pass by Reference, cont’d

• Why is this code better?

void exchange(int& a, int& b)

{

int temp = a;

a = b;

b = temp;

}

Demo

swaps.cpp



Procedural Abstraction

• Design your function such that the caller does not need to know how 
you implemented it.

• The function is a “black box”.



Procedural Abstraction, cont’d

• The function’s name, its formal parameters, 
and your comments should be sufficient 
for the caller.

• Preconditions: What must be true when the function is called.

• Postconditions: What will be true after the function completes its 
execution.



Testing and Debugging Functions

• There are various techniques 
to test and debug functions.

• You can add temporary cout statements in your functions to print the 
values of local variables to help you determine what the function is 
doing.

• With the Eclipse or the NetBeans IDE, 
you can set breakpoints, watch variables, etc.



assert
• Use the assert macro during development to check that a function’s 

preconditions hold.
• You must first #include <cassert>

• Example:

• Later, when you are sure that your program is debugged and you are 
going into production, you can logically remove all the asserts by 
defining NDEBUG before the include:

assert(y != 0);

quotient = x/y;

#define NDEBUG

#include <cassert>



assert, 
cont’d

#include <iostream>

//#define NDEBUG

#include <cassert>

using namespace std;

/**

* Print a positive value.

* @param n the value which must be > 0.

*/

void print_positive(int n);

int main()

{

print_positive(-3);

return 0;

}

void print_positive(int n)

{

assert(n > 0);

cout << "n = " << n << endl;

}

Demo

assert.cpp



Assignment #2: Monty Hall Problem

• Behind one door is a new car.

• Behind the other two doors are goats.

• Can you pick the right door?



Assignment #2: Monty Hall Problem, cont’d

• Do a hierarchical decomposition.
• Iteratively add new functionality to code that works.

• Choose good function names.

• Use parameters wisely.

• You will need to generate random numbers.
• Use the same seed value if you always want the same sequence of random 

numbers for testing.

• Your final program should have 
correct output and be easy to read.


