Cyclic Loading

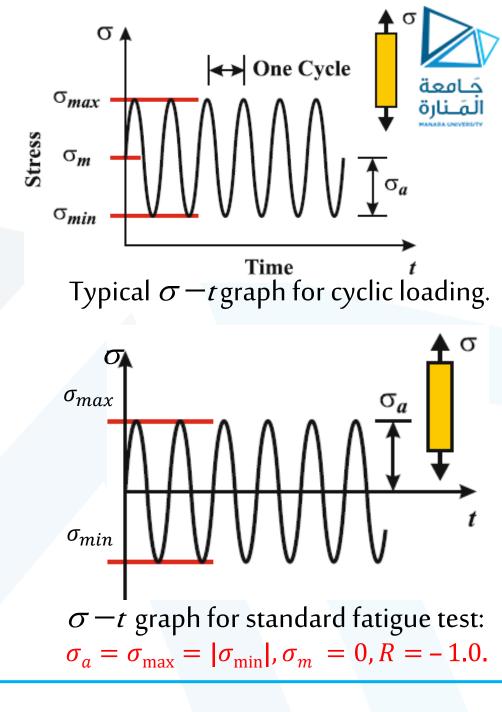
Engineering systems are often subjected to *cyclic loading*. Automobiles & machines (millions of cycles). Electronic components (fluctuating temperature).

Material degradation with time under *cyclic loading* is known as *fatigue* (النتعب).

Fatigue can cause materials to fail at stress levels well below their uniaxial strength. In many steels, the *fatigue strength* is less than half of the *ultimate strength*.

A few definitions are useful to describe the nature of cyclic loading.

$$\sigma_{m} = \frac{\sigma_{max} + \sigma_{min}}{2}$$
 Mean Stress الإجهاد المتوسط $\sigma_{a} = \frac{\sigma_{max} - \sigma_{min}}{2}$ Stress amplitude مطال الإجهاد $R = \frac{\sigma_{min}}{\sigma_{max}}$ R-ratio



- When the stress amplitude is plotted against the number of cycles to failure on a log-log set of axes (or on a semi-log set of axes), the graph is known as the *S*-*N curve*
- The *fatigue strength* is the stress amplitude $\sigma_a = \sigma_{max}$ corresponding to a specified number of cycles to failure.

When the data are plotted, the relationship between stress amplitude σ_a and cycles to failure N_f can be expressed in the following form:

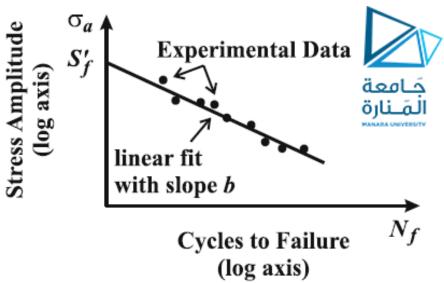
Where $S'_f \& b$ depend on the material, & are determined from a best-fit line of the material's *S*-*N curve* since: $\log(\sigma_a) = \log(S'_f) + b \log(N_f)$ Property Al 6061-T6 Steel A36

 $\sigma_a = S_f'(N_f)^{D}$

Quantity S'_f corresponds to the curve fit's intercept at $N_f = 1$ cycle, b is the slope of the curve in the log–log axes. Values for aluminum & steel are given

Ex. 1 Fatigue Strength of Structural Aluminum & Steel

Given: A tensile bar is subjected to cyclic loading, with zero mean stress **Required:** Determine the fatigue strength, $\sigma_a = \sigma_{max}$, (a) for an aluminum bar (Al 6061-T6) at 10⁷ cycles and (b) for a steel bar (A36) at 10⁶ cycles.



Property	Al 6061-T6	Steel A36
S _y	240 MPa	250 MPa
S _u	314 MPa	540 MPa
S_{f}'	505 MPa	1035 MPa
b	-0.082	-0.11
Ε	70 GPa	200 GPa

Solution: For aluminum, the fatigue strength corresponds to 10^7 cycles. From *Table* $S'_f = 505$ *MPa* & b = -0.082.

 $\sigma_{a,al} = S'_f (N_f)^b = (505 \text{ MPa})(10^7)^{-0.082} = 135 \text{ MPa.} (56\% S_y, 43\% S_u)$

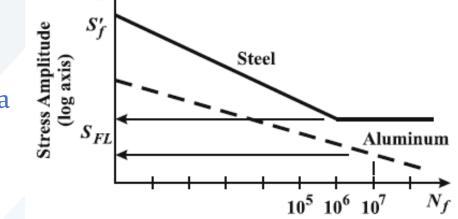
For steel, the fatigue strength corresponds to 10^6 cycles. From *Table S*[']_f = 1035 *MPa* & *b* = -0.11. $\sigma_{a,st} = S'_f (N_f)^b = (1035 \text{ MPa})(10^6)^{-0.11} = 226 \text{ MPa}. (90\% S_y, 42\% S_u)$

These values are also known as *fatigue limit* S_{FL} , as discussed below.

The fatigue limit for many steels is typically on the order of 35 - 50% of S_u .

Fatigue Limit

The *S*–*N curve* for most steels does't decrease to zero (*Fig.*). Below a certain value of σ_a , steel has essentially an infinite fatigue life. The stress amplitude below which fatigue failure does not occur is the *fatigue limit S*_{*FL*}, also known as the endurance limit interval.



Cycles to Failure (log axis)Type equation here.For steels, the fatigue limit S_{FL} typically corresponds to a fatigue life of about 10^6 cycles.The S-N curve exhibits no further reduction and becomes horizontal.

Aluminum does not exhibit such limiting behavior. No matter how small the stress amplitude $\sigma_{a'}$ aluminum will eventually fail by fatigue. Accordingly, when designing with aluminum, the fatigue limit S_{FL} is generally taken to be the stress amplitude for $N_f = 10^7$ cycles.

Effect of Mean Stress on Fatigue Strength

In general, cyclic stresses are applied with a non-zero mean stress σ_{m}

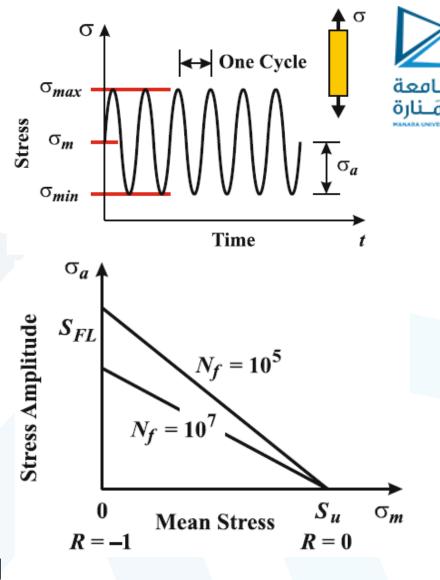
When this is the case, the fatigue strength for a given number of cycles to failure N_f is determined using the *Goodman Diagram*

 $\frac{\sigma_a}{S_{FL}} + \frac{\sigma_m}{S_u} = 1$

The new fatigue strength σ_a – the amplitude of the cyclic loading with mean stress σ_m for the specified cycles to failure N_f – is then:

 $\sigma_a = S_{FL} \left(1 - \frac{\sigma_m}{S_u} \right)$

When $\sigma_m = S_u$, the materials breaks into two upon first loading; there can be no alternative stress $\sigma_a (\sigma_a = 0)$. If the mean stress is zero, then the stress amplitude is the *fatigue limit* S_{FL} for the specified number of cycles to failure.



Ex. 2 Fatigue Strength With Non-Zero Mean Stress

Given: A tensile bar is subjected to cyclic loading with a mean stress of $\sigma_m = 100$ MPa. **Required:** With the mean stress applied, determine the fatigue strength (a) for an Al 6061-T6 bar at 10^7 cycles and (b) for an A36 steel bar at 10^6 cycles.

Solution:

$$\sigma_{a,al} = S_{FL} \left(1 - \frac{\sigma_m}{s_u} \right) = 135 \left(1 - \frac{100}{314} \right) = 91$$
 MPa.

$$\sigma_{a,st} = S_{FL} \left(1 - \frac{\sigma_m}{S_u} \right) = 226 \left(1 - \frac{100}{540} \right) = 184 \text{ MPa.}$$

https://manara.edu.sy/