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Three-Dimensional Coordinate Systems
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Three-Dimensional Coordinate Systems
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EXAMPLE 1 We interpret these equations and inequalities geometrically.

(a) z=0

ib) x

—3

) z=0,x=0,y=0

d)y x=0y=0,z=0
&) —1=y=1

(f) }r=—213=2

The half-space consisting of the points on and above
the xy-plane.

The plane perpendicular to the x-axis at x = —3. This
plane lies parallel to the yz-plane and 3 units behind it.

The second quadrant of the xy-plane.

The first octant.

The slab between the planes y = —1 and y = 1 (planes
included).

The line in which the planes y = —2 and z = 2 inter-
sect. Alternatively, the line through the point (0, —2, 2)
parallel to the x-axis. [ ]
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Three-Dimensional Coordinate Systems
EXAMPLE 2 What points (x, y, z) satisfy the equations

“+y =4 ad =37

https://manara.edu.sy/



[

. _ Y
Distance and Spheres in Space ¥ it

The Distance Between P,(x,, y,, z;) and Ps(x,, 5, 2,)
PP = Vo —x) + (p — y)* + (2 — 21

EXAMPLE 3 The distance between Pi(2, 1, 5) and B(—2, 3, 0) 1s

|PB| = V(2 -2+ (3 — 12+ (0 — 50

= V16 + 4 + 25
= V45 = 6.708.

The Standard Equation for the Sphere of Radius a and Center (x;, y;, 2p)
x—x)+O0—n+tez—z=a

-~

e

A(x'z- Y- Zp)

=
L
o

XLy 2 Palxa, ya. 2)

B(xa. ¥3. 7y)

Pylxg. ¥o. Zp)

Pix.v.2)
\
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Distance and Spheres in Space S St

EXAMPLE 4 Find the center and radius of the sphere

12+}?1+31+31—43+I=I].

(X+gj+yz+(z_2)2:% mmm) (-3/2,0,2),r =+21/2

EXAMPLE 5 Here are some geometric interpretations of inequalities and equations
involving spheres.

(@ P+ +72<4 The interior of the sphere x> + y*> + 7 = 4.

b) L+ +7=4 The solid ball bounded by the sphere x* + y* +
7> = 4. Alternatively, the sphere x> + y* + 22 =
4 together with its interior.

€ “+y+7>4 The exterior of the sphere x* + y* + 72 = 4.

d 2>+y+7=4z=0 The lower hemisphere cut from the sphere x* +
y* + 7 = 4 by the xy-plane (the plane z = 0).

https://manara.edu.sy/
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EXERCISES

Find the perimeter of the triangle with vertices A(—1, 2, 1),
B(l,=1, 3), and (3, 4, 3).

Find an equation for the set of all points equidistant from the
planes y = 3 and y = — 1.

Find the point on the sphere X+ (v — 3P + (z + 597 = 4
nearest
a. the xy-plane. b. the pomnt (0, 7, —=3).

{ﬂ!‘ 3!' _3} (ﬂ:- 5: _5)*

J17 +4/33 + 6.
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Vectors

DEFINITIONS The vector represented by the directed line segment . AB has
initial point A and terminal point B and its length is denoted by |AB| Two
vectors are equal if they have the same length and direction.

https://manara.edu.sy/
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Vectors e At
DEFINITION If v is a two-dimensional vector in the plane equal to the vector Olxy, ¥y 22)
with initial point at the origin and terminal point (v, v»), then the component
form of v is Pt ) sition vector @1 %2 ¥3)

of PO
vV = {1.1'1, UE}-

If v is a three-dimensional vector equal to the vector with initial point at the
origin and terminal point (v, v,, v3), then the component form of v is gl

v={v,tuvs).

Y= {Iz — Xjs ¥ — }'11:*::_31}-

The magnitude or length of the vector v = PQ is the nonnegative number
v| = Vot + ot gt = Vi —x) + 0 — ) (@ — o)

(see Figure 12.10).
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Vectors

EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial
point P(—3, 4, 1) and terminal point Q{—5, 2, 2).

The component form of p_é 15 The length or magnitude of v = PQ is

v=(-2,-21). lv| = V=22 + =27+ (1 = VO =3,

EXAMPLE 2 A small cart is being pulled along a smooth horizontal floor with a
20-1b force F making a 45° angle to the floor (Figure 12.11). What 1s the effective force
moving the cart forward?

S

a = |F|cosd45° = (ED}(T) = 14.14 Ib.
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Vector Algebra Operations ot
DEFINITIONS Letu = {u, its, it3) and v = {v|, 1, v3) be vectors with k a
scalar.
Addition: u-+v={u + v,its + va,it3 + v3)
Scalar multiplication: iu = {kuy, ki, kuy )}
: y
{iy + vy, s + v |
__.-F'_-f..."
.a-"--- _II.'III v
’”fl:+ v ;
£
v f."'
- £
X 0 > X
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Vector Algebra Operations
EXAMPLE 3  Letu = {—1,3,1) and v = {4, 7, 0). Find the components of
(a) 2u + 3v (b) u —v (c) %u

(@) 2u + 3v=2{—1,3,1) +3{4,7,0) = {—2,6,2) + {12,21,0) = {10,27,2)

b) u—v={-131)— (47,0} = (-1 —4,3—7,1—0) = (—5,—4,1)

S ENERNOROEY,

1
|

© |5
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Vector Algebra Operations

Properties of Vector Operations
Let u, v, w be vectors and «, & be scalars.

l.L.u+v=v+u 22 m+vi+w=u+(v+tw
. u+0=n du+(—u)=10

5. 0u=10 6. lu =u

7. a(bu) = (abju 8. alu + v) = au + av

9. (¢ + b)u = an + bu

https://manara.edu.sy/
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— " . -?1 ﬁ1=xﬁi+ i T Ik
FR = —xi+(»—wlt+t@m-— gk 3 F LT )T I

PolXa. ¥5. Zo.

If v # 0, then

v . . i )
1. W is a unit vector called the direction of v
v
v

2. the equation v = |v|| |
v

expresses v as its length times its direction.

f o Pix). vy 21}
ﬁ] =.1'|i +_}’|j + El]i

EXAMPLE 4 Find a unit vector u in the direction of the vector from Fi(1,0, 1) to

Py(3,2,0).

R PP, 2i+2j—k 2. 2. |

P1Fg={3—l]i+(2—ﬂ)j+(ﬂ—l]k=2i+zj—k‘ﬂ=|ﬁ|= ) i 2Lk
142
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Unit Vectors
EXAMPLE 5 If v = 3i — 4j 1s a velocity vector, express v as a product of its speed

times its direction of motion.

Speed is the magnitude (length) of v:
v = V(3 + (—4 = V9 + 16 = 5.

The unit vector v/ |v| is the direction of v:

v _ -4 3. 4.
v| 5 s'T 5)
v = 3i — 4 =ﬁ5@i - %j).
__,f"'ff e —
Length Direction of motion
(speed)

https://manara.edu.sy/
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Midpoint of a Line Segment o

The midpoint M of the line segment joining points Py(x;, ¥, z;) and Py (xs, ¥, 22) P vy, 2p)
is the point

nrtunntmnats M(n;rx:, J'Hzr}'z’ 31';'33)
2 k] 2 ] 2 a

Palxa, ¥a, 22)

EXAMPLE 7 The midpoint of the segment joining P(3,—2,0) and BA{7,4,4) is

34+7 —2+4 0+4) 0
( 2 L 2 5 2 )_{5,112].

https://manara.edu.sy/
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EXAMPLE 8 A jet airliner, flying due east at 500 mph in still air, encounters a

70-mph tailwind blowing in the direction 60° north of east. The airplane holds its compass
heading due east but, because of the wind, acquires a new ground speed and direction.

What are they?

If u is the velocity of the airplane alone

v is the velocity of the tailwind,

{70 cos 60°, 70 sin 60°) = {35,35V3)

u= {500,0) and vV =
u + v = {535,35V3) = 535i + 35V/3j
_ . 3BV3

lu + v] = V5357 + (35v3)% = 5384 6 = tan 225> = 6.5°

500 u

The new ground speed of the airplane is about 538.4 mph, and its new direction is about
6.5° north of east. O

https://manara.edu.sy/
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EXAMPLE 9 A 75-N weight is suspended by two wires, as shown in Figure 12.18a.
Find the forces F; and F> acting in both wires.

F, = (—|F,|cos55°, |F,|sin55°) and  F, = (|F,|cos40°,

F,|sin40°).

F+E={(075) ) —|Fy| cos 55° + |F,| cos 40° = 0
|F,|sin 55° + |F,|sin40° = 75

F,| = 5767N
Cramer’s Rule —>
|F,|= 43.18 N.
F, = (—|F,|cos 55° |F,|sin 35°) = (—33.08,47.24)
w = {0, —75)
F, = (|F|cos 40° |F,|sin 407} = {33.08,27.76}. (b)

https://manara.edu.sy/
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0 Velocity An airplane is flying in the direction 25° west of north
at 800 km /h. Find the component form of the velocity of the air- (‘33 8.095, ?25*n4ﬁ>
plane, assuming that the positive x-axis represents due east and the
positive y-axis represents due north.

O Consider a 100-N weight suspended by two wires as shown in the

accompanying figure. Find the magnitudes and components of the
force vectors F; and F.

F|=-2% ~73205N _ 10046 _ N .
| K| ) |F, | = R ~89.658 N 'F, ~(~63.397,36.603) and F, ==~ (63.397,63.397)

https://manara.edu.sy/
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The Dot Product

DEFINITION The dot product u-v (*u dot v**) of vectors u = {uy, s, tz }
and v = {wvy, v5, 3} is the scalar

UV = vy + sty T .

Dot Product and Angles

4
: i mv
The angle between two nonzero vectors u and v is # = cos™! | | | | .
\af|v

The dot product of two vectors u and v is given by u-v = |u||v|cos 8.

https://manara.edu.sy/
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The Dot Product

EXAMPLE 3 Find the angle & in the triangle ABC determined by the wvertices
A=1(0,0),8=(3,5),and C = (5, 2) (Figure 12.22).

—_— —_—

CA={-5,—-2) and CB= {-23).

CA-CB = (-5)=2) + (-2)3) =4 |CA| = V(=57 + (-2 = V29

|ICB| = V(=272 + 32 = V13

_ E‘q * l:_‘é _ 4 —_— o £
B = rog I (r) = [0S '( ) = T&.1" or 1.36 radians.
Gillc (V35)(Vi3)

> X
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The Dot Product

Orthogonal Vectors

DEFINITION Vectors u and v are orthogonal if u-v = 0.

Properties of the Dot Product
If u, v, and w are any vectors and ¢ is a scalar, then

. n:v=v-u 2. (cn)*v =u-(cv) = c(u-v)
L u(v+w=u-v+uow 4. u-u = |ul?
5. 0ru=0.

https://manara.edu.sy/
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The Dot Product 8yl

The vector projection of u onto v is the vector

proj,u = (“-:)v = (uiv)l.
M [v| /1¥]

The scalar component of u in the direction of v is the scalar

(1)

(2)

o

Length = —|u| cos 8
(b)

https://manara.edu.sy/
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The Dot Product

EXAMPLE 5 Find the wvector projection of wu=6i+ 3j+ 2k onto
v =i — 2j — 2k and the scalar component of u in the direction of v.

aouwvo_ 4. 8.8
proj, u |"e’|2v_ gl+g-]+9k

-

We find the scalar component of u in the direction of v from Equation (2):

v -

lujcosf =u+—= -2
v 3

https://manara.edu.sy/
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The Dot Product
Work
__ { scalar component of F o | F |
Work = (in the direction of D )(Iength of D) , P | D 0 ’(" :
O N e i
= [|F|CDSH)|D| : : ) |F| cos & J
= F-D.

DEFINITION The work done by a constant force F acting through a displace-
ment D = PQ is

W=F-D.

https://manara.edu.sy/
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The Dot Product
Work

EXAMPLE 8  If |[F| = 40 N (newtons),
F in acting from P to Q is

D| = 3m, and & = 60°, the work done by

Work = F-D Definition
= |F||D|cos#
= {4']}(3](105 6(® Given values

= (120)(1/2) = 60 I (joules).

https://manara.edu.sy/
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EXERCISES
Projectile motion A gun with muzzle velocity of 1200 fi /sec 1188 fi/s 167 fi/s

15 fired at an angle of 8" above the horizontal. Find the horizontal
and vertical components of the velocity.

Inclined plane Suppose that a box i1s being towed up an inclined
plane as shown in the figure. Find the force w needed to make the
component of the force parallel to the inclined plane equal to 2.5 1b.

(2.205,1.432)

https://manara.edu.sy/
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EXERCISES
Work along a line Find the work done by a force F = 31 (mag-

nitude 5 N) in moving an object along the line from the origin to
the point (1, 1) (distance in meters).

5]

https://manara.edu.sy/
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The Cross Product L
0 -
DEFINITION The cross product u X v (“u cross v”) is the vector u KLJ\\_
u X v = (|u||v| sin @) n. 3~
Parallel Vectors ; ;
Nonzero vectors u and v are parallel if and only ifu X v = 0. “

Properties of the Cross Product
If u, v, and w are any vectors and r, s are scalars, then

1. (ra) X (sv) = (rs)(n X v) 2ZuX{vt+tw=uxXxv+tuXxXw
3. vXu=—(nXv) d (v+tw)Xu=vXu+wxu
5.0xXu=10 buX(v¥w=mwy—(uvw

https://manara.edu.sy/



The Cross Product

iXj=—(jxi)=k
iXk=—(kxj=i
kXi=—(i xXKk)=j

iXi=jxj=kxk=0.

lu X v| Is the Area of a Parallelogram

[

6)liaJl

|u X v| = |u||v| |sinﬂ||n|

= |u||v|sin@.

Area = base - height

= [ul - |v[]sin 8]
=[u X v]

h = |v||sin 8|

w

https://manara.edu.sy/
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The Cross Product

Calculating the Cross Product as a Determinant
Ifu=mi+ uwj+ wmkandv=vi+ wnj+ wnik, then

X v= Hl H'z Hj.

EXAMPLE 1 Findu X vandv X uifu=2i+j+ kandv=—-4i + 3j + k.

X 21 % l: ‘l i ‘ ; l|‘+| ; I‘k 21 — 6) + 10k
u Y = = 1 — _ —
PSS N TS T EARE U SV =

viu=—(uxv)=2+ 6 — 10k

https://manara.edu.sy/
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The Cross Product

EXAMPLE 2 Find a vector perpendicular to the plane of P(1,—1,0), Q(2, 1, —1),
and R(—1, 1, 2) (Figure 12.32).

el

.Fth=(2— I}i‘l’(l + I}j‘|‘(—l —D)k=i+2j—k R(—1.1.2)
PR=(-1-Di+(0+Dj+@2—0k=—2+2j+2k /
i j !{ |.-ff";
PO X PR = 1 2 —1]| = i— _]+ k Pl —1.0) ”l
- |

2 2 2 2 2
2 2 2
6i + 6k \X
002, 1,-1)

https://manara.edu.sy/
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The Cross Product

EXAMPLE 3 Find the area of the triangle with vertices P(1,—1, 0}, @(2, 1,—1), and

R(—1, 1, 2) (Figure 12.32). R—1.1.2)

The area of the parallelogram determined by P, @, and R is %

cal

|PO x PR| = |6i + 6K|

| .-'j"
= V(6)F + (6): = V2:36 = 6V2. The triangle’s area is half of this, or 3V2. . n;%‘v/\\ﬂ

EXAMPLE 4 Find a unit vector perpendicular to the plane of P(1,—1, 0), Q(2, 1, —1), \
and R(—1, 1, 2). K

Q2 1. -1)
PQxPR _6i+6k _ 1 . 1

n= 1+ —k
PO x PR|  6V2 V2 V72

https://manara.edu.sy/
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The Cross Product
Torque

Magnitude of torque vector = |r||F|sin®,

Torque vector = r X F = (|r||F|sin@) n.

Component of F
perpendicular to r.

Its length is |F| sin 8. . B
EXAMPLE 5 The magnitude of the torque generated by force F at the pivot point P J
in Figure 12.34 is
3 ft bar
s . _ Py o
|PQ X F| = |PQ||F|sin70° = (3)(20)(0.94) = 56.4 ft-1b. 0P
20 Ib
magnitude
force B

https://manara.edu.sy/
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Triple Scalar or Box Product

Calculating the Triple Scalar Product as a Determinant
iy Uy I
(ub{v]'w= (4] (25 [L}]

Wy Wa Wy

Height = |w] |cos 8||__@

A
u Xy
- 1 ““““““
“'
Y
/"’ - ’
u

Volume = area of base - height
=|u X v||w]|cos 8|
=|(u X v) - w|

Area of base

__-——'—'—"’_'_'_'=|u><v|

https://manara.edu.sy/
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The Cross Product

EXAMPLE 6 Find the volume of the box (parallelepiped) determined by
n=i+2j—k v=-2i+ 3k andw=7] — 4k.

Il
|
b
L

The volume 1s |{|1 X V) w| = 23 umts cubed.

https://manara.edu.sy/
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EXERCISES o
find the magnitude of the torque exerted by F

on the bolt at P if |PQ| = &8in. and |F| = 301b. Answer in foot-
pounds.

10+/3 ft-1b

Find the volume of a parallelepiped if four of its eight vertices are
A0, 0,0), B(1, 2, ), C(0, =3, 2}, and D{3, —4, 3).

Determine whether the given points are coplanar.

A0, 1,2), B(-1,1,0), C,0,—1), D(,—1,1)

https://manara.edu.sy/
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Lines and Planes in Space

Lines and Line Segments in Space

Vector Equation for a Line
A vector equation for the line L through Fy(x,, ¥y, Zp) parallel to v is

r(t) = r, + tv, —o0 < < o0, (2)

where r is the position vector of a point P(x, v, z) on L and ry is the position vec-
tor of Py(xo, Yo, 20)-

Parametric Equations for a Line

The standard parametrization of the line through Fy(xy, ¥y, Zp) parallel to
V= U|i + Ugj + ngiﬁ

x=xthy, y=Eytin z=5t+ s —00 <1< (3)

https://manara.edu.sy/
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Lines and Planes in Space
EXAMPLE 2 Find parametric equations for the line through P(—3, 2, —3) and
0(1,—1,4).

PO=(1—(3)i+(—1—2§+@—(—3)k=4di—3j+7k

x =—3 + 4, y =2 — 34 r=—3+ Tt

EXAMPLE 3 Parametrize the line segment joining the points P(—3,2,—3) and 0Q0.-L4)
Q(1,—1, 4) (Figure 12.38).

x =—3 + 4t vy =2 — 3t r=—3+ 7t

xr=—3 + 4y, y=2-—731, r=—3+ Tt 0=r=1.

=10
P(—3,2 -3

https://manara.edu.sy/
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Lines and Planes in Space (D =T
}rg tﬁfrl—‘»:J é
;/ s II T

Initial  Time Speed Dil'u_;-ttil;vn

position
EXAMPLE 4 A helicopter is to fly directly from a helipad at the origin in the direc-
tion of the point (1, 1, 1) at a speed of 60 ft /sec. What is the position of the helicopter
after 10 sec?

Then the unit vector u= l {J + Lv,_k
r(f) = r; + f(speedju = 0 + r{ﬁﬂ](v,_ V,—_] + %k) = Eﬂvﬁt{i + j + k).

r(10) = 200V3( + j + k)

= (200V/3, 200V/3, 200V/3) m=) |r(10) |~ 600ft

https://manara.edu.sy/



[

deol ~

Lines and Planes in Space §)liall
The Distance from a Point to a Line in Space

Distance from a Point S to a Line Through P Parallel to v
|F§' oy v|

d
M

3)

EXAMPLE 5 Find the distance from the point §(1, 1, 5) to the line
L: x=1 4+t y=3—1, = 2t

~N

FP(l, 3, 0) v=i—j+ 2k

| —

1 k
J?S=[l—l}i+{l—3}j+[5—ﬂ}k=—2j+5k ﬁxv= 0 —2 5| =i+ 5+ 2k,
1 2

F.S"Hv
_| | _VI+25+4_ V30 V5.

d = -
|v| Vi+1+4 Ve

https://manara.edu.sy/
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Lines and Planes in Space
An Equation for a Plane in Space
Equation for a Plane n Plane M
The plane through Fy(x;, ¥y, 7p) normal to n = Ai + Bj + Ck has /
—_— Plx, . 2)
Vector equation: n-FP =0 Poro. 7o /

Component equation: Alx —x) + By —w) + Clz — ) =0
Component equation simplified: Ax + By + Cz =D, where

EXAMPLE 6 Find an equation for the plane through F,(—3, 0, 7) perpendicular to
n=>5 +2j — k.

S — (3N + 2y — M+ (—1z—7)=0.
Sy + 2y — = —11

https://manara.edu.sy/
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Lines and Planes in Space

An Equation for a Plane in Space

EXAMPLE 7 Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and

C(0, 3,0).

—1

1
The normal AE? 4 AE.’ = |2
0 —1

LI I s S

= 3i + 2j + 6k

x—M+ 2y -0 +6(z— D=0

3x + 2y + 6z = 6.

https://manara.edu.sy/
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Lines and Planes in Space
Lines of Intersection

EXAMPLE 8 Find a vector parallel to the line of intersection of the planes
3x —6y —2z=15and 2x + y — 2z = 5.

i j k
nXm=1|3 -6 -—2|=14i+2j+ 15k
2 1 =2

EXAMPLE 9 Find parametric equations for the line in which the planes
3x — b6y — 2z = 15 and 2x + y — 2z = 5 intersect.

T o= D
. : 3x — by — 2z =15 -
Finding point common to the two planes ' ' ‘ (3,—1.0)
2x +vyv—2z=135
x =3+ 14y, v=—1+ 12, z = 15¢.

https://manara.edu.sy/
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Lines and Planes in Space
Lines of Intersection
EXAMPLE 10 Find the point where the line
)
x=§+21, y = —2f, z=1+1

intersects the plane 3x + 2y + 6z = 6.

3@+ Er) L+ 220+ 6(l +H=6
t=—1

The point of intersection is (x, v, E)|:=—1 = (ET —2.2.1— 1) = (%, 2, l])
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Lines and Planes in Space

The Distance from a Point to a Plane

|M1M0'n|:|M1M0|'|n|:d'|n|

; _MMGn] o gy, 1z, - (px, +ay, +12,)
In| Jp2+qi+r?
] _‘MlMO'n‘_ DX, +Qy, +1Z, +h
In| Jp2+qi+r?
d _|P(X0’y0’ZO)
\/p2+q2+r2

M (x,¥..2;)
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6)liaJl

Lines and Planes in Space

The Distance from a Point to a Plane
EXAMPLE 11 Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.

P(x,y,z)=3x +2y +62 —-6=0 n=3 +2] +6k

_ P@L3) _|3@)+2)+6(3)-6|_17
J9+4436 V49 !

d
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Lines and Planes in Space
Angles Between Planes 6 y
EXAMPLE 12 Find the angle between the planes 3x — 6y — 2z = 15 and o] 4

2x + y— 2z = 5.

]'l|=3i_'ﬁj_2k, ﬂ2=2i+j_2k

6 = cos™! (|::|-|]:|) = cos™! (;—1) ~ 1.38 radians.
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EXERCISES 6)lioJl
Find equations for the planes o
The plane through (1, —1, 3) parallel to the plane Sxayizo$
x+y+z=7
The plane through (1, 1.=1), (2,0, 2), and (0, =2, 1) Tx-5y-4z=6

Find the point of intersection of the lines x = 2r + 1,
=342, z=4r+3 and x=5+2,y=2s+4,z= P(l, 2, 3)

—ds = 1, and then find the plane determined by these lines. _20x+12y+2=7.

Find the distance from the plane x + 2y + 6z = | to the plane 9
x+ 2y + 6z = 10. Vi

https://manara.edu.sy/



Cylinders and Quadric Surfaces

[

6)liaJl

EXAMPLE 1 Find an equation for the cylinder made by the lines parallel to the
z-axis that pass through the parabola y = x%, z = 0 (Figure 12.45).

*

P P Qulxp. 30", 2)

Ir'. '/_R P, ﬂl{‘rﬂ? Iﬂzr H]
ﬁ:

z Generating curve
{(in the yz-plane)

generating curve
parallel to x-axis
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Cylinders and Quadric Surfaces
Ax* + By + Cz* + Dz = E,

Elliptical cross-section
in the plane z = 2

=L
The parabela 7 = ar‘z Th::l:ﬁpscg +
e
, inthe plane z = ¢

S

in the rr-plane

The parabola 2
in the yz-plane
= ¥
:;111“ -:E_-P]-'mt in the yz-plane I
2y 2
ELLIPSOID 2 + s + 2= 1 ELLIPTICAL PARABOLOID

https://manara.edu.sy/
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Cylinders and Quadric Surfaces

.
£ _

Part of the hyperbola
¥ JER

= 1l in the x7-plane

P
Th::llips.\:§+‘#=1

z
in the yz-plane . _ . ‘
i
|
I
I
1

.

I
1 ¥
i

Th:li.m:::—g_t'

=2

X
The ellipse =] +

in the plane 7 = ¢

.‘.‘,1
The ellipse L + — =
-~ i S
in the xy-plane

‘,_,1
Part of the hyperbola F——i; =1J
in the yz-plane

HYPERBOLOID OF ONE SHEET

ELLIPTICAL CONE
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Cylinders and Quadric Surfaces 6yli_al

The parabola z = ;)%_\2 in the yz-plane

Part of the hyperbola g— %:l

intheplancz =¢

> 2
2 X
The clli S+==1
z cllipse a-+b2 z -y
inthe plane z = c\/2 X 7‘ 2 ¥
; SN . Part of the hyperbola 5 — =5 = 1
P e Jpeibola sy =gy =
c
'lhcpambolaz:-—;xz /iuthcplanc:=—c

in the xz-plane

X=.... Z
ﬁ—;=5,c>0

https://manara.edu.sy/
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General Quadric Surfaces ool
A + By + C2+ Dxy+ Exg + Fyz + Gz + Hy + Iz + T =0,
EXAMPLE 4 Identify the surface given by the equation
C Ay 47 -2+ 4y + 1 = 0.

= 1.

-_]‘_1 _,_|_21 2
G- g 2
4 4 1

v+ 2P ﬁ_
A
in the plane x = 1

The ellipse

— 132 1
The ellipse I4” + L=

X
in the plane ¥ = =2 {x—111+{_1-+’1}1_

The clli
pee 4 4
inthe plane z =0

https://manara.edu.sy/
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