جَــامعة الaــنارة
 Lecture 4

Boolean Algebra

MANARA UNIVERSITY

Timing diagram

(a) Network that implements $f=x_{1}{ }^{\prime}+x_{1} \cdot x_{2}$

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

A	B
1	0
1	0
0	0
0	1

(b) Truth table

(c) Timing diagram

Axioms of Boolean Algebra

| $\mathbf{0} \cdot \mathbf{0}=\mathbf{0}$ | $\mathbf{1}+\mathbf{1}=\mathbf{1}$ | |
| ---: | ---: | ---: | ---: |
| $\mathbf{1} \cdot \mathbf{1}=\mathbf{1}$ | $\left.A 2^{\prime}\right)$ | $\mathbf{0 + 0}=\mathbf{0}$ |
| $\mathbf{A} \cdot \mathbf{1}=\mathbf{1} \cdot \mathbf{0}=\mathbf{0}$ | $\left.A 3^{\prime}\right)$ | $\mathbf{1 + 0}=\mathbf{0}+\mathbf{1}=\mathbf{1}$ |

A4) if $\boldsymbol{x}=\mathbf{0}$, then $\boldsymbol{x}^{\prime}=\mathbf{1}$
A4') if $\mathbf{x}=\mathbf{1}$, then $\mathbf{x}^{\prime}=\mathbf{0}$

- Single variable theorems

$$
\begin{aligned}
& \text { T1) } x \cdot 0=0 \\
& \text { T2) } x \cdot 1=x \\
& \text { T3) } x \cdot x=x \\
& \text { T4) } x \cdot x^{\prime}=0 \\
& \text { T5) } x^{\prime \prime}=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { T1') } x+1=1 \\
& \text { T2') } x+0=x \\
& \text { T3') } x+x=x \\
& \text { T4') } x+x^{\prime}=1
\end{aligned}
$$

- Two and three variable theorems

T6) $x \cdot y=y \cdot x$
T6') $x+y=y+x$
T7) $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
T7') $x+(y+z)=(x+y)+z$
T8) $x \cdot(y+z)=x \cdot y+x \cdot z \quad$ T8') $x+y \cdot z=(x+y) \cdot(x+z)$
T9) $x+x \cdot y=x$
T9') $x \cdot(x+y)=x$
T10) $x \cdot y+x \cdot y^{\prime}=x$
T10') $(x+y) \cdot(x+y \prime)=x$
T11) ($x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$
T11') $(x+y)^{\prime}=x$ • y^{\prime}
T12) $x+x^{\prime} \cdot y=x+y$
T12') $x \cdot\left(x^{\prime}+y\right)=x \cdot y$
T13) $x \cdot y+y \cdot z+x^{\prime} \cdot z=x \cdot y+x^{\prime} \cdot z$
T13') $(x+y) \cdot(y+z) \cdot\left(x^{\prime}+z\right)=(x+y) \cdot\left(x^{\prime}+z\right)$

Example: Apply theorems of Boolean Algebra to prove that the left and right hand sides of the following logic equation are identical.

$$
x_{1} \cdot x_{3}^{\prime}+x_{2}^{\prime} \cdot x_{3}^{\prime}+x_{1} \cdot x_{3}+x_{2}^{\prime} \cdot x_{3}=x_{1}^{\prime} \cdot x_{2}^{\prime}+x_{1} \cdot x_{2}+x_{1} \cdot x_{2}^{\prime}
$$

- Graphical illustration of various operations and relations in the algebra of sets
- A set s is a collection of elements that are said to be members of s - In Venn diagram the elements of a set are represented by the area enclosed by a square, circle or ellipse
- In Boolean algebra there are only two elements in the universe, i.e. $\{0,1\}$. Then the area within a contour corresponding to a set s denotes that $s=1$, while the area outside the contour denotes $s=0$
- In a Venn diagram we shade the area where s=1

(a) Constant 1

(c) Variable x

(e) $x \cdot y$

(g) $x \cdot \bar{y}$

(b) Constant 0

(d) \bar{x}
 representation.

The Venn diagram

(h) $x \cdot y+z$

Verification of $x \cdot y+\bar{x} \cdot z+y \cdot z=x \cdot y+\bar{x} \cdot z$

$x \cdot y$

$\bar{x} \cdot z$

$y \cdot z$

$x \cdot y+\bar{x} \cdot z+y \cdot z$

$x \cdot y$

$\bar{x} \cdot z$

$x \cdot y+x \cdot z$

Synthesis of digital circuits Three-variable minterms and maxterms.

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

Example:

For the three	x_{1}	x_{2}	x_{3}	f
variable function given by the truth table,	0	0	0	0
determine the minterms,	0	0	1	1
maxterms, canonical SOP,	0	1	1	1
canonical POS,	1	0	0	1
minterm list. MA	1	1	0	1

Sum-of-products realization

Product-of-sums realizations

(a) $\overline{x_{1} x_{2}}=\bar{x}_{1}+\bar{x}_{2}$

(b) $\overline{x_{1}+x_{2}}=\overline{x_{1}} \bar{x}_{2}$

- Converting a AND-OR realization of an SOP to a NAND-NAND realization

- Converting a OR-AND realization of a POS to a NOR-NOR realization

realization of an SOP

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
& \mathrm{f}\left(x_{1}, x_{2}, x_{3}\right)=\sum m(1,2,4,7) \\
& =\left(\overline{\mathbf{x}_{1}} \cdot \overline{\mathbf{x}_{2}} \cdot \mathbf{x}_{3}\right)+\left(\overline{\mathbf{x}_{1}} \cdot \mathbf{x}_{2} \cdot \overline{\mathbf{x}_{3}}\right) \\
& +\left(\mathbf{x}_{1} \cdot \overline{\mathbf{x}_{2}} \cdot \overline{\mathbf{x}_{3}}\right)+\left(\mathrm{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{3}\right)
\end{aligned}
$$

Sum-of-products realizations

realization of an POS

(deot $\mathrm{f}\left(x_{1}, x_{2}, x_{3}\right)=\prod \mathrm{M}(0,3,5,6)$

XOR Gate - Exclusive OR

\mathbf{X}	\mathbf{Y}	\mathbf{Z}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	1	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

MANARA UNIVERSITY

Logic Design with XOR \& XNOR

Example

Algebraically manipulate the logic expression for F_{1} so that XOR and XNOR gates can be used to implement the function. Other AOI gates can be used as needed.

$$
F_{1}=X \bar{Y} Z+\bar{X} \bar{Y} Z+\bar{X} \bar{Y} \bar{Z}+X \bar{Y} Z
$$

Solution

