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* F'unctions of Several Variables e
e Limits and Continuity in Higher Dimensions
e Partial Derivatives
* The Chain Rule
* Directional Derivatives and Gradient Vectors
e Tangent Planes and Differentials
e Ixtreme Values and Saddle Points
e Lagrange Multpliers
e Taylor’s Formula for Two Variables

e Partial Denvatives with Constrained Variables
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Estimating Change in a Specific Direction O)tiall

Estimating the Change in f in a Direction u
To estimate the change in the value of a differentiable function f when we move
a small distance ¢ from a point F; in a particular direction u, use the formula
df = (Vflp, w ds
B
Directional Distance
dernvative Increment

EXAMPLE 4 Estimate how much the value of
flx,y,2) = ysinx + 2yz

will change if the point P(x,v,z) moves 0.1 unit from Fy0, 1,0) straight toward
Fi(2,2,-2).
mE BP o |
n= — =t =3i+lj—gk. Vil o= (ycosx)i + (sinx + 2z)j + 2yk)
BRI 2333

[

2 4_ 2

=i+ 2k.

vf
\l -

Py(2.2,—2) o‘( ‘I-z

"T*'flpn-u = (i+ 2k)- (gi + %j — %k) =373~ 73 ) = (Vf|p, - u)ds) = (—%)(111} = —0.067 unit.
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How to Linearize a Function of Two Variables =

DEFINITIONS The linearization of a function f(x, ¥) at a point (xy, yo) where
f is differentiable is the function

L(x, y) = f(xo, Yo} + flxo, yodx — xg) + fylxo, 3oy — o). ‘ 1
The approximation S
flx,y) = Lix,») N

is the standard linear approximation of f at (x, ¥).

EXAMPLE 5 Find the linearization of

fix,y) = 22 — xy + %}.1 + 3 at the point (3, 2).

f3.2)=8 f(3.22=4  [(3.2) =—1

The linearization of fat(3,2)is L{x,y) = 4x — vy — 2

https://manara.edu.sy/
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The Error in the Standard Linear Approximation

If f has continuous first and second partial derivatives throughout an open set
containing a rectangle R centered at (xp, yg) and if M 1s any upper bound for the
values of l» and | f,| on R, then the error E(x, y) incurred in replacing
f(x, ¥) on R by its linearization

Lix, y) = f(xg. yo) + fulxo, ¥o)x — xp) + filxo, 3o)(y — o)

satisfies the inequality

1 2
1B | = SM(1x — x| + [y — 3l)"

Differentials

DEFINITION If we move from (xp, ¥p) to a point (x5 + &, yg + ¢v) nearby,
the resulting change

df = fdxo, yo) dx + fy(xg, yo) dy

in the linearization of f is called the total differential of f.

https://manara.edu.sy/
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EXAMPLE 6 Suppose that a cylindrical can is designed to have a radius of 1 in. and
a height of 5 in., but that the radius and height are off by the amounts dr = +0.03 and
dh = —0.1. Estimate the resulting absolute change in the volume of the can.

V=arh, =) AV = dV = Vi, hy) dr + Vi(ry, hy) dh

dV = 2arhg dr + w2 dh = 25(1)(5)(0.03) + 7(1)%(=0.1)
= 037 — 0.l = 027 = 0.63 in?

https://manara.edu.sy/
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Functions of More Than Two Variables

1. The linearization of f({x, v, z) at a point Fy(xg, yg. zo) 18
Lix,y,2) = f(R) + fR)x — xp) + f(F)y — yo) + fAPo)z — o)

2. Suppose that R is a closed rectangular solid centered at F, and lying in an open region
on which the second partial derivatives of f are continuous. Suppose also that
\fecls | Fiels | £l | Fusls | Fz|s and | f,| are all less than or equal to M throughout R.
Then the error E(x, vy, z) = f(x, v, .:] — L{x, v, z) in the approximation of f by L is
bounded throughout R by the inequality

k] a

2

I
|El = 5M(1x — x| + |y — 30l + [z — al)

3. If the second partial derivatives of f are continuous and if x, y, and z change from
Xy, ¥o, and zp by small amounts dx, dy, and dz, the total differential

df = fulRy) dx + f{R)dy + fARy) dz

gives a good approximation of the resulting change in f.

https://manara.edu.sy/
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EXAMPLE 8 Find the linearization L{x, v, z) of
flx,y,2) = x> — xy + 3sinz

at the point (xy, ¥y, Zo) = (2. 1, 0). Find an upper bound for the error incurred in replacing
f by L on the rectangular region

R: [x—2|=001, |yv—1]=002 |z =00L

f(2,1,0) = 2, 2, 1,0) =3 {2, 1,0) = =2, fA2,1,0) = 3,

Ly, ) =24+3x—D+ Dy — 1) +3z—0)=3x — 2y + 3z — 2.

fa=2  fu=0, fo=-3sinz, fo=-1, fo=0, f.=0 mmp

E| = %(zy(u.m + 0.02 + 0.01)? = 0.0016.

https://manara.edu.sy/
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Exercises

@ find equations for the (a) tangent plane and (b) normal line at the point £, on the given surface.

2 2 2
¥+ ¥y +==3 R[RLLI x+y+z=3 x=1+2t, y=1+2t,z=1+2t

@ find parametric equations for the line tangent to the curve of intersection of the surfaces at the given point.

Surfaces: x + yv* + 2z =4, x=1  Poin: (1,11

Tangent line: x =1, y=1+2¢, z=1-2¢

@ By about how much will f(x, v, ) = Invx? + _-!,.1 + -2 change if the point P(x, y, z) moves from Fy(3, 4. 12) a distance of

ds = 0.1 unit in the direction of 3i + 6j — 2k? df = (V) ds = (555 (0.1) ~ 0.0008

@ find the linearization L{x, v, ) of the function f(x, v, z) at F;. Then find an upper bound for the magnitude of the

error £ 1n the approximation f{x, v, z) = L{x, v, z) over the region K.
fe,v,zy=xz— 3w+ 2 at Fyl, 1, 2),
R: |x—=1| =001, |y-1| =001, |z-2| =002 I—6y-22+46 M =3

|E(x, v, )| = 0.0024

https://manara.edu.sy/ .
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Extreme Values and Saddle Points
Derivative Tests for Local Extreme Values

DEFINITIONS Let f(x, y¥) be defined on a region R containing the point (a, b).
Then

1. f(a, b) is a local maximum value of f if f(a, b) = f(x, y) for all domain
points (x, ¥) in an open disk centered at (a, b).

2. f(a, b) 1s a local minimum value of f if f(a, &) = fix, y) for all domain
points (x, y) in an open disk centered at (a, b).

THEOREM 10—First Derivative Test for Local Extreme Values

If f(x, ¥) has a local maximum or minimum value at an interior point (a, b) of
its domain and if the first partial derivatives exist there, then f (a, ) = 0 and
fla,b) = 0.

Local maxima
(no greater value of f nearby)
;

7 N

T

T

Local minimum
(no smaller value
of f nearby)

https://manara.edu.sy/
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Extreme Values and Saddle Points ‘:'JU—D-”

point of 1.

DEFINITION An interior point of the domain of a function f(x, ¥) where both
fr and f, are zero or where one or both of f, and f, do not exist is a critical

DEFINITION A differentiable function f(x, v) has a saddle point at a critical
point (a, b) if in every open disk centered at (a, b) there are domain points (x, ¥)
where f(x, v) > f(a, b) and domain points (x, y) where f(x,y) << fia, b). The
corresponding point {(a, b, f(a, b)) on the surface z = f(x, y) is called a saddle
point of the surface (Figure 14.45).

".f % "’II[/

LTI
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I
o

EXAMPLE 1 Find the local extreme values of f(x,y) = x> + 3y — 4y + 9 :
f=2x=0 and f, =2y—4=0. HEEE) the critical point (0, 2) 2
10}- )
f(x,y):x2+(y—2)2+525 sk _,1’/
o | g | ;
mmm) The critical point (0, 2) gives a local minimum L I 2 3 47
11
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Extreme Values and Saddle Points 6)liaJl

EXAMPLE 2 Find the local extreme values (if any) of f(x, y) = y* — x°.

f,=-2x=0 and f =2y =0 mmmp The critical point (0,0)
Along the positive x-axis f (x,0)=—x*<0
Along the positive y-axis f (0, y ) =y*2>0

The function has a saddle point at the origin and no local extreme values

THEOREM 11—Second Derivative Test for Local Extreme Values
Suppose that f(x, y) and its first and second partial derivatives are continuous
throughout a disk centered at {(a, &) and that f (a, b) = fy(a, by = 0. Then

i) f has a local maximum at (@, b) if f < Oand f_f,. — A},E = 0 at (a, b).
ii) f has a local minimum at (&, b)if f__ > Oand f_f,  — f.2 = 0at(a,b).
iii) f has a saddle point at (a, b) if f, f. — A},E < Qat(a, b).

iv) the test is inconclusive at (a, b) if f_, fo — _flj,z = 0 at (a, b). In this case,
we must find some other way to determine the behavior of f at (a, b).

https://manara.edu.sy/
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Extreme Values and Saddle Points Siea
The expression f_ -fr:-' = _fxf is called the discriminant or Hessian of f. It is some-
times easier to remember it in determinant form,

foo o
fo fol

Fefyy — fI}'I = ‘

EXAMPLE 4  Find the local extreme values of f(x, ¥) = 3y* — 2y° — 32 + 6xy.
10

fe=6y—6x =10 and fy =6y — 6y* + 6x = 0. i r \

‘ ‘\‘_ 3 "B\
mmm) The critical points  (0,0), (2,2) L / /\\iﬁ"*
S N
oo = —6, fow = 6 — 12y, fw = 6. L — A li \

— D (O, O) =—-72 <0 the function has a saddle point at the Brigin

D =f,f, —f2=72(y ~1)—i

XX yy

>»D(2,2)=72>0, f

U XX

(0,0)=—6 <0 the function has a local maximum value
f(2,2)=8

https://manara.edu.sy/ =
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Absolute Maxima and Minima on Closed Bounded Regions

1. List the interior points of R where f may have local maxima and minima and evaluate
f at these points. These are the critical points of f.

2. List the boundary points of R where f has local maxima and minima and evaluate f at
these points. We show how to do this in the next example.

3. Look through the lists for the maximum and minimum values of f. These will be the
absolute maximum and minimum values of f on R.

EXAMPLE 6 Find the absolute maximum and minimum values of

fla,y) =2 + 2x + 4y — 22 — y?
on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, and
y=9—nx

(a) Interior points.
fi=2—-2x=0, f =4—2y=0 mmm) The critical point (1 2)

f(1,2) = 7.

A9, )

https://manara.edu.sy/
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Extreme Values and Saddle Points T 1
(b) Boundary points.
i) On the segment OA, y = (. flr,y) = flx,0) = 2 + 2x — a2 D=y=20
f(0.0) =2 f(9,0)=2+ 18 — 81l = —61 x
Atthe interior points ¢y, 0) =2 — 2x = 0. EEE) y = |

flx,0) = f(1,0) =3 DT_. y=0 A(9, 0)

ii) On the segment OB, x = () fle,v) = fl0,v) =2 + 4y — 32

F0,0) =2,  f0,9) = —43

f'(0y)=4-2y=0 =) y-2 mmm) £0,2) =06

https://manara.edu.sy/ =
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Extreme Values and Saddle Points e

iii) We have already accounted for the values of f at the endpoints of AB.

at the interior points of the line segment AB. With v = 9 — x

fr ) =2+2x+409 —x) — 22— (9 — x> = —43 + 16x — 242

) f'(x,9 —x) =16 —4x =0 ) =4

fla,y) = f(4.3) = —1L

(L2) the function has a maximum value f (1,2)=7

(9,0) the function has a minimum value f (9,0) =-61

https://manara.edu.sy/ &
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T Girth = distance

{ around here

EXAMPLE 7 A delivery company accepts only rectangular boxes the sum of whose
length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions

of an acceptable box of largest volume.
Let x, v, and z represent the length, width, and height of the rectangular box

V= xvz x + 2y + 2z = 108

W(y,2) = (108 — 2y — 2z)yz = 108yz — 2y%z — 2y7’
Vi(y,2) = 108z — 4yz — 2z = (108 — 4y — 22)z =0
Viy,z) = 108y — 2y* — dyz = (108 — 2y — 4z)y = 0
Viy =—4z, Vo=—4y, V, =108 — 4y — 4z ViyVie — V.2 = 16yz — 16(27 — y — 2)°

the critical points (0, 0), (0, 54), (54, 0), and (18, 18)

Vy(18,18) = —4(18) < 0 wmmhp (v v — v, 2) = 16(18)(18) — 16(—9)> > 0

(18, 18)
mmm) (18, 18) gives a maximum volume
x = 108 — 2(18) — 2(18) = 36in.,y = 18in., and z = 18

=) Y = (36)(18)(18) = 11,664 in%, or 6.75 ft3

https://manara.edu.sy/ L
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Exercises o
@ Find all the local maxima, local minima, and saddle points of the functions
flx.v)=x"4+xv+ v +3x—3v+ 4 (=3, 3) local minimum
(=2,1) saddle point

flx, Vi =24+ xy+ 30+ 2y + 5

@ Find the absolute maxima and minima of the functions on the given domains

f(x,¥) = (4x — x*) cos y on the rectangular plate 1 = x =3 -nw/d =y =7/4

Theretore the absolute maximum js 4 at (2, 0) and the absolute minimum is 3"'r_ (3, —%), (3, ’E), (1, —%), and (1, E)‘

@ Find two numbers ¢ and » with a =< b such that
/ (6 — x — x?) dx
a=-3 and b=2.

has its largest value.

@ Find the point on the plane 3x + 2y + z = 6 that is nearest the origin.
@ A rectangular box is inscribed in the region in the first octant bounded above by the plane with x

local minimum of d(% % %):%

intercept 6,

y-intercept 6, and z-intercept 6.

local maximum of ¥(2,2,2)=8

https://manara.edu.sy/ =
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Lagrange Multipliers

The Method of Lagrange Multipliers

THEOREM 12—The Orthogonal Gradient Theorem
Suppose that f(x, y, ) i1s differentiable in a region whose interior contains a
smooth curve

C: () = x(H + ¥(j + z(Hk.

If By is a point on C where f has a local maximum or minimum relative to its
values on C, then Vf is orthogonal to C at F.

COROLLARY At the points on a smooth curve r(f) = x()i + y(f)j where a
differentiable function f(x, y) takes on its local maxima and minima relative to
its values on the curve, Vf+«r’ = 0.

https://manara.edu.sy/
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Lagrange Multipliers

The Method of Lagrange Multipliers

The Method of Lagrange Multipliers

Suppose that fix,y,z) and g(x,v, z} are differentiable and Vg # 0 when
glx, v, z) = 0. To find the local maximum and minimum values of f subject to
the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and A that
simultaneously satisfy the equations

Vf=AVg and glx,y,z) = 0. (1)

For functions of two independent variables, the condition is similar, but without
the vanable z.

https://manara.edu.sy/
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Lagrange Multipliers

EXAMPLE 3 Find the greatest and smallest values that the function

kes on the elli 2y Jlwy) =
takes on the ellipse AT
P 2 + 3 1 o
We want to find the extreme values of f(x, ¥) = xy subject to the constraint  g(x, y) = “‘E_ + }E — 1 =10
Vi=AVg and  glxy) = —} vi+xj= %xi + i,
2
y = %_T, x = Ay, and =7 {:h}} }L , mmm)p y=0ordA= 12

Case1: If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, v # (.
Case2: If y# 0, then A = £2 and x = 1T 2y.

) g(xy) =0 ~(+2}) ——l )

The function f(x, ¥) = xy therefore takes on its extreme values on the ellipse at the four
points (=2, 1), (£ 2, —1). The extreme values are xy = 2 and xy = —2.

o

Ir-l
+
Yt

I
Fa

(1
b

https://manara.edu.sy/
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Lagrange Multipliers with Two Constraints S

vf = "'—vgl + F‘vgiﬂ SI{I: J"ri :':-] = D'r 32[—1_! ¥, E) =0 {2]

EXAMPLE 5  The plane x + y + z = 1 cuts the cylinder x* + y*> = 1 in an ellipse
(Figure 14.59). Find the points on the ellipse that lie closest to and farthest from the origin.

2

f{-r‘.- }'11 :"'_} = X —|— .11 _|_ EI

-

gilny.g) =x +y ' —1=0

——— »

olr.ypz)=x+y+z—1=0
‘ Cylinder x> + y> = |
F |

)
’
!

Vi=AVg + uVg
\ §
\\"x,
) 2x=2Ar+p,  2y=20y+p  2z=p N e
T |

2y=2Ax + EE="{1 - .l;'l.}.l' = Z. Plane

‘ _ x+y+z=1
A 3

2y =2y + 2z=(1 — A)y =

=l
w

https://manara.edu.sy/ 2
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Lagrange Multipliers A=1and - =0
2r =20 + 2z=> (1 — A)x = l
= sy m sy = A#1and x=y=z/1— )
Ifz=0 m) (1,0,0)and (0, 1. 0) S
»+y—1=10 ‘ _T=i\*;_ﬁ
If x =y —> <|: >
P
x+tx+z—1=0 mmmp z=17F V2 h
———
(1,0.0) o

P1=({\'rl—\.f§) and P2=(_V!_ {1-:—\/_)

20 27 27
2 7 f] f_zf f}

f (1,0,0)=1, f (0,1,0)=1, f{ 1.172,f(

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0)

The point on the Ellipsa.-a farthest from the origin is P.

6.83

(8]

l Cylinder x + y-= 1
(0. 1.0)
Plane
xt+ytz=1

https://manara.edu.sy/
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Exercises

@ Find the dimensions of the closed right circular cylindrical can of smallest surface area whose volume is 167 cm?

=2 h=4 247 cm?

@ Find the extreme values of the function f(x, v, z) = xy + z* on the circle in which the plane

v — x = 0 intersects the sphere x* + v* + 27 = 4.

Therefore the maximum value of fis 4 at (0, 0, +2) and the minimum value of fis 2 at f(i-u@ iu@, I])

@ A space probe in the shape of the ellipsoid  4x? + y? + 472 = 16

enters Earth’s atmosphere and its surface begins to heat. After 1

hour, the temperature at the point (x, y, z) on the probe’s surface is  T(x, v, 7) = 8x*> + 4yz — 16z + 600.

+4 _ _i)
(_31 3 3

Find the hottest point on the probe’s surface.

L | s

https://manara.edu.sy/ 2
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Exact Equations B —

Definition 241  Exact Equation

A differential expression M(x, y) dx + N(x, y) dy is an exact differential in a region R of the

xy-plane if it corresponds to the differential of some function f(x, y). A first-order differential
equation of the form

M(x, y)dx + N(x, y)dy = 0

is said to be an exact equation if the expression on the left side is an exact differential.

Theorem 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial derivatives in a rect-
angular region R defined by a << x << b, ¢ < y < d. Then a necessary and sufficient condition
that M(x, y)dx + N(x, v)dy be an exact differential is

oM _ N

dy dx

(4)

https://manara.edu.sy/
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df (x,y):a—dx +@dy M (x,y)dx +N (x,y )dy

Integratlon T l
j M (x,y )dx +

of
(’iyfiyI

f(x

X,y )dx +g'(y)
Integration vy

) g(y)
y)=C

https://manara.edu.sy/
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EXAMPLE 2xydx +(x2=1)dy =0
M (x,y)=2xy ,N (x,y)=x°-1
oM O(2xy) oy
- oM  ON  Exact Equation

oy oy BN _
ON :5(X2—1):2X oy OX

OX OX -

0f 0f 2 af 2 ' 2
—=2Xy , —=x"-1 —=X"+ =Xx"-1
- =2 & X ) 5 g'(y)
lIntegratlon T l

f(x,y)= Xy+g(y) g'(y)=—1 ) g(y)=-y

f(X,y)=X"y —y mmmp x2y — y—c‘)/—

https://manara.edu.sy/
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, ¥ (0)=2

An initial value problem

EXAMPLE

>

(cosx sinx —xy 2)dx +y (1-x?)dy =0
M (x,y)=(cosxsinx —=xy?),N (x,y )=y (1-x?)
oM O(cosx sinx —xy ?)

N =-2xy
oM  ON
oy @>2’ ] —=—_——  Exact Equation
oN oy (1-x?)) oy  OX
OX OX -

https://manara.edu.sy/
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i =COSX SiNX —Xy > ——y(l x2) ouol

\ Integratlon Y
l y 2 (1-x?)+h(x)

6 — =-Xy “+h’(x) =cosXx sinx —xy ‘ h'(x ) =cosx sinx
X

=) h(X)= jcosx sin x .dx _—%cos X
) f (X y) y 2 (1- XZ)——COS X —) y 2(1=x?)=cos®x =

(2)2(1—(0)2)—c0520=C =) C =3
) y2(1-x2?)—cos’x =3

https://manara.edu.sy/
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Nonexact Equations and Integrating Factor
cM ON :
7 =) Nonexact Equation
oy  OX

(X, y )M (x,y)dx +u(x,y )N (x,y)dy =0  Exact Equation
—)  pM,+ M = pN, + p N

Finding an Integrating Factor

(M, -N,) (5N

1 yN = p(x) a—p (X)) = S

(N, —M (N M, )

¢-— y)=w(y)‘ u(yy=e "

https://manara.edu.sy/
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xydx +(2x 2 +3y ?—20)dy =0

EXAMPLE

M (x,y)=xy , N (x,y)=2x*+3y*-20

oM _a(xy)_x
chy 8(523;(2 37 20) _ %;tﬁ Nonexact Equation
. — T y _ = 4X @y 5X
OX OX -
(My—NX)_ X —4x B —3X oy x
N 2x2+3y*-20 2x*+3y*-20 v
(N, -M,) 4x-x 3x 3
X y — = = =
vy xy y Y

https://manara.edu.sy/
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~d .
Y :ejy ! _ B3y _aly® _ y3 Integration Factor

xydx +(2x 2 +3y ?—20)dy =0

lxu(y)=y‘°’

xy “dx +(2x 2y ®+3y°—20y*)dy =0

u(y)=e

M (x,y)=xy* N (x,y)=2x%y°+3y°-20y°

oM 5(xy4) 3 |
8y } ay :4Xy L aM _ aN Exact Equation
ON _8(2x2y3+3y5—20y3):4xy3 - oy O
OX OX .

https://manara.edu.sy/
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af = i—ZX °+3y°-20y°

Integratlon T
—_2x +9'(y)=2x°y°+3y° -20y°

f(x,y) _—x vi+g( .
g(y) 3y~ —20y —;g(y)——y -5y

1 1
f (x,y):§x2y4+§y6—5y4 —) %x2y4+%y6—5y4=0
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Exercises B A—

(siny —ysinx)dx + (cosx +xcosy —y)dy =0

® Determine whether the given differential equation is exact. If it is exact, solve it.

~? =c.

b =

rsiny + ycosr —
Y _
(1 + Inx + ;)dx = (1 — Inx) dy

—y+ylhzr+zlhnhzr=c
® Solve the given initial-value problem.

3y — 12\ d
CL?JE+
y

£ 3 _ 5
— =) 1n=1 1!}’1 ?yz N 1
a2yt .y
( L ny) by + sinx), ywO) =1

COosxX — -— = 51nx =
1+ y? dx o > Y

.;:g,.r2 — yoosT — tan™? y=-—1-—

® Solve the given differential equation by finding an appropriate integrating factor.

2
cosxdx + (1 + ;) sinxdy = 0

r-—*l::l

cse x In(sinz) +y +Iny* =c.
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Exercises

0% +xy) dx + (5y° — xy + ¥’ siny) dy = 0

(—xysinx + 2ycosx) dx + 2xcosxdy = 0;  p(x,y) = xy

[

1/y°. z/y+ 322 +5n|y| — cosy = c.

IEyz COsST = C.
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