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Vector-Valued Functions and Motion 1n Space

e Curves 1 Space and Their Tangents

* Integrals of Vector Functions; Projectile Motion

* Arc Length 1n Space

e Curvature and Normal Vectors of a Curve

* Tangential and Normal Components of Acceleration
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Curves in Space and Their Tangents 344

¥ ]

r(f) = OP = f(0i + g(0)j + h(Dk /

EXAMPLE 1 Graph the vector function

rif) = (cos )i + (sin f)j + tk. P{ (8. (6), hi£)
- r

Helix
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Curves in Space and Their Tangents bt
Limits and Continuity

DEFINITION Let r(f) = f(f)i + g{Hj + hi(hk be a vector function with
domain D, and let L. be a vector. We say that r has limit L as f approaches £, and

write

hmr{f) = L

=ty
if, for every number £ == 0, there exists a corresponding number & = 0 such

that forall t e D

Ir() — L] <& whenever 0 < |[r—g] <&

DEFINITION A vector function r(f) is confinuous at a point t = f; in its
domain if lim,_,, r(f) = r(4). The function is continuous if it is continuous at
every point in 1ts domain.
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Curves in Space and Their Tangents
Limits and Continuity

a(f) = (cos i + (sinnj + |r]k

is discontinuous at every integer, because the greatest integer function | ¢ | is discon-
tinuous at every integer. O
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Curves in Space and Their Tangents 2=

Derivatives and Motion
: 1 E _ ot + A — ()

rir+ AN — i)

DEFINITION The vector function r(f) = f(Hi + g(#)j + Ak has a derivative
(is differentiable) at ¢ if f, g, and & have derivatives at t. The derivative is the
vector function

v _de _ Y+ AN - _df.  dg.  dh
r(f}_ﬁ—g;lﬂlﬂ A _u’rl+EJ+Ek'
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Derivatives and Motion

DEFINITIONS 1If r is the position vector of a particle moving along a smooth
curve in space, then

fr
V(1) = iT:

is the particle’s velocity vector, tangent to the curve. At any time ¢, the direction
of v is the direction of motion, the magnitude of v is the particle’s speed, and
the derivative a = dv /dt, when it exists, is the particle’s acceleration vector. In
summary,

1. Velocity is the derivative of position: v = fo
2. Speed is the magnitude of velocity:  Speed = |v|.

. - . dv _ d°r
3. Acceleration is the derivative of velocity: a=-—= FEl
i

4. The unit vector v/ | v| is the direction of motion at time f.

https://manara.edu.sy/
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Curves in Space and Their Tangents
Derivatives and Motion

EXAMPLE 4 Find the velocity, speed, and acceleration of a particle whose motion in
space is given by the position vector r(f) = 2costi + 2sintj + 5 cos’t k. Sketch the
velocity vector v(7 /4).

vit) = r'(f) = —2sinti+ 2costj — 5sin 2rk,

a(f) =r"(f) = —2costi— 2sintj — 10 cos 2t k,

lv(t)| = V(—2sin0)? + (2cos ) + (—5sin 26 = V4 + 25 sin? 2t
When t = 77 /4, we have

v(r‘%”) = V2i + V2j + 5k, a(%”) = —V2i + V2j,

N
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Curves in Space and Their Tangents étal

Differentiation Rules

Differentiation Rules for Vector Functions
Let u and v be differentiable vector functions of #, C a constant vector, ¢ any
scalar, and f any differentiable scalar function.

1. Constant Function Rule: %C = ()

%[ﬂu(ﬂ] = cu'(f)
%[ﬂr)u(ﬂ] = f'(Hu(n) + f(Hu'@)

2. Scalar Multiple Rules:

3. Sum Rule: %[u{!] +v(H] =u'() + ¥

4. Difference Rule: %[u(r] —v(H] =u'(t) — v'(D)

5. Dot Product Rule: %[u(r] v(f)] = u'(O)-v() + ul®)-v'()
d
et
L lugtan] = £ owo)

6. Cross Product Rule: [u(®) X v(n] = u'(t) X v({r) + u(d) X v'(5)

7. Chain Rule:

Vector Functions of Constant Length

r(H)r() = [r(n]* = ¢
dr _

r 0.

dr
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Exercises

. = 1Y, Vi—1), 1 ] . sin 1, tan’ 1, P — 8
}1_1.1}[( In ¢ )1 (l_r)]+(tan Hk }E%[(T L+ sin2t 4 T \T ¥ 2 k

0 Givethe position vectors of particles moving along the curve in the xy-plane, find the particle’s velocity
and acceleration vectors at the stated times and sketch them as vectors on the curve.

Motion on the circle x? + y? = 1

r(f) = (sinni + (cosn)j;: = 7/4and7/2
=0+ Di+E-1Dj+ 2k, =1
O r(7) is the position of a particle in space at time 7. Find the angle between the velocity and acceleration vectors at time ¢ = 0.

— F
r(f) = (%r)i - (%r — lﬁri)j g_3r
T4
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@ As mentioned in the text, the tangent line to a smooth curve
r{f) = f(Hi + g(1)j + h(Dk at 1 = 1, is the line that passes through
the point (f(%y), g(#,), h(f,)) parallel to v(zy), the curve’s velocity vec-
tor at 7. In Exercises 23-26, find parametric equations for the line that
1s tangent to the given curve at the given parameter value 1 = 1.
r— 1

r() =lnri+——j+rintk, =1 x=0+1=t,y=0+31=31, and z=0+1 =1
{] I‘l‘z'] 0
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Integrals of Vector Functions; Projectile Motion
Integrals of Vector Functions

DEFINITION The indefinite integral of r with respect to ¢ is the set of all anti-
derivatives of r, denoted by f r{f) dr. If R is any antiderivative of r, then

f rit)dt = R(H + C.

DEFINITION If the components of r{f) = f(f)i + g(f)j + h(Hk are integrable
over [a, b], then so is r, and the definite integral of r from a to b is

b b b b
f r(f) dt = ( f £ ﬂ't)i + ( / z(t) dr)j + ( f hi(1) .:Ir)k.

i b
f r(f) dt = R{r}] = R(b) — R(a)

&
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Integrals of Vector Functions;

Projectile Motion 8)li_al
Integrals of Vector Functions
EXAMPLE 2

i+{r}j—[r1] k =axj— 7k
0 0

0

/ ((cos i + j — 2tk) dt = [sinr
0

EXAMPLE 3 Suppose we do not know the path of a hang glider, but only its accel-
eration vector a(t) = —(3cos )i — (3sinf)j + 2k. We also know that initially (at time 0.0

t = 0) the glider departed from the point (4, 0, 0) with velocity v(0) = 3j. Find the glid- x
er's position as a function of £.

@/Q //

a = “I—f = —(3cos Ni — (3sinnj + 2k Integrating . _ v(0) = 3j
dr ) V() = —(3sin )i + (3cosf)j + 2tk + C|.ommmmy C, = (.

v(0) = 3j and r(0) = 4i + 0j + Ok.

Integrating r(0) = 4i
C

— %= v(f) = —(3sin )i + (3cos Hj + 2rk. =mmmmd () = (3cos Hi + (3sin )j + Pk + C, o) C;

r(f) = (1 + 3cos Ni + (3sinnj + k.
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The Vector and Parametric Equations for Ideal

.. . 6jligJi :
Projectile Motion A
vy = (|wg]cos a)i + (|vy] sin a)j. Vo = (vg cos a)i + (v sin a)j. r, = 0i + 0j = 0. o
Newton’s second law of motion 7
d*r _ d’r . /|l sinas
m = —m = —r],
ar £] e— ir Z]- «
dr r=10at < |1f,;.| cos i
r = Iy and — = ¥, whent = 0 time ¢ = 0
clt a=—gj
. . - d )
The first integration gives o= —(gnj + vp. ;
. ] ] | (x. ¥)
A second integration gives r=—5gt] + Vof T K.
Ideal Projectile Motion Equation a= sl
1 r=uxi+yvj
r = (vycos a)i + ({uﬂ sin a}t — ngz) j- (5) .
l‘-]I | o
R
|

I
1 Honzontal range
Parametric Equations x = (ugcosa)t and  y = (uysina)t — Egr{

https://manara.edu.sy/
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The Vector and Parametric Equations for Ideal Projectile Motion

t = x/(v, cos a) g
E—) ¥ = _(

)_1—? + (tan a)x.

2ug” cos®a

Height, Flight Time, and Range for Ideal Projectile Motion
For ideal projectile motion when an object is launched from the origin over a
horizontal surface with initial speed vy and launch angle a:

: 2
sin
Maximum height: v = M
: - 2u,sin @
Flight time: ;= — D -
Uﬂz i : AP
Range: R = T sin 2a. r = (xo + (vpcos a))i + | yo + (vosina)t — 7" i,

https://manara.edu.sy/
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The Vector and Parametric Equations for Ideal Projectile Motion

EXAMPLE 4 A projectile is fired from the origin over horizontal ground at an initial
speed of 500 m/sec and a launch angle of 60°. Where will the projectile be 10 sec later?

vy =500, =60° g =98 and ¢t = 10

—) r = (vgcos a)i + ((Uu sin er)t — %grz)_j
= (5!}0)(%){10)1 + ((5!}0](?)10 — (%)(Qiaj(mm)j
~ 2500i + 3840j

https://manara.edu.sy/
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Projectile Motion with Wind Gusts
EXAMPLE 5 A baseball is hit when it is 3 ft above the ground. It leaves the bat with
initial speed of 152 ft/sec, making an angle of 20° with the horizontal. At the instant the
ball is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite

the direction the ball is taking toward the outfield, adding a component of —8.8i (ft/sec) to
the ball’s initial velocity (8.8 ft/sec = 6 mph).

(a) Find a vector equation (position vector) for the path of the baseball.
(b) How high does the baseball go, and when does it reach maximum height?

(e) Assuming that the ball is not caught, find its range and flight time.

vy = (vgcosa)i + (vgsina)j — 8.8i

= (152 cos 20° — 8.8)i + (152 sin 20%);

https://manara.edu.sy/
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Projectile Motion with Wind Gusts
The first integration gives dr = —(of)i
g g i (gt)) + vp.
A second integration gives r = —%gtzj + vyt + 1.
The initial position is 1y = 0 + 3j.  e—) r = (152 cos 20° — 8.8)fi + (3 + (152 sin 20°) — 1642)j.

(b) The baseball reaches its highest point when the vertical component of velocity is zero, or

= |.62 sec.

Iy ——
Y o 1526in20° — 32 = (), o—) = 12251020
di 32

Vmax = 3 + (152 5in 20°)(1.62) — 16(1.62)7 = 45.2 ft.

(¢) To find when the baseball lands, we set the vertical component for r equal to 0 and
solve for t:

3+ (152sin20° — 1677 = () o) t = 3.3 sec and r = —0.06 sec. v p = (152 cos 20° — 8.8)(3.3) = 442 fi.

https://manara.edu.sy/
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Exercises o
Solve the initial value problems
g = %(r + l)l-ﬂi + e 'j + #k ri0) =k r:[(Hl)yz—l}i+(l—e“)j+[l+ln[r+l)]k
‘% =—{+j+k r0 =10i+ 10j + 10k and i‘;—j =0 r = (-5 +10}i+(-5+10)j+(-5+10)K
ol =0 |

Flight time and height A projectile is fired with an initial speed
of 500 m /sec at an angle of elevation of 45°.

a. When and how far away will the projectile strike?

72.2 seconds 25,5102 m
b. How high overhead will the projectile be when it is 5 km
downrange? H020m
c. What is the greatest height reached by the projectile? 6378m

https://manara.edu.sy/
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Arc Length in Space
Arc Length Along a Space Curve

DEFINITION The length of a smooth curve r(f) = x()i + y(t)j + z(rk,
i = t = b, that is traced exactly once as ¢ increases fromt = atof = b, is

n’x dz
f \/ -I- (iﬂ) dt. (1)

Arc Length Formula

b
=f |v]de 2)

https://manara.edu.sy/
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Arc Length in Space it

Arc Length Along a Space Curve

EXAMPLE 1 A ghder 1s soaring upward along the helix r(f) = (cosi+
(sin 1)j + tk. How long is the glider’s path from r = O to t = 27?7

b 2
L :/ |v|dt = V(—sin1)? + (cos )% + (1)%dt
a 0

2ar
= / \/2dt = 2V/2 units of length
0

Arc Length Parameter with Base Point P(t;) ‘directed distance

s(1) =f VIX@ )]+ [Y@] + [£(n)] dr =/ v dr  (3)

Ig

https://manara.edu.sy/
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Arc Length in Space
Arc Length Along a Space Curve

EXAMPLE 2 This is an example for which we can actually find the arc length
parametrization of a curve. If f; = 0, the arc length parameter along the helix

rif) = (cos i + (sinf)j + tk

s(1) =f [ v(T)| dr = Va2

ﬂf r{f(s)) = (Eﬂs ?)i (sm ? j + ?k

https://manara.edu.sy/
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Arc Length in Space s 8)liaJ

Speed on a Smooth Curve (i

= [v(n]

Notice that ds/dt > 0 since, by definition, |v| is never zero for a smooth curve. We
see once again that s 1s an increasing function of ¢.

Unit Tangent Vector T = v
‘r
If the position vector change with respect to arc Iength| E
de _drdt _ 1 _ v _ ..
ds  drods ]‘F] ]‘F‘

EXAMPLE 3 Find the unit tangent vector of the curve

r(f) = (1 + 3cosnNi + B3sinnj + £k

v=%=—{35int}i—|—(3::c-st]j+21k —) |v| = V9 + 412
L 3sinft 3cost

T=——

. 21
= — 1+ + k.
v| Vo taz VB tar) Vot an

https://manara.edu.sy/
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@ Find the curve’s unit tangent vector. Also, find the length of the indicated portion of the curve.

r(f) = (tcos i + (¢sinOj + (2V2/3)PPk, 0 =<1 =7 (st (sascou) (202 ) Zir

t+1 41 £+l

@ Find the point on the curve
r(f) = (5sini + (5cost)j + 12tk

at a distance 267 units along the curve from the point (0, 5, 0) in

the direction of increasing arc length. (0,5,247)

@ find the arc length parameter along the curvefrom the point where ¢+ = 0 by evaluating the integral

)
5 = / |v(7)| dr
Ji

Then find the length of the indicated portion of the curve.

b T

r(f) = (cost + tsin i + (sint — fcosf)j, w2 =t=mx

https://manara.edu.sy/
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Curvature of a Plane Curve

DEFINITION If T is the unit vector of a smooth curve, the curvature function
of the curve is

dT

K= |—
s

Formula for Calculating Curvature
If r(#) is a smooth curve, then the curvature is the scalar function

1
[v]

e T

K —
dt

; (1)

where T = v/ |v| is the unit tangent vector.

https://manara.edu.sy/
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C u rve T
Curvature of a Plane Curve

EXAMPLE 2 Here we find the curvature of a circle. We begin with the parametriza-
tion

r(f) = (acos i + (asin 1]

dr . .
v = I = —(asin i + (acos i) —) |"r| = '-.,.‘,-"{_ﬂ sin 1)° + (a cos 0= Val = |ﬂ| = a

v . -
T= m = —(sin i + (cos 0] > % = —(cos )i — (sinf)j —) ‘% = Veos’t + sin’t = 1
_dldr| 11 1
K v | dt a) =3 = Lais

https://manara.edu.sy/
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Curvature and Normal Vectors of a Curve
Curvature of a Plane Curve

DEFINITION At a point where x # 0, the principal unit normal vector for a
stmooth curve in the plane is

1 s
N = E% N
Pot =

Formula for Calculating N
If x(¢) 1s a smooth curve, then the principal unit normal is

_ dT/di
|dT /dt|’

(2)

where T = v/|v| is the unit tangent vector.

https://manara.edu.sy/
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Curvature and Normal Vectors of a Curve
Curvature of a Plane Curve

EXAMPLE 3 Find T and N for the circular motion
r{f) = (cos 20)i + (sin 21)j.

v=—(2sin20i + (2 cos 2f)j == |y| = \/45in?2¢ + 4 cos’2t = 2

T

‘r - - -
T = |T = —{:SII'] EI‘}I - (CCI'S Efl] ——) E = —[E cCOs Et}i — (E s1n Ef]j
T et
— |41 _ VAcost2t + 4s8in2f =7 o) N = / = —(cos 20i — (sin 2t)j
dt |dT /]

https://manara.edu.sy/
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Curvature and Normal Vectors of a Curve
Circle of Curvature for Plane Curves
Circle of

The circle of curvature or osculating cirele at a point P on a plane curve where x 7 0 is l
. . . curvature
the circle in the plane of the curve that

Center of
curvature

1. is tangent to the curve at P (has the same tangent line the curve has)

Curve

Radius of
curvature

2. has the same curvature the curve has at P
3. has center that lies toward the concave or inner side of the curve (as in Figure 13.20).

The radius of curvature of the curve at P is the radius of the circle of curvature,

Radius of curvature = p = % C=r (to) 4+ p(tO)N (to) Center of Curvature

The center of curvature of the curve at P is the center of the circle of curvature.

https://manara.edu.sy/
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Curve e
Circle of Curvature for Plane Curves

EXAMPLE 4 Find and graph the osculating circle of the parabola y = x* at the
origit.
r(f) = ti +

dr _ . . _
¥ = if_l.f‘ =1+ Ef_] —) |1?| = ] + 4;1 GREHE:.ICI;E\
T = ﬁ = (1 + 4272 + 2001 + 42)772j
v
% —41(1 + 4°2)3P1 + [2(1 + 42)712 — 841 + 4£2) 32§
— 2l = 1
<) = o m}l Lo )‘ {|m + 2§ = (1)

s the radius of curvature is 1 /x = 1/2 =) Thus the center of the circle is (0, 1/2)

oo - ()

https://manara.edu.sy/
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Curvature and Normal Vectors of a Curve
Curvature and Normal Vectors for Space Curves

z
-~

1 dT/dt
N = LdT /

gl =
k ds  |dT/dt|

K =

EXAMPLE 5 Find the curvature for the helix (Figure 13.22)
r(f) = (acosf)i + (asinf)j + btk, a,b=0, a + b #N0.

v 1 N .
T = —({asm + (acos )] + bk
M- Veiz bk |
o=+ [dl}_ a If b= 0, the helix reduces to a circle of radius a and its
v ldt| o+ P curvature reduces to 1 /a
dT/dt . . - : i :
N = = —(cos i — (sin 1j. If a= 0, the helix becomes the z-axis, and its curvature
|dT [d reduces to 0,

Thus, N is parallel to the xy-plane and always points toward the z-axis.

https://manara.edu.sy/
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EXxercises o
@ Find T, N, and « for the plane curves
r(if) = (Inseci + tj, —w/2<1<w/2 (sint)i+(cost)j (cost)i—(sint)j cost.
@® Find an equation for the circle of curvature of the curve 22 2
(x=5) +»7 =1

r(f} = ti + (sin #)j at the point (7 /2, 1). (The curve parametrizes
the graph of ¥ = sin x in the xy-plane.)

https://manara.edu.sy/
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Acceleration it

The TNB Frame

DEFINITION If the acceleration vector is written as
a = ayT + ayN, (1)
then

d’s _ d ds\’
ap = ﬁ = EM and  ay = x(d—i) = k|v|? ()

are the tangential and normal scalar components of acceleration.

https://manara.edu.sy/
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Tangential and Normal Components of Acceleration

_dv _dfds\ _d%s..  dsdT _ d%..  ds{dTds\ _ d’ dsf . .ds
____(T_)_?T+Eﬁ_dr1T+d:(dxdr =2 Tt a\ Ny

Formula for Calculating the Normal Component of Acceleration

ay = V[a[> — ar 3)

https://manara.edu.sy/
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Tangential and Normal Components of Acceleration

EXAMPLE 1 Without finding T and N, write the acceleration of the motion
ri(f) = (cost + tsin )i + (sint — fcos 1)j, t =0

in the form a = a;T + ayN.

vy = ‘:;_'; =(t cos Hi + (¢ sin 1))

lv| = VP cos?t + Lsin®t = VP = |i| =1

i d
ap = 2|V =20 = 1.

a = (cost— tsinOi + (sint + fcos Nj la]? = ¢

ri}q:‘l.,_,."{al—ﬂ,rl = [
a =y + N = + (f = + tN.
1 N (DT + (1N T N

N RPE)

https://manara.edu.sy/



[

E——)

B |
ds

ﬁjwl

Torsion o
B .!'I[T X N) 4T N (dT/ds) X N=10 JB
ab _ ¢ _ AN ) ab _ dN
ds ds " ds XN+ TX ds ds T x ds
d_B_B =0 ) d—BJ_ B —d_BJ_(T,B) me) /B /ds is parallel to N,
ds ds ds

dB _

I ™.

DEFINITION Let B = T X N. The torsion function of a smooth curve is

__JB'
T= N.

(4)

The torsion

at Pis —(dB/ds) « N. A

=10

/

F
R\, // The curvature at P

4

//)ﬂf Is |{ded-"_:|'| .
- T

https://manara.edu.sy/
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The three planes determined by T, N, and B are named and shown in Figure 13.28.
The curvature k = |dT/ds| can be thought of as the rate at which the normal plane turns
as the point P moves along its path. Similarly, the torsion 7 = —(dB/ds) - N is the rate at
which the osculating plane turns about T as P moves along the curve. Torsion measures
how the curve twists.

Binormal

Rectifyin
ying Normal plane

Plﬂy-a-_%_ /
B/

/
Ly / g Principal

"'|-|.|_|_‘_‘_‘_‘_

P\

A T Osculating plane

Unit tangent

https://manara.edu.sy/
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Formulas for Computing Curvature and Torsion O)tiall

2 3
vXa= (%T) ET*_'*“T + (j;) H] (i,;‘j ‘){T X T) + x(‘”) (T X N) = x(‘iﬁ) B.

3
v X a| = f"‘*‘ IB| = «|v|*
Vector Formula for Curvature
lv X a] S
Formula for Torsion
Xy oz
= ifvxa#0 6
T v % a]’ ( ) (6)

https://manara.edu.sy/
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EXAMPLE 2 Use Equations (5) and (6) to find the curvature x and torsion 7 for the
helix

r(f) = (@cos Hi + (asinHj + btk, a,b=0, &+ #0.

v=—(asinf)i + (acost)j + bk

—(a cos i — (a sin £)j

i i k
vXa=|—agsint acost b| = (absinti — (abcost)j + 'k
—acost —asint ()

H=|‘rx3|=ﬁﬂlb;}+ﬂ4=nvg1+bz= a
v} (a2 + )3 (2 + ) 2+

. _ da o . x ¥y oz —asint acost b
a = — = (asinfi — (acos 1] . _
dt Xy oz —acost —asint 0
Xy z asint —acost 0 b
T = = =
lv X al? {nm}l at + I

https://manara.edu.sy/
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Computation Formulas for Curves in Space

Unit tangent vector:

Principal unit normal vector:

Binormal vector:

Curvature:

Torsion:

Tangential and normal scalar
components of acceleration:

T =
|v]
_ dT/dr
|dT [ di|
B=TXN
o |ex| _ v xal
s |1,r|3
Py oz
iy Z
dB Xy z
T=—"——"" =
els lv X al?
a = HTT =+ HNN
arp = £|v|
T

ay = k|v[> = V]a]* — a?

https://manara.edu.sy/
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Exercises
@ write a in the form a = arT + ayN without finding T and N

r(t) = (e'cos1)i + (e'sinr)j + V2e'k, 1 =10 a(0) = 2T + 2N

@® findr, T, N, and B at the given value of 7. Then find equations for the osculating, normal, and rectifying planes at that
value of 1.

rif) = (cos )i + (sinn)j — k, 1= w/4 (=sint)i+(cost)i  (~cost)i—(sinf)] K B N

@ find B and 7 for these space curves.

r(r) = (6sin2ni + (6cos 2nj + rk

(%cnszr)i—(%sinli]'—%k =10
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