

MATHEMATICAL ANALAYSIS 2

Prepared by Dr. Sami INJROU

https://manara.edu.sy/

Vectors and the Geometry of Space

- Three-Dimensional Coordinate Systems
- Vectors
- The Dot Product
- The Cross Product
- Lines and Planes in Space
- Cylinders and Quadric Surfaces

Three-Dimensional Coordinate Systems

https://manara.edu.sy/

Three-Dimensional Coordinate Systems

EXAMPLE 1 We interpret these equations and inequalities geometrically.	
(a) $z \ge 0$	The half-space consisting of the points on and above the <i>xy</i> -plane.
(b) $x = -3$	The plane perpendicular to the <i>x</i> -axis at $x = -3$. This plane lies parallel to the <i>yz</i> -plane and 3 units behind it.
(c) $z = 0, x \le 0, y \ge 0$	The second quadrant of the <i>xy</i> -plane.
(d) $x \ge 0, y \ge 0, z \ge 0$	The first octant.
$(e) -1 \le y \le 1$	The slab between the planes $y = -1$ and $y = 1$ (planes included).
(f) $y = -2, z = 2$	The line in which the planes $y = -2$ and $z = 2$ intersect. Alternatively, the line through the point $(0, -2, 2)$ parallel to the <i>x</i> -axis.

Three-Dimensional Coordinate Systems

EXAMPLE 2 What points (x, y, z) satisfy the equations $x^2 + y^2 = 4 \qquad \text{and} \qquad$ z = 3?The circle $x^2 + y^2 = 4$, z = 3(0, 2, 3) (2, 0, 3)The plane z = 3(0, 2, 0) (2, 0, 0) $x^2 + y^2 = 4, z = 0$

Distance and Spheres in Space

The Distance Between $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

EXAMPLE 3 The distance between $P_1(2, 1, 5)$ and $P_2(-2, 3, 0)$ is

$$\begin{aligned} |P_1P_2| &= \sqrt{(-2-2)^2 + (3-1)^2 + (0-5)^2} \\ &= \sqrt{16 + 4 + 25} \\ &= \sqrt{45} \approx 6.708. \end{aligned}$$

The Standard Equation for the Sphere of Radius *a* and Center (x_0, y_0, z_0) $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$

Distance and Spheres in Space

EXAMPLE 4 Find the center and radius of the sphere $x^{2} + y^{2} + z^{2} + 3x - 4z + 1 = 0.$ $\left(x + \frac{3}{2}\right)^{2} + y^{2} + (z - 2)^{2} = \frac{21}{4}$ $(-3/2, 0, 2), r = \sqrt{21}/2$

EXAMPLE 5 Here are some geometric interpretations of inequalities and equations involving spheres.

(a) $x^2 + y^2 + z^2 < 4$ (b) $x^2 + y^2 + z^2 \le 4$ (c) $x^2 + y^2 + z^2 \ge 4$ (d) $x^2 + y^2 + z^2 = 4, z \le 0$ The interior of the sphere $x^2 + y^2 + z^2 = 4$. The interior of the sphere $x^2 + y^2 + z^2 = 4$. The exterior of the sphere $x^2 + y^2 + z^2 = 4$. The lower hemisphere cut from the sphere $x^2 + y^2 + z^2 = 4$. The lower hemisphere cut from the sphere $x^2 + y^2 + z^2 = 4$. The lower hemisphere cut from the sphere $x^2 + y^2 + z^2 = 4$.

EXERCISES

Find the perimeter of the triangle with vertices A(-1, 2, 1), B(1, -1, 3), and C(3, 4, 5).

$$\sqrt{17} + \sqrt{33} + 6.$$

y = 1

Find an equation for the set of all points equidistant from the planes y = 3 and y = -1.

Find the point on the sphere $x^2 + (y - 3)^2 + (z + 5)^2 = 4$ nearest

a. the xy-plane. **b.** the point (0, 7, -5).

(0, 3, -3) (0, 5, -5).

Vectors

DEFINITIONS The vector represented by the directed line segment \overrightarrow{AB} has **initial point** A and **terminal point** B and its **length** is denoted by $|\overrightarrow{AB}|$. Two vectors are **equal** if they have the same length and direction.

Vectors

DEFINITION If **v** is a **two-dimensional** vector in the plane equal to the vector with initial point at the origin and terminal point (v_1, v_2) , then the **component** form of **v** is

$$\mathbf{v}=\langle v_1,v_2\rangle.$$

If v is a three-dimensional vector equal to the vector with initial point at the origin and terminal point (v_1, v_2, v_3) , then the component form of v is

 $\mathbf{v}=\langle v_1,v_2,v_3\rangle.$

$\mathbf{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.$

The **magnitude** or **length** of the vector $\mathbf{v} = \overrightarrow{PQ}$ is the nonnegative number $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ (see Figure 12.10).

Vectors

EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

The component form of \overrightarrow{PQ} is

The length or magnitude of $\mathbf{v} = \overrightarrow{PQ}$ is

$$\mathbf{v} = \langle -2, -2, 1 \rangle.$$
 $|\mathbf{v}| = \sqrt{(-2)^2 + (-2)^2 + (1)^2} = \sqrt{9} = 3.$

 $\mathbf{F} = \langle a, b \rangle$

EXAMPLE 2 A small cart is being pulled along a smooth horizontal floor with a 20-lb force **F** making a 45° angle to the floor (Figure 12.11). What is the *effective* force moving the cart forward?

$$a = |\mathbf{F}| \cos 45^{\circ} = (20) \left(\frac{\sqrt{2}}{2}\right) \approx 14.14 \text{ lb.}$$

Vector Algebra Operations

DEFINITIONS Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be vectors with *k* a scalar.

Addition: $\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$ Scalar multiplication: $k\mathbf{u} = \langle ku_1, ku_2, ku_3 \rangle$

https://manara.edu.sy/

Vector Algebra Operations

EXAMPLE 3 Let $\mathbf{u} = \langle -1, 3, 1 \rangle$ and $\mathbf{v} = \langle 4, 7, 0 \rangle$. Find the components of

(a) 2u + 3v (b) u - v (c) $\left|\frac{1}{2}u\right|$.

(a) $2\mathbf{u} + 3\mathbf{v} = 2\langle -1, 3, 1 \rangle + 3\langle 4, 7, 0 \rangle = \langle -2, 6, 2 \rangle + \langle 12, 21, 0 \rangle = \langle 10, 27, 2 \rangle$

(b) $\mathbf{u} - \mathbf{v} = \langle -1, 3, 1 \rangle - \langle 4, 7, 0 \rangle = \langle -1 - \overline{4}, 3 - 7, 1 - 0 \rangle = \langle -5, -4, 1 \rangle$

(c) $\left|\frac{1}{2}\mathbf{u}\right| = \left|\left\langle-\frac{1}{2},\frac{3}{2},\frac{1}{2}\right\rangle\right| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{2}\sqrt{11}.$

Vector Algebra Operations

Properties of Vector Operations Let **u**, **v**, **w** be vectors and *a*, *b* be scalars. 2. (u + v) + w = u + (v + w)1. u + v = v + u

3.
$$u + 0 = u$$
 4. $u + (-u) = 0$

 5. $0u = 0$
 6. $1u = u$

 7. $a(bu) = (ab)u$
 8. $a(u + v) = au + 1$

$$a(b\mathbf{u}) = (ab)\mathbf{u}$$

9. $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$

8. a(u + v) = au + av

$$\vec{P_1P_2} = (3-1)\mathbf{i} + (2-0)\mathbf{j} + (0-1)\mathbf{k} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k} \qquad \mathbf{u} = \frac{P_1P_2}{|\vec{P_1P_2}|} = \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3} = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf$$

 $-\frac{1}{3}k$.

Unit Vectors

EXAMPLE 5 If v = 3i - 4j is a velocity vector, express v as a product of its speed times its direction of motion.

Speed is the magnitude (length) of v:

$$|\mathbf{v}| = \sqrt{(3)^2 + (-4)^2} = \sqrt{9 + 16} = 5.$$

The unit vector $\mathbf{v}/|\mathbf{v}|$ is the direction of \mathbf{v} :

$$\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3\mathbf{i} - 4\mathbf{j}}{5} = \frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}.$$
$$\mathbf{v} = 3\mathbf{i} - 4\mathbf{j} = 5\left(\frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}\right).$$
Length Direction of motion (speed)

Midpoint of a Line Segment

The **midpoint** *M* of the line segment joining points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is the point

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$
.

EXAMPLE 7 The midpoint of the segment joining $P_1(3, -2, 0)$ and $P_2(7, 4, 4)$ is

$$\left(\frac{3+7}{2}, \frac{-2+4}{2}, \frac{0+4}{2}\right) = (5, 1, 2)$$

Applications

EXAMPLE 8 A jet airliner, flying due east at 500 mph in still air, encounters a 70-mph tailwind blowing in the direction 60° north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they?

If **u** is the velocity of the airplane alone **v** is the velocity of the tailwind,

$$\mathbf{u} = \langle 500, 0 \rangle \quad \text{and} \quad \mathbf{v} = \langle 70 \cos 60^{\circ}, 70 \sin 60^{\circ} \rangle = \langle 35, 35\sqrt{3} \rangle$$
$$\mathbf{u} + \mathbf{v} = \langle 535, 35\sqrt{3} \rangle = 535\mathbf{i} + 35\sqrt{3} \mathbf{j}$$
$$\mathbf{u} + \mathbf{v} = \sqrt{535^{2} + (35\sqrt{3})^{2}} \approx 538.4 \qquad \theta = \tan^{-1} \frac{35\sqrt{3}}{535} \approx 6.5^{\circ}.$$

 $\begin{array}{c} \mathbf{v} \\ 30^{\circ} \\ 70 \\ \theta \\ 500 \\ \mathbf{u} \end{array} \rightarrow \mathbf{E}$

The new ground speed of the airplane is about 538.4 mph, and its new direction is about 6.5° north of east.

Applications

EXAMPLE 9 A 75-N weight is suspended by two wires, as shown in Figure 12.18a. Find the forces F_1 and F_2 acting in both wires.

 $\mathbf{F}_1 = \langle -|\mathbf{F}_1|\cos 55^\circ, |\mathbf{F}_1|\sin 55^\circ \rangle \quad \text{and} \quad \mathbf{F}_2 = \langle |\mathbf{F}_2|\cos 40^\circ, |\mathbf{F}_2|\sin 40^\circ \rangle.$

 $\mathbf{F}_{1} + \mathbf{F}_{2} = \langle 0, 75 \rangle \qquad \longrightarrow \qquad \begin{array}{c} -|\mathbf{F}_{1}|\cos 55^{\circ} + |\mathbf{F}_{2}|\cos 40^{\circ} = 0 \\ |\mathbf{F}_{1}|\sin 55^{\circ} + |\mathbf{F}_{2}|\sin 40^{\circ} = 75 \end{array}$

Cramer's Rule

 $\mathbf{F}_1 = \langle -|\mathbf{F}_1|\cos 55^\circ, |\mathbf{F}_1|\sin 55^\circ \rangle \approx \langle -33.08, 47.24 \rangle$

 $\mathbf{F}_2 = \langle |\mathbf{F}_2| \cos 40^\circ, |\mathbf{F}_2| \sin 40^\circ \rangle \approx \langle 33.08, 27.76 \rangle.$

EXERCISES

- **Velocity** An airplane is flying in the direction 25° west of north at 800 km/h. Find the component form of the velocity of the airplane, assuming that the positive *x*-axis represents due east and the positive *y*-axis represents due north.
- Consider a 100-N weight suspended by two wires as shown in the accompanying figure. Find the magnitudes and components of the force vectors \mathbf{F}_1 and \mathbf{F}_2 .

(-338.095, 725.046)

F₁ ≈ \langle -63.397, 36.603 \rangle and **F**₂ = ≈ \langle 63.397, 63.397 \rangle

DEFINITION The dot product $\mathbf{u} \cdot \mathbf{v}$ (" \mathbf{u} dot \mathbf{v} ") of vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is the scalar

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$

Dot Product and Angles

The angle between two nonzero vectors **u** and **v** is $\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right)$.

The dot product of two vectors **u** and **v** is given by $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$.

EXAMPLE 3 Find the angle θ in the triangle *ABC* determined by the vertices A = (0, 0), B = (3, 5), and C = (5, 2) (Figure 12.22).

$$\overrightarrow{CA} = \langle -5, -2 \rangle$$
 and $\overrightarrow{CB} = \langle -2, 3 \rangle$.

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = (-5)(-2) + (-2)(3) = 4$$
 $|\overrightarrow{CA}| = \sqrt{(-5)^2 + (-2)^2} = \sqrt{29}$

$$\left|\vec{CB}\right| = \sqrt{(-2)^2 + (3)^2} = \sqrt{13}$$

$$\theta = \cos^{-1}\left(\frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CA}||\overrightarrow{CB}|}\right) = \cos^{-1}\left(\frac{4}{(\sqrt{29})(\sqrt{13})}\right) \approx 78.1^{\circ} \text{ or } 1.36 \text{ radians.}$$

Orthogonal Vectors

DEFINITION Vectors **u** and **v** are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

Properties of the Dot Product

If **u**, **v**, and **w** are any vectors and *c* is a scalar, then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ 2. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
- 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ 4. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$

5.
$$\mathbf{0} \cdot \mathbf{u} = 0$$
.

The vector projection of **u** onto **v** is the vector

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}\right) \frac{\mathbf{v}}{|\mathbf{v}|}.$$
 (1)

The scalar component of \mathbf{u} in the direction of \mathbf{v} is the scalar

$$|\mathbf{u}|\cos\theta = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{v}|} = \mathbf{u}\cdot\frac{\mathbf{v}}{|\mathbf{v}|}.$$
 (2)

EXAMPLE 5 Find the vector projection of $\mathbf{u} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ onto $\mathbf{v} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ and the scalar component of \mathbf{u} in the direction of \mathbf{v} .

 $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} = -\frac{4}{9}\mathbf{i} + \frac{8}{9}\mathbf{j} + \frac{8}{9}\mathbf{k}.$

We find the scalar component of \mathbf{u} in the direction of \mathbf{v} from Equation (2):

 $|\mathbf{u}|\cos\theta = \mathbf{u} \cdot \frac{\mathbf{v}}{|\mathbf{v}|} = -\frac{4}{3}.$

The Dot Product Work

Work =
$$\begin{pmatrix} \text{scalar component of } \mathbf{F} \\ \text{in the direction of } \mathbf{D} \end{pmatrix}$$
 (length of \mathbf{D})
= $(|\mathbf{F}| \cos \theta) |\mathbf{D}|$
= $\mathbf{F} \cdot \mathbf{D}$.

DEFINITION The work done by a constant force **F** acting through a displacement $\mathbf{D} = \overrightarrow{PQ}$ is

$$W = \mathbf{F} \cdot \mathbf{D}.$$

The Dot Product Work

EXAMPLE 8 If $|\mathbf{F}| = 40$ N (newtons), $|\mathbf{D}| = 3$ m, and $\theta = 60^{\circ}$, the work done by **F** in acting from *P* to *Q* is

- Work = $\mathbf{F} \cdot \mathbf{D}$
 - $= |\mathbf{F}| |\mathbf{D}| \cos \theta$
 - $= (40)(3)\cos 60^{\circ}$

Given values

Definition

= (120)(1/2) = 60 J (joules).

EXERCISES

Projectile motion A gun with muzzle velocity of 1200 ft/sec is fired at an angle of 8° above the horizontal. Find the horizontal and vertical components of the velocity.

Inclined plane Suppose that a box is being towed up an inclined plane as shown in the figure. Find the force w needed to make the component of the force parallel to the inclined plane equal to 2.5 lb.

1188 ft/s 167 ft/s

 $\langle 2.205, 1.432 \rangle$

EXERCISES

Work along a line Find the work done by a force $\mathbf{F} = 5\mathbf{i}$ (magnitude 5 N) in moving an object along the line from the origin to the point (1, 1) (distance in meters).

5 J

DEFINITION The cross product $\mathbf{u} \times \mathbf{v}$ ("u cross v") is the vector

 $\mathbf{u} \times \mathbf{v} = (|\mathbf{u}| |\mathbf{v}| \sin \theta) \,\mathbf{n}.$

Parallel Vectors

Nonzero vectors **u** and **v** are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Properties of the Cross Product

If **u**, **v**, and **w** are any vectors and *r*, *s* are scalars, then

1.
$$(r\mathbf{u}) \times (s\mathbf{v}) = (rs)(\mathbf{u} \times \mathbf{v})$$
2. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$ 3. $\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v})$ 4. $(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = \mathbf{v} \times \mathbf{u} + \mathbf{w} \times \mathbf{u}$ 5. $\mathbf{0} \times \mathbf{u} = \mathbf{0}$ 6. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

 $i \times j = -(j \times i) = k$ $j \times k = -(k \times j) = i$ $k \times i = -(i \times k) = j$ $i \times i = j \times j = k \times k = 0.$

 $|\mathbf{u} \times \mathbf{v}|$ is the Area of a Parallelogram

 $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}| |\sin\theta||\mathbf{n}| = |\mathbf{u}||\mathbf{v}| \sin\theta.$

Calculating the Cross Product as a Determinant If $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k}$ and $\mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$, then

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

EXAMPLE 1 Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 1 \\ -4 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} \mathbf{k} = -2\mathbf{i} - 6\mathbf{j} + 10\mathbf{k}$$
$$\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v}) = 2\mathbf{i} + 6\mathbf{j} - 10\mathbf{k}$$

= 6i + 6k.

EXAMPLE 2 Find a vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2) (Figure 12.32).

$$\overrightarrow{PQ} = (2 - 1)\mathbf{i} + (1 + 1)\mathbf{j} + (-1 - 0)\mathbf{k} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

$$\overrightarrow{PR} = (-1 - 1)\mathbf{i} + (1 + 1)\mathbf{j} + (2 - 0)\mathbf{k} = -2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} \mathbf{k}$$

$$P(1, -1, 0)$$

 $Q(2, 1, -1)$
 $R(-1, 1, 2)$
 y

Z. ▲

R(-1, 1, 2)

P(1, -1, 0)

 $Q(2,\,1,\,-1)$

The Cross Product

EXAMPLE 3 Find the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2) (Figure 12.32).

The area of the parallelogram determined by P, Q, and R is

$$|\overrightarrow{PQ} \times \overrightarrow{PR}| = |6\mathbf{i} + 6\mathbf{k}|$$

= $\sqrt{(6)^2 + (6)^2} = \sqrt{2 \cdot 36} = 6\sqrt{2}$. The triangle's area is half of this, or $3\sqrt{2}$.

EXAMPLE 4 Find a unit vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2).

$$\mathbf{n} = \frac{\overrightarrow{PQ} \times \overrightarrow{PR}}{|\overrightarrow{PQ} \times \overrightarrow{PR}|} = \frac{6\mathbf{i} + 6\mathbf{k}}{6\sqrt{2}} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{k}.$$

Torque

Magnitude of torque vector = $|\mathbf{r}| |\mathbf{F}| \sin \theta$,

Torque vector = $\mathbf{r} \times \mathbf{F} = (|\mathbf{r}| |\mathbf{F}| \sin \theta) \mathbf{n}$.

EXAMPLE 5 The magnitude of the torque generated by force **F** at the pivot point *P* in Figure 12.34 is

 $|\overrightarrow{PQ} \times \mathbf{F}| = |\overrightarrow{PQ}| |\mathbf{F}| \sin 70^\circ \approx (3)(20)(0.94) \approx 56.4 \text{ ft-lb.}$

جًا*مع*ة المَـنارة

The Cross Product

Triple Scalar or Box Product

Calculating the Triple Scalar Product as a Determinant

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

https://manara.edu.sy/

EXAMPLE 6 Find the volume of the box (parallelepiped) determined by $\mathbf{u} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\mathbf{v} = -2\mathbf{i} + 3\mathbf{k}$, and $\mathbf{w} = 7\mathbf{j} - 4\mathbf{k}$.

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} 1 & 2 & -1 \\ -2 & 0 & 3 \\ 0 & 7 & -4 \end{vmatrix} = (1) \begin{vmatrix} 0 & 3 \\ 7 & -4 \end{vmatrix} - (2) \begin{vmatrix} -2 & 3 \\ 0 & -4 \end{vmatrix} + (-1) \begin{vmatrix} -2 & 0 \\ 0 & 7 \end{vmatrix} = -23$$

The volume is $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| = 23$ units cubed.

EXERCISES

find the magnitude of the torque exerted by \mathbf{F}

on the bolt at P if $|\overline{PQ}| = 8$ in. and $|\mathbf{F}| = 30$ lb. Answer in foot-pounds.

 $10\sqrt{3}$ ft · lb

Find the volume of a parallelepiped if four of its eight vertices are A(0, 0, 0), B(1, 2, 0), C(0, -3, 2), and D(3, -4, 5).

Determine whether the given points are coplanar.

A(0, 1, 2), B(-1, 1, 0), C(2, 0, -1), D(1, -1, 1)

	F
	Q
P	9

X

Lines and Line Segments in Space

Vector Equation for a Line

A vector equation for the line L through $P_0(x_0, y_0, z_0)$ parallel to v is

$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}, \quad -\infty < t < \infty, \tag{2}$$

where **r** is the position vector of a point P(x, y, z) on L and \mathbf{r}_0 is the position vector of $P_0(x_0, y_0, z_0)$.

Parametric Equations for a Line

The standard parametrization of the line through $P_0(x_0, y_0, z_0)$ parallel to $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ is

$$x = x_0 + tv_1, \quad y = y_0 + tv_2, \quad z = z_0 + tv_3, \quad -\infty < t < \infty$$
 (3)

EXAMPLE 2 Find parametric equations for the line through P(-3, 2, -3) and Q(1, -1, 4).

$$\overrightarrow{PQ} = (1 - (-3))\mathbf{i} + (-1 - 2)\mathbf{j} + (4 - (-3))\mathbf{k} = 4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$$

$$x = -3 + 4t$$
, $y = 2 - 3t$, $z = -3 + 7t$.

EXAMPLE 3 Parametrize the line segment joining the points P(-3, 2, -3) and Q(1, -1, 4)Q(1, -1, 4) (Figure 12.38).

x = -3 + 4t, y = 2 - 3t, z = -3 + 7t.

x = -3 + 4t, y = 2 - 3t, z = -3 + 7t, $0 \le t \le 1$.

t = 0P(-3, 2, -3)

A helicopter is to fly directly from a helipad at the origin in the direc-EXAMPLE 4 tion of the point (1, 1, 1) at a speed of 60 ft/sec. What is the position of the helicopter after 10 sec?

Then the

Then the unit vector
$$\mathbf{u} = \frac{1}{\sqrt{3}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k}$$

 $\mathbf{r}(t) = \mathbf{r}_0 + t(\text{speed})\mathbf{u} = \mathbf{0} + t(60)\left(\frac{1}{\sqrt{3}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k}\right) = 20\sqrt{3}t(\mathbf{i} + \mathbf{j} + \mathbf{k}).$

$$\mathbf{r}(10) = 200\sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k}) \\ = \langle 200\sqrt{3}, 200\sqrt{3}, 200\sqrt{3} \rangle \qquad \implies |r(10)| = 600 \mathbf{f}$$

https://manara.edu.sy/

An Equation for a Plane in Space

Equation for a PlaneThe plane through $P_0(x_0, y_0, z_0)$ normal to $\mathbf{n} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ hasVector equation: $\mathbf{n} \cdot \overrightarrow{P_0P} = 0$ Component equation: $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$ Component equation simplified:Ax + By + Cz = D, where $D = Ax_0 + By_0 + Cz_0$

n Plane M P(x, y, z) $P_0(x_0, y_0, z_0)$

EXAMPLE 6 Find an equation for the plane through $P_0(-3, 0, 7)$ perpendicular to n = 5i + 2j - k.

$$5(x - (-3)) + 2(y - 0) + (-1)(z - 7) = 0.$$

$$5x + 2y - z = -22$$

An Equation for a Plane in Space

EXAMPLE 7 Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and C(0, 3, 0).

The normal

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -1 \\ 0 & 3 & -1 \end{vmatrix} = 3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$$

$$3(x - 0) + 2(y - 0) + 6(z - 1) = 0$$

$$3x + 2y + 6z = 6.$$

Lines of Intersection

EXAMPLE 8 Find a vector parallel to the line of intersection of the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5.

$$\mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -6 & -2 \\ 2 & 1 & -2 \end{vmatrix} = 14\mathbf{i} + 2\mathbf{j} + 15\mathbf{k}$$

EXAMPLE 9 Find parametric equations for the line in which the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5 intersect.

Finding point common to the two planes

$$3x - 6y - 2z = 15$$

$$2x + y - 2z = 5$$

$$z = 0$$
(3, -1, 0)

4-bash

 $\mathbf{n}_1 \times \mathbf{n}_2$

$$x = 3 + 14t$$
, $y = -1 + 2t$, $z = 15t$.

Lines and Planes in Space Lines of Intersection

EXAMPLE 10 Find the point where the line

$$x = \frac{8}{3} + 2t$$
, $y = -2t$, $z = 1 + t$

intersects the plane 3x + 2y + 6z = 6.

$$3\left(\frac{8}{3} + 2t\right) + 2(-2t) + 6(1+t) = 6$$
$$t = -1$$

The point of intersection is

$$(x, y, z)|_{t=-1} = \left(\frac{8}{3} - 2, 2, 1 - 1\right) = \left(\frac{2}{3}, 2, 0\right)$$

Lines and Planes in Space The Distance from a Point to a Plane

$$|\overline{M_{1}M_{0}} \cdot \boldsymbol{n}| = |\overline{M_{1}M_{0}}| \cdot |\boldsymbol{n}| = d \cdot |\boldsymbol{n}|$$

$$d = \frac{|\overline{M_{1}M_{0}} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|} = \left|\frac{px_{0} + qy_{0} + rz_{0} - (px_{1} + qy_{1} + rz_{1})}{\sqrt{p^{2} + q^{2} + r^{2}}}\right|$$

$$d = \frac{|\overline{M_{1}M_{0}} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|} = \left|\frac{px_{0} + qy_{0} + rz_{0} + \boldsymbol{h}}{\sqrt{p^{2} + q^{2} + r^{2}}}\right|$$

$$d = \frac{|P(x_{0}, y_{0}, z_{0})|}{\sqrt{p^{2} + q^{2} + r^{2}}}$$

The Distance from a Point to a Plane

EXAMPLE 11 Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.

 $P(x, y, z) \equiv 3x + 2y + 6z - 6 = 0$ n = 3i + 2j + 6k

$$d = \frac{\left| \mathbf{P}(1,1,3) \right|}{\sqrt{9+4+36}} = \left| \frac{3(1)+2(1)+6(3)-6}{\sqrt{49}} \right| = \frac{17}{7}$$

n

10

Lines and Planes in Space Angles Between Planes

EXAMPLE 12 Find the angle between the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5.

 $n_1 = 3i - 6j - 2k$, $n_2 = 2i + j - 2k$

 $\theta = \cos^{-1}\left(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|}\right) = \cos^{-1}\left(\frac{4}{21}\right) \approx 1.38 \text{ radians.}$

EXERCISES

Find equations for the planes The plane through (1, -1, 3) parallel to the plane

$$3x + y + z = 7$$

3x + y + z = 5

The plane through (1, 1, -1), (2, 0, 2), and (0, -2, 1) 7x-5y-4z=6

Find the point of intersection of the lines x = 2t + 1, y = 3t + 2, z = 4t + 3, and x = s + 2, y = 2s + 4, z = -4s - 1, and then find the plane determined by these lines.

Find the distance from the plane x + 2y + 6z = 1 to the plane x + 2y + 6z = 10.

P(1, 2, 3) = -20x + 12y + z = 7.

 $\frac{9}{\sqrt{41}}$

EXAMPLE 1 Find an equation for the cylinder made by the lines parallel to the *z*-axis that pass through the parabola $y = x^2$, z = 0 (Figure 12.45).

Generating curve (in the yz-plane)

https://manara.edu.sy/

 $Ax^2 + By^2 + Cz^2 + Dz = E,$

https://manara.edu.sy/

General Quadric Surfaces

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gz + Hy + Iz + J = 0,$$

EXAMPLE 4 Identify the surface given by the equation

$$x^{2} + y^{2} + 4z^{2} - 2x + 4y + 1 = 0.$$
$$\frac{(x - 1)^{2}}{4} + \frac{(y + 2)^{2}}{4} + \frac{z^{2}}{1} = 1.$$

https://manara.edu.sy/