

Lecture 5

Karnaugh Map Dr. Bassam Atieh

MANARA UNIVERSITY

The idea of Karnaugh Map: (with minterms)

The combining **property 14a** $(x \cdot y + x \cdot \overline{y} = x)$ allow us **to replace** any two minterms that **differ** in the value of only one variable **with a** single product term that does not include that variable at all. Also, **theorem 7b** (x = x + x) allow us **to use** any minterm **more than once**.

Karnaugh map is an alternative to the truth-table form for representing a function. The map allows easy recognition of minterms that can be combined using **property 14a**.

The more you **practice** using K-maps, the more **intuitive** you become in finding the minimum cost for any circuit.

Example 1: (Two-Variable Map)

Find the minimum-cost SOP form for the following function:

Example 2: (Three-Variable Map)

1st Product

2nd Product

Find the minimum-cost SOP form for the following function:

						(x_1, x_2, x_3)) = (x_3	+ _x	$\frac{1}{2}$
x_1	x_2	x_3	$f(x_1,x_2)$	Minterm#	Product#			**0		10*
0	0	0	1	m_0	1 st		,-	~ /		11-
0	0	1	0	m_1		x_2x_3	ĺ	¥/	√	1,7
0	1	0	1	m_2	1 st	x_1	00	01	11	10
0	1	1	0	m_3		0	0	1	3	2
1	0	0	1	m_4	1 st , 2 nd	U	1			1
1	0	1	1	m_5	2 nd		4	5	7	6
1	1	0	1	m_6	1 st	1	1	1		1
1	1	1	0	m_7			1	1		1

Example 3: (Four-Variable Map)

Find the minimum-cost SOP form for the following function: $f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{n} m(0, 1, 4, 5, 10, 11, 12, 13, 14, 15)$

Example 4:

Find the minimum-cost SOP form

- (a) $f(x_1, x_2, x_3, x_4) = \sum m(6, 7, 8, 9, 10, 11, 12, 13, 14, 15)$
- (b) $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 8, 9, 10, 12, 13, 15)$

Example 6:

Answer

Find the minimum-cost SOP form for the following function:

$$f(x_1, x_2, x_3, x_4) = \sum m(5, 6, 8, 9, 10, 11, 12, 13, 14)$$

For m_{13} , we could have formed 2 different clusters (the ones in red boxes). But according to strategy #2, a cluster must be as big as possible. Therefore, we chose the bigger cluster $x_1\bar{x}_3$.

Example 7:

Find the minimum-cost POS form for the following functions:

(a)
$$f(x_1, x_2, x_3) = \prod M(2,3,6)$$

(b)
$$f(x_1, x_2, x_3, x_4) = \prod M(0, 1, 2, 3, 4, 6, 15)$$

f =	(x_1)	+ 3	(2)	(\bar{x}_2)	+	(x_2)
,	Cort		2)	(20)		~3)

Find the minimum-cost SOP and POS forms for the following functions:

(a)
$$f(x_1, x_2, x_3) = \sum m(1, 2, 3, 5)$$
.

(b)
$$f(x_1, x_2, x_3, x_4) = \prod M(0, 1, 2, 4, 5, 7, 8, 9, 10, 12, 14, 15)$$
.

