

MATHEMATICAL ANALAYSIS 2

Lecture

Prepared by

Dr. Sami INJROU

- Functions of Several Variables
- Limits and Continuity in Higher Dimensions
- Partial Derivatives
- The Chain Rule
- Directional Derivatives and Gradient Vectors
- Tangent Planes and Differentials
- Extreme Values and Saddle Points
- Lagrange Multipliers
- Taylor's Formula for Two Variables
- Partial Derivatives with Constrained Variables

Estimating Change in a Specific Direction

Estimating the Change in f in a Direction u

To estimate the change in the value of a differentiable function f when we move a small distance ds from a point P_0 in a particular direction \mathbf{u} , use the formula

$$df = \underbrace{(\nabla f|_{P_0} \cdot \mathbf{u})}_{\text{Directional Distance}} \underbrace{ds}_{\text{derivative increment}}$$

EXAMPLE 4 Estimate how much the value of

$$f(x, y, z) = y \sin x + 2yz$$

will change if the point P(x, y, z) moves 0.1 unit from $P_0(0, 1, 0)$ straight toward $P_1(2, 2, -2)$.

$$\mathbf{u} = \frac{\overrightarrow{P_0P_1}}{|\overrightarrow{P_0P_1}|} = \frac{\overrightarrow{P_0P_1}}{3} = \frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}. \quad \nabla f|_{(0,1,0)} = ((y\cos x)\mathbf{i} + (\sin x + 2z)\mathbf{j} + 2y\mathbf{k})\Big|_{(0,1,0)} = \mathbf{i} + 2\mathbf{k}.$$

$$\nabla f|_{P_0} \cdot \mathbf{u} = (\mathbf{i} + 2\mathbf{k}) \cdot \left(\frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}\right) = \frac{2}{3} - \frac{4}{3} = -\frac{2}{3} \implies df = (\nabla f|_{P_0} \cdot \mathbf{u})(ds) = \left(-\frac{2}{3}\right)(0.1) \approx -0.067 \text{ unit.}$$

How to Linearize a Function of Two Variables

DEFINITIONS The **linearization** of a function f(x, y) at a point (x_0, y_0) where f is differentiable is the function

$$L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

The approximation

$$f(x, y) \approx L(x, y)$$

is the standard linear approximation of f at (x_0, y_0) .

EXAMPLE 5 Find the linearization of

$$f(x, y) = x^2 - xy + \frac{1}{2}y^2 + 3$$
 at the point (3, 2).

$$f(3, 2) = 8$$
 $f_x(3, 2) = 4$ $f_y(3, 2) = -1$

The linearization of f at (3, 2) is L(x, y) = 4x - y - 2

The Error in the Standard Linear Approximation

If f has continuous first and second partial derivatives throughout an open set containing a rectangle R centered at (x_0, y_0) and if M is any upper bound for the values of $|f_{xx}|$, $|f_{yy}|$, and $|f_{xy}|$ on R, then the error E(x, y) incurred in replacing f(x, y) on R by its linearization

$$L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

satisfies the inequality

$$|E(x, y)| \le \frac{1}{2}M(|x - x_0| + |y - y_0|)^2.$$

Differentials

DEFINITION If we move from (x_0, y_0) to a point $(x_0 + dx, y_0 + dy)$ nearby, the resulting change

$$df = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$$

in the linearization of f is called the **total differential of** f.

EXAMPLE 6 Suppose that a cylindrical can is designed to have a radius of 1 in. and a height of 5 in., but that the radius and height are off by the amounts dr = +0.03 and dh = -0.1. Estimate the resulting absolute change in the volume of the can.

$$V = \pi r^2 h$$
,

$$\Delta V \approx dV = V_r(r_0, h_0) dr + V_h(r_0, h_0) dh$$

$$dV = 2\pi r_0 h_0 dr + \pi r_0^2 dh = 2\pi (1)(5)(0.03) + \pi (1)^2 (-0.1)$$
$$= 0.3\pi - 0.1\pi = 0.2\pi \approx 0.63 \text{ in}^3$$

Functions of More Than Two Variables

1. The linearization of f(x, y, z) at a point $P_0(x_0, y_0, z_0)$ is

$$L(x, y, z) = f(P_0) + f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0) + f_z(P_0)(z - z_0).$$

2. Suppose that R is a closed rectangular solid centered at P_0 and lying in an open region on which the second partial derivatives of f are continuous. Suppose also that $|f_{xx}|, |f_{yy}|, |f_{zz}|, |f_{xy}|, |f_{xz}|,$ and $|f_{yz}|$ are all less than or equal to M throughout R. Then the **error** E(x, y, z) = f(x, y, z) - L(x, y, z) in the approximation of f by L is bounded throughout R by the inequality

$$|E| \leq \frac{1}{2}M(|x-x_0|+|y-y_0|+|z-z_0|)^2.$$

3. If the second partial derivatives of f are continuous and if x, y, and z change from x_0 , y_0 , and z_0 by small amounts dx, dy, and dz, the **total differential**

$$df = f_x(P_0) dx + f_y(P_0) dy + f_z(P_0) dz$$

gives a good approximation of the resulting change in f.

EXAMPLE 8 Find the linearization L(x, y, z) of

$$f(x, y, z) = x^2 - xy + 3\sin z$$

at the point $(x_0, y_0, z_0) = (2, 1, 0)$. Find an upper bound for the error incurred in replacing f by L on the rectangular region

R:
$$|x-2| \le 0.01$$
, $|y-1| \le 0.02$, $|z| \le 0.01$.

$$f(2, 1, 0) = 2$$
, $f_x(2, 1, 0) = 3$, $f_y(2, 1, 0) = -2$, $f_z(2, 1, 0) = 3$.

$$L(x, y, z) = 2 + 3(x - 2) + (-2)(y - 1) + 3(z - 0) = 3x - 2y + 3z - 2.$$

$$f_{xx} = 2$$
, $f_{yy} = 0$, $f_{zz} = -3 \sin z$, $f_{xy} = -1$, $f_{xz} = 0$, $f_{yz} = 0$, $M = 2$

$$|E| \le \frac{1}{2}(2)(0.01 + 0.02 + 0.01)^2 = 0.0016.$$

Exercises

find equations for the (a) tangent plane and (b) normal line at the point P_0 on the given surface.

$$x^2 + y^2 + z^2 = 3$$
, $P_0(1, 1, 1)$

$$x + y + z = 3$$

$$x = 1 + 2t$$
, $y = 1 + 2t$, $z = 1 + 2t$

find parametric equations for the line tangent to the curve of intersection of the surfaces at the given point.

Surfaces:
$$x + y^2 + 2z = 4$$
, $x = 1$ Point: (1, 1, 1)

Tangent line: x = 1, y = 1 + 2t, z = 1 - 2t

- By about how much will $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$ change if the point P(x, y, z) moves from $P_0(3, 4, 12)$ a distance of $df = (\nabla f \cdot \mathbf{u}) ds = (\frac{9}{1182})(0.1) \approx 0.0008$ ds = 0.1 unit in the direction of 3i + 6j - 2k?
- find the linearization L(x, y, z) of the function f(x, y, z) at P_0 . Then find an upper bound for the magnitude of the error E in the approximation $f(x, y, z) \approx L(x, y, z)$ over the region R.

$$f(x, y, z) = xz - 3yz + 2$$
 at $P_0(1, 1, 2)$,
 $R: |x - 1| \le 0.01, |y - 1| \le 0.01, |z - 2| \le 0.02$

$$2x - 6y - 2z + 6$$
 $M = 3$

 $|E(x, y, z)| \le 0.0024$

Extreme Values and Saddle Points Derivative Tests for Local Extreme Values

DEFINITIONS Let f(x, y) be defined on a region R containing the point (a, b). Then

- **1.** f(a, b) is a **local maximum** value of f if $f(a, b) \ge f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).
- **2.** f(a, b) is a **local minimum** value of f if $f(a, b) \le f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).

THEOREM 10—First Derivative Test for Local Extreme Values

If f(x, y) has a local maximum or minimum value at an interior point (a, b) of its domain and if the first partial derivatives exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

(a, b, 0)

DEFINITION An interior point of the domain of a function f(x, y) where both f_x and f_y are zero or where one or both of f_x and f_y do not exist is a **critical** point of f.

DEFINITION A differentiable function f(x, y) has a **saddle point** at a critical point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) where f(x, y) > f(a, b) and domain points (x, y) where f(x, y) < f(a, b). The corresponding point (a, b, f(a, b)) on the surface z = f(x, y) is called a saddle point of the surface (Figure 14.45).

$$f_x = 2x = 0$$
 and $f_y = 2y - 4 = 0$. the critical point $(0, 2)$

$$f(x,y) = x^2 + (y-2)^2 + 5 \ge 5$$

The critical point (0, 2) gives a local minimum

EXAMPLE 2 Find the local extreme values (if any) of $f(x, y) = y^2 - x^2$.

$$f_x = -2x = 0$$
 and $f_y = 2y = 0$ The critical point $(0,0)$

Along the positive x-axis $f(x,0) = -x^2 \le 0$

Along the positive y-axis $f(0, y) = y^2 \ge 0$

The function has a saddle point at the origin and no local extreme values

THEOREM 11—Second Derivative Test for Local Extreme Values

Suppose that f(x, y) and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Then

- i) f has a local maximum at (a, b) if $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b).
- ii) f has a local minimum at (a, b) if $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b).
- iii) f has a saddle point at (a, b) if $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b).
- iv) the test is inconclusive at (a, b) if $f_{xx}f_{yy} f_{xy}^2 = 0$ at (a, b). In this case, we must find some other way to determine the behavior of f at (a, b).

The expression $f_{xx}f_{yy} - f_{xy}^2$ is called the **discriminant** or **Hessian** of f. It is sometimes easier to remember it in determinant form,

$$f_{xx}f_{yy} - f_{xy}^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}.$$

EXAMPLE 4 Find the local extreme values of $f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy$.

$$f_x = 6y - 6x = 0$$
 and $f_y = 6y - 6y^2 + 6x = 0$.

The critical points (0,0), (2,2)

$$f_{xx} = -6$$
, $f_{yy} = 6 - 12y$, $f_{xy} = 6$.

$$D = f_{xx}f_{yy} - f_{xy}^2 = 72(y-1)$$
 The function has a saddle point at the origin

D(2,2) = 72 > 0, $f_{xx}(0,0) = -6 < 0$ the function has a local maximum value

$$f(2,2) = 8$$

Absolute Maxima and Minima on Closed Bounded Regions

- List the interior points of R where f may have local maxima and minima and evaluate f at these points. These are the critical points of f.
- 2. List the boundary points of R where f has local maxima and minima and evaluate f at these points. We show how to do this in the next example.
- Look through the lists for the maximum and minimum values of f. These will be the absolute maximum and minimum values of f on R.

EXAMPLE 6 Find the absolute maximum and minimum values of

$$f(x, y) = 2 + 2x + 4y - x^2 - y^2$$

on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, and y = 9 - x.

(a) Interior points.

$$f_x = 2 - 2x = 0$$
, $f_y = 4 - 2y = 0$, The critical point $f(1, 2) = 7$.

(b) Boundary points.

i) On the segment
$$OA$$
, $y = 0$.

$$f(x, y) = f(x, 0) = 2 + 2x - x^2$$
 $0 \le x \le 9$

$$0 \le x \le 9$$

$$f(0,0) = 2$$
 $f(9,0) = 2 + 18 - 81 = -61$

At the interior points
$$f'(x, 0) = 2 - 2x = 0$$
. $x = 1$

$$x = 1$$

$$f(x, 0) = f(1, 0) = 3$$

ii) On the segment
$$OB$$
, $x = 0$

ii) On the segment *OB*,
$$x = 0$$
 $f(x, y) = f(0, y) = 2 + 4y - y^2$

$$f(0,0) = 2,$$
 $f(0,9) = -43$

$$f'(0,y) = 4-2y = 0$$
 $y = 2$ $f(0,2) = 6.$

$$f(0, 2) = 6$$

iii) We have already accounted for the values of f at the endpoints of AB,

at the interior points of the line segment AB. With y = 9 - x

$$f(x, y) = 2 + 2x + 4(9 - x) - x^2 - (9 - x)^2 = -43 + 16x - 2x^2.$$

$$f'(x, 9 - x) = 16 - 4x = 0 \qquad x = 4.$$

$$f(x, y) = f(4, 5) = -11.$$

- (1,2) the function has a maximum value f(1,2) = 7
- (9,0) the function has a minimum value f(9,0) = -61

EXAMPLE 7 A delivery company accepts only rectangular boxes the sum of whose length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions of an acceptable box of largest volume.

Let x, y, and z represent the length, width, and height of the rectangular box

$$V = xyz \qquad \qquad x + 2y + 2z = 108$$

$$V(y, z) = (108 - 2y - 2z)yz = 108yz - 2y^2z - 2yz^2$$

$$V_{y}(y, z) = 108z - 4yz - 2z^{2} = (108 - 4y - 2z)z = 0$$

$$V_z(y, z) = 108y - 2y^2 - 4yz = (108 - 2y - 4z)y = 0$$

$$V_{yy} = -4z$$
, $V_{zz} = -4y$, $V_{yz} = 108 - 4y - 4z$ $V_{yy}V_{zz} - V_{yz}^2 = 16yz - 16(27 - y - z)^2$

$$V_{yz} = 108 - 4y - 4z$$

$$(V_{yy}V_{zz}-V_{yz})$$

$$\left(V_{yy}V_{zz}-V_{yz}^{2}\right)\bigg|_{C}$$

$$\left(\left.V_{yy}V_{zz}-\left.V_{yz}^{2}\right)\right|_{(18)}$$

$$V_{yy}(18, 18) = -4(18) < 0$$
 $(V_{yy}V_{zz} - V_{yz}^2)$ $= 16(18)(18) - 16(-9)^2 > 0$

the critical points (0, 0), (0, 54), (54, 0), and (18, 18)

$$x = 108 - 2(18) - 2(18) = 36$$
 in., $y = 18$ in., and $z = 18$

$$V = (36)(18)(18) = 11,664 \text{ in}^3, \text{ or } 6.75 \text{ ft}^3$$

Exercises

Find all the local maxima, local minima, and saddle points of the functions

$$f(x, y) = x^2 + xy + y^2 + 3x - 3y + 4$$

(-3, 3)

local minimum

$$f(x, y) = x^2 + xy + 3x + 2y + 5$$

(-2,1)

saddle point

Find the absolute maxima and minima of the functions on the given domains

$$f(x, y) = (4x - x^2) \cos y$$
 on the rectangular plate $1 \le x \le 3$ $-\pi/4 \le y \le \pi/4$

Therefore the absolute maximum $a \le b$ such that $\int_a^b (6 - x - x^2) dx$

a = -3 and b = 2.

has its largest value.

• Find the point on the plane 3x + 2y + z = 6 that is nearest the origin.

local minimum of $d\left(\frac{9}{7}, \frac{6}{7}, \frac{3}{7}\right) = \frac{3\sqrt{14}}{7}$

A rectangular box is inscribed in the region in the first octant bounded above by the plane with x-intercept 6, y-intercept 6, and z-intercept 6.

local maximum of V(2, 2, 2) = 8

(x, y, z)

The Method of Lagrange Multipliers

THEOREM 12—The Orthogonal Gradient Theorem

Suppose that f(x, y, z) is differentiable in a region whose interior contains a smooth curve

C:
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
.

If P_0 is a point on C where f has a local maximum or minimum relative to its values on C, then ∇f is orthogonal to C at P_0 .

COROLLARY At the points on a smooth curve $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ where a differentiable function f(x, y) takes on its local maxima and minima relative to its values on the curve, $\nabla f \cdot \mathbf{r}' = 0$.

The Method of Lagrange Multipliers

The Method of Lagrange Multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable and $\nabla g \neq 0$ when g(x, y, z) = 0. To find the local maximum and minimum values of f subject to the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and λ that simultaneously satisfy the equations

$$\nabla f = \lambda \nabla g$$
 and $g(x, y, z) = 0.$ (1)

For functions of two independent variables, the condition is similar, but without the variable *z*.

EXAMPLE 3 Find the greatest and smallest values that the function

takes on the ellipse
$$\frac{x^2}{8} + \frac{y^2}{2} = 1$$
 $f(x, y) = xy$

$$\nabla f = \lambda \nabla g$$
 and $g(x, y) = 0$. $y\mathbf{i} + x\mathbf{j} = \frac{\lambda}{4}x\mathbf{i} + \lambda y\mathbf{j}$,

$$y = \frac{\lambda}{4}x$$
, $x = \lambda y$, and $y = \frac{\lambda}{4}(\lambda y) = \frac{\lambda^2}{4}y$, $y = 0 \text{ or } \lambda = \pm 2$

Case 1: If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, $y \ne 0$.

Case 2: If $y \neq 0$, then $\lambda = \pm 2$ and $x = \pm 2y$.

$$g(x, y) = 0$$
 $\frac{(\pm 2y)^2}{8} + \frac{y^2}{2} = 1$ $y = \pm 1$

The function f(x, y) = xy therefore takes on its extreme values on the ellipse at the four points $(\pm 2, 1)$, $(\pm 2, -1)$. The extreme values are xy = 2 and xy = -2.

Lagrange Multipliers with Two Constraints

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2, \qquad g_1(x, y, z) = 0, \qquad g_2(x, y, z) = 0$$
 (2)

EXAMPLE 5 The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse (Figure 14.59). Find the points on the ellipse that lie closest to and farthest from the origin.

$$f(x, y, z) = x^2 + y^2 + z^2$$

$$g_1(x, y, z) = x^2 + y^2 - 1 = 0$$

$$g_2(x, y, z) = x + y + z - 1 = 0.$$

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$$

$$2x = 2\lambda x + \mu, \qquad 2y = 2\lambda y + \mu, \qquad 2z = \mu.$$

$$2x = 2\lambda x + 2z \Longrightarrow (1 - \lambda)x = z,$$

$$2y = 2\lambda y + 2z \Longrightarrow (1 - \lambda)y = z.$$

 $g_2 = 0$

 ∇g_2

$$2x = 2\lambda x + 2z \Rightarrow (1 - \lambda)x = z,$$

$$2y = 2\lambda y + 2z \Rightarrow (1 - \lambda)y = z.$$

If
$$z = 0$$
.

كامعة

$$\lambda = 1$$
 and $z = 0$

$$\lambda \neq 1$$
 and $x = y = z/(1 - \lambda)$.

If
$$x = y$$
,
$$x^{2} + y^{2} - 1 = 0$$

$$x = \pm \frac{\sqrt{2}}{2}$$

$$x + x + z - 1 = 0$$

$$z = 1 \mp \sqrt{2}$$

$$x + x + z - 1 = 0 \qquad \qquad z = 1 \mp \sqrt{2}$$

$$P_1 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1 - \sqrt{2}\right)$$
 and $P_2 = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1 + \sqrt{2}\right)$

$$f(1,0,0) = 1, f(0,1,0) = 1, f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1 - \sqrt{2}\right) = 1.172, f\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}, 1 + \sqrt{2}\right) = 6.83$$

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0)

The point on the ellipse farthest from the origin is P_2 .

Exercises

 \bullet Find the dimensions of the closed right circular cylindrical can of smallest surface area whose volume is 16π cm³

$$r = 2 h = 4 24\pi \text{ cm}^2$$

Find the extreme values of the function $f(x, y, z) = xy + z^2$ on the circle in which the plane y - x = 0 intersects the sphere $x^2 + y^2 + z^2 = 4$.

Therefore the maximum value of f is 4 at $(0, 0, \pm 2)$ and the minimum value of f is 2 at $f(\pm \sqrt{2}, \pm \sqrt{2}, 0)$

• A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point (x, y, z) on the probe's surface is $T(x, y, z) = 8x^2 + 4yz - 16z + 600$. Find the hottest point on the probe's surface. $\left(\pm \frac{4}{3}, -\frac{4}{3}, -\frac{4}{3}\right)$

Exact Equations

Definition 2.4.1 Exact Equation

A differential expression M(x, y) dx + N(x, y) dy is an **exact differential** in a region R of the xy-plane if it corresponds to the differential of some function f(x, y). A first-order differential equation of the form

$$M(x, y) dx + N(x, y) dy = 0$$

is said to be an **exact equation** if the expression on the left side is an exact differential.

Theorem 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial derivatives in a rectangular region R defined by a < x < b, c < y < d. Then a necessary and sufficient condition that M(x, y) dx + N(x, y) dy be an exact differential is

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$$
(4)

Method of Solution

$$df(x,y) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = M(x,y)dx + N(x,y)dy$$

$$\frac{\partial f}{\partial x} = M(x,y), \frac{\partial f}{\partial y} = N(x,y)$$
Integration x

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \int M(x,y)dx + g'(y) = N(x,y)$$
Integration y

$$g(y)$$

$$f(x,y) = C$$

EXAMPLE

$$2xydx + (x^2 - 1)dy = 0$$

$$M(x,y) = 2xy, N(x,y) = x^2 - 1$$

$$\frac{\partial M}{\partial y} = \frac{\partial (2xy)}{\partial y} = 2x$$

$$\frac{\partial M}{\partial y} = \frac{\partial (2xy)}{\partial y} = 2x$$

$$\frac{\partial M}{\partial x} = \frac{\partial (x^2 - 1)}{\partial x} = 2x$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
Exact Equation

$$\frac{\partial f}{\partial x} = 2xy \quad , \quad \frac{\partial f}{\partial y} = x^2 - 1$$

$$\frac{\partial f}{\partial y} = x^2 + g'(y) = x^2 - 1$$

Integration x

$$f(x,y) = x^{2}y + g(y)$$

$$f(x,y) = x^{2}y - y$$

$$g'(y) = -1$$

$$g(y) = -y$$

$$x^{2}y - y = c$$

$$y = \frac{c}{x^{2}}$$

EXAMPLE

$$\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1-x^2)}, \ y(0) = 2$$

An initial value problem

$$(\cos x \sin x - xy^2)dx + y(1-x^2)dy = 0$$

$$M(x,y) = (\cos x \sin x - xy^{2}), N(x,y) = y(1-x^{2})$$

$$\frac{\partial M}{\partial y} = \frac{\partial \left(\cos x \sin x - xy^{2}\right)}{\partial y} = -2xy$$

$$\frac{\partial N}{\partial x} = \frac{\partial \left(y \left(1 - x^{2}\right)\right)}{\partial x} = -2xy$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Exact Equation

$$\frac{\partial f}{\partial x} = \cos x \sin x - xy^{2}, \quad \frac{\partial f}{\partial y} = y (1 - x^{2})$$

$$\frac{1}{2} \text{Integration } y$$

$$f(x, y) = \frac{y^{2}}{2} (1 - x^{2}) + h(x)$$

$$\frac{\partial f}{\partial x} = -xy^2 + h'(x) = \cos x \sin x - xy^2 \qquad h'(x) = \cos x \sin x$$

$$h(x) = \int \cos x \sin x \, dx = -\frac{1}{2} \cos^2 x$$

$$h(x) = \int \cos x \sin x \, dx = -\frac{1}{2} \cos^2 x$$

$$f(x,y) = \frac{y^2}{2} (1-x^2) - \frac{1}{2} \cos^2 x \qquad y^2 (1-x^2) - \cos^2 x = C$$

$$(2)^{2}(1-(0)^{2})-\cos^{2}0=C$$
 $C=3$

$$y^2(1-x^2)-\cos^2 x = 3$$

Nonexact Equations and Integrating Factor

$$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \qquad \longrightarrow \qquad \text{Nonexact Equation}$$

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$
 Exact Equation

$$\mu M_y + \mu_y M = \mu N_x + \mu_x N$$

Finding an Integrating Factor

$$\frac{\left(M_{y}-N_{x}\right)}{N}=\varphi(x)$$

$$\mu(x)=e^{\int \frac{\left(M_{y}-N_{x}\right)}{N}dx}$$

$$\frac{(N_x - M_y)}{M} = \psi(y)$$

$$\mu(y) = e^{\int \frac{(N_x - M_y)}{M} dy}$$

EXAMPLE

$$xydx + (2x^2 + 3y^2 - 20)dy = 0$$

$$\frac{\partial M}{\partial y} = \frac{\partial (xy)}{\partial y} = x$$

$$\frac{\partial M}{\partial y} = \frac{\partial (xy)}{\partial y} = x$$

$$\frac{\partial M}{\partial x} = \frac{\partial (2x^2 + 3y^2 - 20)}{\partial x} = 4x$$
Nonexact Equation

$$\frac{\left(M_{y}-N_{x}\right)}{N} = \frac{x-4x}{2x^{2}+3y^{2}-20} = \frac{-3x}{2x^{2}+3y^{2}-20} = \varphi(x,y)$$

$$\frac{(N_x - M_y)}{M} = \frac{4x - x}{xy} = \frac{3x}{xy} = \frac{3}{y} = \psi(y)$$

$$\mu(y) = e^{\int \frac{(N_x - M_y)}{M} dy} = e^{\int \frac{3}{y} dy} = e^{3\ln y} = e^{\ln y^3} = y^3$$
 Integration Factor

$$xydx + (2x^{2} + 3y^{2} - 20)dy = 0$$

$$\times \mu(y) = y^{3}$$

$$xy^4 dx + (2x^2y^3 + 3y^5 - 20y^3)dy = 0$$

$$M(x,y) = xy^4$$
, $N(x,y) = 2x^2y^3 + 3y^5 - 20y^3$

$$\frac{\partial M}{\partial y} = \frac{\partial (xy^4)}{\partial y} = 4xy^3$$

$$\frac{\partial N}{\partial x} = \frac{\partial (2x^2y^3 + 3y^5 - 20y^3)}{\partial x} = 4xy^3$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x}$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 Exact Equation

$$\frac{\partial f}{\partial x} = xy^4$$
, $\frac{\partial f}{\partial y} = 2x^2y^3 + 3y^5 - 20y^3$

$$f(x,y) = \frac{1}{2}x^2y^4 + g(y)$$

Integration
$$x$$

$$\frac{\partial f}{\partial y} = 2x^2y^3 + g'(y) = 2x^2y^3 + 3y^5 - 20y^3$$

$$g'(y) = 3y^5 - 20y^3$$
 $g(y) = \frac{1}{2}y^6 - 5y^4$

$$f(x,y) = \frac{1}{2}x^2y^4 + \frac{1}{2}y^6 - 5y^4 \longrightarrow \frac{1}{2}x^2y^4 + \frac{1}{2}y^6 - 5y^4 = c$$

Exercises

• Determine whether the given differential equation is exact. If it is exact, solve it.

$$(\sin y - y \sin x) dx + (\cos x + x \cos y - y) dy = 0 x \sin y + y \cos x - \frac{1}{2}y^2 = c.$$

$$\left(1 + \ln x + \frac{y}{x}\right) dx = (1 - \ln x) dy -y + y \ln x + x \ln x = c.$$

Solve the given initial-value problem.

$$\left(\frac{3y^2 - t^2}{y^5}\right) \frac{dy}{dt} + \frac{t}{2y^4} = 0, \quad y(1) = 1$$

$$\frac{t^2}{4y^4} - \frac{3}{2y^2} = -\frac{5}{4}$$

$$\left(\frac{1}{1+y^2} + \cos x - 2xy\right)\frac{dy}{dx} = y(y + \sin x), \quad y(0) = 1 \qquad xy^2 - y\cos x - \tan^{-1}y = -1 - \frac{\pi}{4}.$$

• Solve the given differential equation by finding an appropriate integrating factor.

$$\cos x dx + \left(1 + \frac{2}{y}\right) \sin x dy = 0 \qquad \cos x \qquad \ln(\sin x) + y + \ln y^2 = c.$$

Exercises

$$(y^2 + xy^3) dx + (5y^2 - xy + y^3 \sin y) dy = 0$$

$$(-xy \sin x + 2y \cos x) dx + 2x \cos x dy = 0; \quad \mu(x, y) = xy$$
 $x^2 y^2 \cos x = c.$

$$1/y^3$$
. $x/y + \frac{1}{2}x^2 + 5\ln|y| - \cos y = c$.

$$x^2y^2\cos x = \epsilon$$