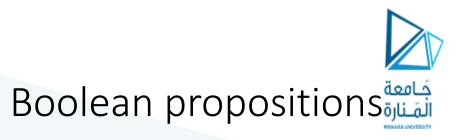


Boolean Logic المنطق البولياني

Epp, sections 1.1 and 1.2

- Computer programs
- And computer addition
- Logic problems
- Sudoku



- A proposition is a statement that can be either true or false
 - "The sky is blue"
 - "I is a Engineering major"
 - "x == y"
- Not propositions:
 - "Are you Bob?"
 - "x := 7"

Boolean variables

- We use Boolean variables to refer to propositions
 - Usually are lower case letters starting with p (i.e. p, q, r, s, etc.)
 - A Boolean variable can have one of two values true (T) or false (F)
- A proposition can be...
 - A single variable: p
 - An operation of multiple variables: $p \land (q \lor \neg r)$

- About a dozen logical operators
 - Similar to algebraic operators + * /
- In the following examples,
 - p = "Today is Friday"
 - q = "Today is my birthday"

Logical operators: Not مَامِعة

- A not operation switches (negates) the truth value
- \bullet Symbol: \neg or \sim
- In C++ and Java,the operand is !
- $\neg p$ = "Today is not Friday"

p	$\neg p$
T	F
F	T

Logical operators: And

- An and operation is true if both operands are true
- Symbol: ∧
 - It's like the 'A' in And
- In C++ and Java,
 the operand is & &
- $p \land q =$ "Today is Friday and today is my birthday"

р	q	p∧q
T	Т	Τ
T	F	F
F	T	F
F	F	F

Logical operators: Or

- An or operation is true if either operands are true
- Symbol: ∨
- In C++ and Java,the operand is | |
- $p \lor q =$ "Today is Friday or today is my birthday (or possibly both)"

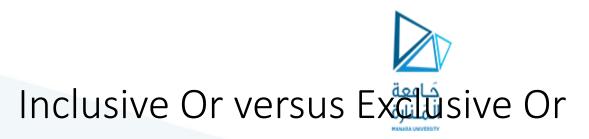
р	q	p∨q
T	Т	H
T	F	_
F	T	Т
F	F	F

Logical operators: Exclusive Or

An exclusive or operation is true if one of the operands are true,
 but false if both are true

- Symbol: ⊕
- Often called XOR
- $p \oplus q \equiv (p \vee q) \wedge \neg (p \wedge q)$
- In Java, the operand is ^
 (but not in C++)
- $p \oplus q =$ "Today is Friday or today is my birthday, but not both"

p	q	$p\oplus q$
T	Т	F
T	F	Т
F	Т	T
F	F	F



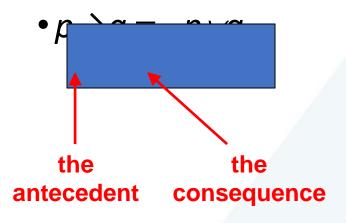
- Do these sentences mean inclusive or exclusive or?
 - Experience with C++ or Java is required
 - Lunch includes soup or salad
 - To enter the country, you need a passport or a driver's license
 - Publish or perish

- The negation of And and Or, respectively
- Symbols: | and \downarrow , respectively
 - Nand: $p \mid q \equiv \neg (p \land q)$
 - Nor: $p \downarrow q \equiv \neg (p \lor q)$

p	q	p∧q	pvq	p q	$p \downarrow q$
Т	Т	Т	Т	F	F
Т	F	F	Т	Т	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

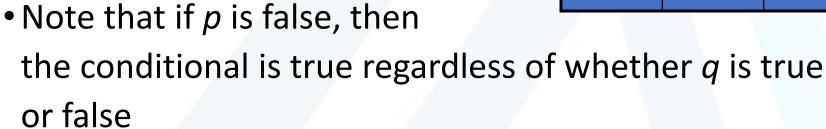
Logical operators: Conditional 1

- A conditional means "if p then q"
- Symbol: \rightarrow
- $p \rightarrow q =$ "If today is Friday, then today is my birthday"



p	q	$p \rightarrow q$	$\neg p \lor q$
Т	T	Т	_
T	F	F	F
F	Т	T	T
F	F	T	Т

- Let p = "I am elected" and q = "I will lower taxes"
- I state: $p \rightarrow q =$ "If I am elected, then I will lower taxes"
- Consider all possibilities



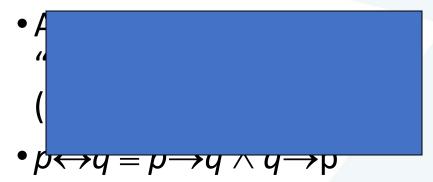
p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

				Conditional	Inverse	Converse	Contra- positive
p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т	F
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	Т	Т	Т	Т

- Alternate ways of stating a conditional:
 - p implies q
 - If *p*, *q*
 - *p* is sufficient for *q*
 - q if p
 - q whenever p
 - q is necessary for p
 - *p* only if *q*

I don't like this one

- A bi-conditional means "p if and only if q"
- Symbol: ↔



 Note that a bi-conditional has the opposite truth values of the exclusive or

p	q	$p \leftrightarrow q$
T	Т	H
T	F	F
F	T	F
F	F	Τ

Logical operators: Bi-conditional 2

- Let p = "You take this class" and q = "You get a grade"
- Then p↔q means
 "You take this class if
 and only if you get a
 grade"

Alternatively, it means "If
you take this class, then
you get a grade and if you get a grad
(took) this class"

/	p	q	$p \leftrightarrow q$
	F	Т	H
	Т	F	F
/	F	Т	F
C	le f her	yofu ta	ıkeT

Boolean operators summary

		not	not	and	or	xor	nand	nor	conditional	bi- conditional
p	q	$\neg p$	$\neg q$	p∧q	p∨q	p⊕q	p q	$p \downarrow q$	$p \rightarrow q$	p↔q
Т	T	F	F	Т	Т	F	F	F	Т	Т
Т	F	F	Т	F	Т	Ť	Т	F	F	F
F	Т	Т	F	F	Т	Т	Ť	F	T	F
F	F ea	ırmwl	natηthe	ey F nea	n, pdor	't jpest	me ın or	ize jt he	table !	Т

- Just as in algebra, operators have precedence
 - 4+3*2 = 4+(3*2), not (4+3)*2
- Precedence order (from highest to lowest): $\neg \land \lor \rightarrow \longleftrightarrow$
 - The first three are the most important
- This means that $p \lor q \land \neg r \rightarrow s \longleftrightarrow t$ yields: $(p \lor (q \land (\neg r))) \longleftrightarrow (s \rightarrow t)$
- Not is always performed before any other operation

Translating English Sentences

- Problem:
 - p = "It is below freezing"
 - q = "It is snowing"
- It is below freezing and it is snowing
- It is below freezing but not snowing
- It is not below freezing and it is not snowing
- It is either snowing or below freezing (or both)
- If it is below freezing, it is also snowing
- It is either below freezing or it is snowing, but it is not snowing if it is below freezing
- That it is below freezing is necessary and sufficient for it to be snowing

$$p \land q$$
 $p \land \neg q$
 $\neg p \land \neg q$
 $p \lor q$
 $p \to q$
 $p \to q$
 $p \to q$

$$p \leftrightarrow q$$

- Heard on the radio:
 - A study showed that there was a correlation between the more children ate dinners with their families and lower rate of substance abuse by those children
 - Announcer conclusions:
 - If children eat more meals with their family, they will have lower substance abuse
 - If they have a higher substance abuse rate, then they did not eat more meals with their family

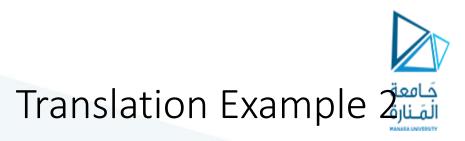
Translation Example الْمُنَارِةً

- Let p = "Child eats more meals with family"
- Let q = "Child has less substance abuse
- Announcer conclusions:
 - If children eat more meals with their family, they will have lower substance abuse
 - $p \rightarrow q$
 - If they have a higher substance abuse rate, then they did not eat more meals with their family
 - $\neg q \rightarrow \neg p$
- Note that $p \to q$ and $\neg q \to \neg p$ are logically equivalent

Translation Example 1 مَاهِة

- Let p = "Child eats more meals with family"
- Let q = "Child has less substance abuse"
- Remember that the study showed a correlation, not a causation

p	q	result	conclusion
Т	Т	Т	T
Т	F	?	H
F	Т	?	Т
F	F	Т	Т



- "I have neither given nor received help on this exam"
 - Rephrased: "I have not given nor received ..."
 - Let p = "I have given help on this exam"
 - Let q = "I have received help on this exam"
- Translation is: $\neg p \downarrow q$

p	q	$\neg p$	$\neg p \downarrow q$
Т	Т	F	F
Т	F	F	Т
F	T	Т	F
F	https:///rivae	alrasedu.sy/	F

- What they mean is "I have not given and I have not received help on this exam"
 - Or "I have not (given nor received) help on this exam"

	р	q	$\neg p \land \neg q$	$\neg(p\downarrow q)$	
	Т	Т	F	F	
	Т	F	F	F	
• The pro	blem: E has a	higherTpreced	F	F	, but
not alw • Also, "r	ays in English either" is vagu	F	Т	Т	\

- A tautology is a statement that is always true
 - p ∨ ¬p will always be true (Negation Law)
- A contradiction is a statement that is always false
 - p ∧ ¬p will always be false (Negation Law)

p	$p \vee \neg p$	$p \wedge \neg p$
T	Т	F
F	Á	<u></u>

https:///nvanara.eedu.sy/

26

Logical Equivalence

- A logical equivalence means that the two sides always have the same truth values
 - Symbol is ≡ or ⇔
 - We'll use ≡, so as not to confuse it with the bi-conditional

Logical Equivalences of And

• $p \wedge T \equiv p$

Identity law

p	T	<i>p</i> ∧T
Т	Т	T
F	T	F

p ∧ F ≡ F

Domination law

p	F	<i>p</i> ∧F
T	F	F
F	F	F

Logical Equivalences of And

p ∧ p ≡ p

Idempotent law

р	p	p∧p
Т	Т	T
F	F	F

• $p \land q \equiv q \land p$

Commutative law

р	q	p∧q	q∧p
Т	Т	Ť	T
Т	F	F	F
F	T	F	F
	_ / /	<u>~</u>	_
	last as Did he	nd Hatomi.	

Logical Equivalences of And

• $(p \land q) \land r \equiv p \land (q \land r)$ Associative law

р	q	r	p∧q	(p∧q)∧r	q∧r	p∧(q∧r)
Т	Т	Т	Т	Т	T	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	T	F	F	Т	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

Logical Equivalences of Cr

•
$$p \lor p \equiv p$$

•
$$p \lor q \equiv q \lor p$$

•
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Identity law

Domination law

Idempotent law

Commutative law

Associative law

Corollary of the Associative Law

•
$$(p \land q) \land r \equiv p \land q \land r$$

•
$$(p \lor q) \lor r \equiv p \lor q \lor r$$

- Similar to (3+4)+5 = 3+4+5
- Only works if ALL the operators are the same!

Logical Equivalences of ot

p ∨ ¬p ≡ T
 p ∧ ¬p ≡ F

Double negation law

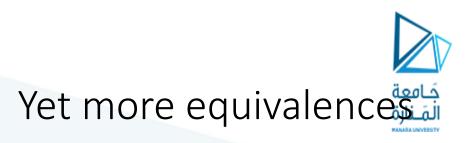
Negation law

Negation law

DeMorgan's Law

- Probably the most important logical equivalence
- To negate p\q (or p\q), you "flip" the sign, and negate BOTH p and q
 - Thus, $\neg(p \land q) \equiv \neg p \lor \neg q$
 - Thus, $\neg(p \lor q) \equiv \neg p \land \neg q$

р	q	¬р	¬q	p∧q	¬(p∧q)	$\neg p \lor \neg q$	p∨q	¬(p∨q)	$\neg p \land \neg q$
Τ	Т	П	ш	Τ	П	П	Η	Т	Т
T	F	П	Т	П	⊣	┙	_	П	F
F	T	Т	F	F	Т	Т	Т	F	F
F	H	Η	H	H	Т	Т	Ш	Τ	Т



• Distributive:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Absorption

$$p \lor (p \land q) \equiv p$$

 $p \land (p \lor q) \equiv p$

How to prove two propositions are equivalent?

- Two methods:
 - Using truth tables
 - Not good for long formulae
 - In this course, only allowed if specifically stated!
 - Using the logical equivalences
 - The preferred method
- Example: show that:

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

Using Truth Tables

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

р	q	r	p→r	q →r	$(p\rightarrow r)\lor (q\rightarrow r)$	p∧q	(p∧q) →r
Т	Т	T	Т	Т		Т	
Т	Т	F	F	F		T	
Т	F	T	Т	Т		F	
Т	F	F	F	Т		F	
F	Т	Т	Т	Т		F	
F	Т	F	Т	F		F	
F	F	Т	Т	Т		F	
F	F	F	Τ	Т		F	

Using Logical Equivale

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r \qquad \text{Original statement}$$

$$(\neg p \lor p) \Rightarrow (p \rightarrow q) \Rightarrow q \equiv \neg p \lor q$$

$$\text{DeMorgan's Law} \qquad \neg (p \land q) \equiv \neg p \lor \neg q$$

$$-p \Rightarrow \text{Sociativity} \Rightarrow (p \rightarrow q) \Rightarrow (p \rightarrow$$

جَـامعة المَـنارة «МАКАБ ОКУРБЕГТУ

Logical Thinking

- At a trial:
 - Bill says: "Sue is guilty and Fred is innocent."
 - Sue says: "If Bill is guilty, then so is Fred."
 - Fred says: "I am innocent, but at least one of the others is guilty."
- Let b = Bill is innocent, f = Fred is innocent, and s = Sue is innocent
- Statements are:
 - ¬s ∧ f
 - $\neg b \rightarrow \neg f$
 - f ∧ (¬b ∨ ¬s)

Can all of their statements be true?

• Show: $(\neg s \land f) \land (\neg b \rightarrow \neg f) \land (f \land (\neg b \lor \neg s))$

b	f	S	þ	¬f	¬S	¬s∧f	¬b→¬f
Т	Т	Т	F	F	F	F	Т
Т	F	T	F	Т	F	F	Т
Т	F	F	F	Т	Т	F	Т
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	Т	Т	F
F	F	T	Т	Т	F	F	Т
F	F	F	T	Т	T	https:///	dyad bleteadu sy/

f∧(¬b∨-	¬s)
F	
F	
F	
Т	
Т	
F	
	\
	40

Are all of their statements true?

Show values for s, b, and such that the equation is true

$$(\neg s \land f) \land (\neg b \rightarrow \neg f) \land (f \land (\neg b \lor \neg s)) \equiv T$$

$$(\neg s \land f) \land (b \lor \neg f) \land (f \land (\neg b \lor \neg s)) \equiv T$$

$$\neg s \land f \land (b \lor \neg f) \land (\neg b \lor \neg s) \equiv T$$

$$\neg s \land f \land (b \lor \neg f) \land (\neg b \lor \neg s) \equiv T$$

$$\neg s \land f \land (b \lor \neg f) \land (\neg b \lor \neg s) \equiv T$$

$$f \land (b \lor \neg f) \land \neg s \land (\neg s \lor \neg b) \equiv T$$

$$f \land (b \lor \neg f) \land \neg s \equiv T$$

$$(f \land (b \lor \neg f)) \land \neg s \equiv T$$

$$(f \land b) \lor (f \land \neg f)) \land \neg s \equiv T$$

$$(f \land b) \land \neg s \equiv T$$

$$(f \land b) \land \neg s \equiv T$$

$$f \land b \land \neg s \equiv T$$

Original statement

Definition of implication

Associativity of AND

Re-arranging

Idempotent law

Re-arranging

Absorption law

Re-arranging

Distributive law

Negation law

Domination law

Associativity of AND

What if it weren't possible to assign such values to s, b, and f?

$$(\neg s \land f) \land (\neg b \rightarrow \neg f) \land (f \land (\neg b \lor \neg s)) \land s = T \qquad \text{Original statement}$$

$$(\neg s \land f) \land (b \lor \neg f) \land (f \land (\neg b \lor \neg s)) \land s = T \qquad \text{Definition of implication}$$

$$\dots \text{ (same as previous slide)}$$

$$(f \land b) \land \neg s \land s = T \qquad \text{Domination law}$$

$$f \land b \land \neg s \land s = T \qquad \text{Negation law}$$

$$f \land b \land F = T \qquad \text{Domination law}$$

$$F = T \qquad \text{Domination law}$$

$$Contradiction!$$

- All the "extended" operators have equivalences using only the 3 basic operators (and, or, not)
 - The extended operators: nand, nor, xor, conditional, bi-conditional
- Given a limited set of operators, can you write an equivalence of the 3 basic operators?
 - If so, then that group of operators is functionally complete

How to construct a compound statement for exclusive-or?

р	q	p 2 q
T	Τ	F
Т	F	T
F	Т	T
F	F	F

Idea 1: Look at the true rows

$$(p \land \neg q) \lor (\neg p \land q)$$

Idea 2: Look at the false rows

$$\neg (p \land q) \land \neg (\neg p \land \neg q)$$

Idea 3: Guess and check

$$(p \lor q) \land \neg (p \land q)$$

$$p \oplus q \equiv (p \lor q) \land \neg (p \land q)$$

р	q	$p\oplus q$	$p \lor q$	$\neg (p \land q)$	
Т	Т	F	Т	F	F
Т	F	T	T	T	T
F	Т	Т	Т	T	T
F	F	F	F	\overline{T}	F

Logical equivalence: Two statements have the same truth table

Writing Logical Formula for a Truth Table

Given a truth table, how to write a logical formula with the same function?

First write down a small formula for each row, so that the formula is true if the inputs are exactly the same as the row.

output

F

Т

Then use idea 1 or idea 2.

	р	q	r
$p \wedge q \wedge r$	Т	Т	F
$p \wedge q \wedge \neg r$	Т	Т	H
$p \wedge \neg q \wedge r$	Т	F	Τ
$p \land \neg q \land \neg r$	Т	F	F
$\vee (\neg p \wedge \dot{\neg} q \wedge r)$	F	Т	Т
$\neg p \land q \land \neg r$	F	Т	F
$\neg p \land \neg q \land r$	F	F	Т
$\neg p \land \neg q \land \neg r$	F	F	F

Idea 1: Look at the true rows and take the "or".

$$(p \land q \land \neg r)$$

$$\lor (p \land \neg q \land r)$$

$$\lor (\neg p \land q \land r)$$

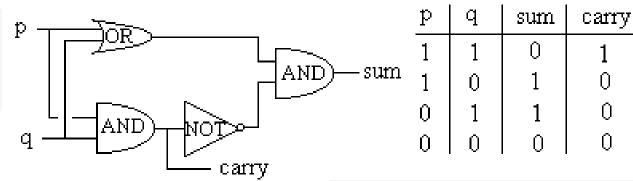
$$\lor (\neg p \land q \land \neg r)$$

The formula is true iff the input is one of the true rows.

F

Writing Logical Formula for a Truth Table

Digital logic:



 $p \wedge q \wedge r$ $p \wedge q \wedge \neg r$ $p \wedge \neg q \wedge r$ $p \wedge \neg q \wedge \neg r$ $p \wedge \neg q \wedge \neg r$ $\neg p \wedge q \wedge \neg r$ $\neg p \wedge q \wedge \neg r$ $\neg p \wedge \neg q \wedge r$

р	q	r	output
Т	Т	Т	F
Т	Т	F	T
Т	F	Т	T
Т	F	F	F
F	T	T	Т
F	Т	F	T
F	F	Т	Т
		F	/ E

Idea 2: Look at the false rows, negate and take the "and".

$$\neg (p \land q \land r)$$

$$\land \neg (p \land \neg q \land \neg r)$$

$$\land \neg (\neg p \land \neg q \land \neg r)$$

can be simplified further

The formula is true iff the input is not one of the false row.

https:///rwahaleasedu.sv/