

جامعة المنارة كلية الهندسة قسم الهندسة المعلوماتية

مقرر الرياضيات المتقطعة

جلسة العملي الثالثة

Predicates

- $p(3): 3+1 \le 3$ False •
- p(6): $6+1 \le 3$ False •
- $p(0): 0+1 \le 3$ True •
- Q(2),Q(5) تمثل العبارة 4<x، أوجد قيمة الحقيقة لـ Q(x)
 - Q(5): 5>4 True •
 - Q(2): 2>4 False •
- p(1,2), p(3,0) تمثل العبارة $x \neq y + 3$ ،أوجد قيمة الحقيقة لكل من p(x,y)
 - $p(3,0): 3 \neq 0+3$ False •
 - $p(1,2): 1 \neq 2+3$ True •
- Q(Damascus, Syria), Q(Baghdad, Lebanon) أوجد قيمة الحقيقة لكل من x is the capital of y أوجد قيمة الحقيقة لكل من (x,y)
 - Q(Damascus, Syria): Damascus is the capital of Syria True •
 - Q(Baghdad, Lebanon): Baghdad is the capital of Lebanon False •

Universal quantifier(∀)

 $\forall x \ p(x)$ ، ومجال التعريف هو مجموعة الأعداد الحقيقية R، أوجد قيمة الحقيقة لعبارة التكميم $\forall x \ p(x)$. True صحيحة من أجل كل الأعداد الحقيقية $\forall x \ p(x)$ ، بالتالي التكميم الشمولي $\forall x \ p(x)$ يكون صحيح $\forall x \ p(x)$.

ليكن $p(x):x^2>0$ ومجال التعريف هو مجموعة الأعداد الصحيحة z ، أوجد قيمة الحقيقة لعبارة التكميم y(x) . y(x) اليكن y(x) تكون خاطئة من أجل y(x) و بالتالي y(x) ليست صحيحة من أجل كل عدد صحيح و تكون قيمة التكميم y(x) . False

. $\forall x \ p(x)$ و مجال التعريف هو $D=\{1,2,3,4\}$ أوجد قيمة الحقيقة لعبارة التكميم $p(x):x^2<10$

إن p(x) تكون خاطئة من أجل x=4 ، و بالتالي p(x) ليست صحيحة من أجل كل عدد صحيح في المجموعة D و تكون قيمة التكميم False .

Existence quantifier(3)

 $\exists x \ p(x)$ ، و مجال التعريف هو مجموعة الأعداد الحقيقية R، أوجد قيمة الحقيقة لعبارة التكميم p(x):x>3 النكميم p(x):x>3 المجموعة R ، مثلاً من أجل x=4 تكون x=4 صحيحة ، و بالتالي قيمة التكميم x=4 الوجودي x=4 صحيحة x=4 . True .

. $\exists x \ p(x)$ ، و مجال التعريف هو مجموعة الأعداد الحقيقية R، أوجد قيمة الحقيقة لعبارة التكميم \not

إن p(x) خاطئة من أجل كل قيمة x من R ، و بالتالي لايوجد عنصر يحقق هذه العبارة و تكون قيمة التكميم الوجودي False ـ

. $\exists x \ p(x)$ ، و مجال التعريف هو $D=\{1,2,3,4\}$ أوجد قيمة الحقيقة لعبارة التكميم ، $p(x):x^2<10$

. True يوجد على الأقل $x=3 \in D$ تحقق العلاقة $x=3 \in D$ وبالتالي قيمة التكميم الوجودي x=3 وجد على الأقل

أوجد مثالاً معاكساً (counter example) يثبت أن قيمة الحقيقة للعبارات التالية المكممة شمولياً False:

 $\forall x \in R, x > \frac{1}{x}$ • A solution of the second second in the second second in the second second in the second second second in the second second

 $\forall x \in Z$, $\frac{(a-1)}{a}$ is not an integer . False من أجل x=-1 و بالتالي عبارة التكميم خاطئة x=-1 من أجل x=-1

 \forall positive integers n and m, n.m \geq n + m من أجل n=1,m=1 تكون العبارة 1+1 ≤ 1.1 خاطئة False

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x

مثال : كل طالب في الصف من مواليد عام 2003 $\forall x p(x)$ 2003 مثال : كل طالب في الصف من مواليد p(x): (2003 من مواليد 2003) من مواليد كالم

ما هو نفي العبارة السابقة ؟

 $\neg \forall x \ p(x) = \exists x \neg p(x)$: يوجد على الأقل طالب في الصف ليس من مواليد عام 2003،و يعبر عنه بعبارة التكميم التالية

مثال 2: يوجد طالب في الصف من مواليد عام 2003 p(x) p(x)

"X من مواليد 2003":(x) ومجال التعريف: مجموعة طلاب الصف

ما هو نفي العبارة السابقة؟

نفي العبارة : كل طالب في الصف ليس من مواليد 2003،و يعبر عنه بعبارة التكميم التالية : p(x) = ∀x ¬ p(x)

أوجد نفي العبارتين:

$$\neg \forall x (x^2 > x) >$$

$$\neg \forall x (x^2 > x) \equiv \exists x (x^2 \le x)$$

$$\neg \exists x (x^2 = x) >$$

$$\neg \exists x (x^2 = x) \equiv \forall x (x^2 \neq x)$$

كَلِيْكُ جَـامعة المَـنارة

وجد قيمة الحقيقة لعبارات التكميم التالية مع التعليل ،علماً أن مجال التعريف لكل العبارات هو Z مجموعة الأعداد لصحيحة

 $\forall n \exists m \ (n^2 < m) >$

True ، من أجل كل عدد صحيح n يوجد عدد m أكبر من مربعه

 $\forall n \exists m (n + m = 0) >$

True ، من أجل كل قيمة n يوجد قيمة m=-n بحيث 0=m+n

 $\forall n \forall m \ (n^3 \neq m^2) >$

 $1^3 = 1^2$ تکون n=1, m=1 ، پوجد False

 $\exists n \forall m (nm = m) >$

True ، من أجل n=1 فإنه أياً كانت m فإن True

أوجد قيمة الحقيقة لعبارات التكميم التالية مع التعليل ،علماً أن مجال التعريف لكل العبارات هو Z مجموعة الأعداد الصحيحة

$$\exists n \exists m \ (n^2 + m^2 = 5) >$$

True ، يوجد n=1,m=2 تحقق عبارة التكميم

$$\forall n \forall m (n + m = m + n) >$$

من أجل كل عددين $n,m \in Z$ تتحقق علاقة الجمع التبديلية $n,m \in Z$

$$\exists n \forall m \ (n < m^2) >$$

n محققة من أجل n=-1 فإن مربع أي قيمة m موجب و أكبر من n محققة من أجل n

$$\forall n \forall m \ (if \ n^2 = m^2 \ , then \ n = m) >$$

$$-2 \neq 2$$
 نکن $2^2 = (-2)^2$ تکون $n=-2, m=2$ و لکن False

Negating Nested quantifiers

$$\neg(\forall x \forall y \ p(x,y)) \equiv \exists x \exists y \neg p(x,y) \bullet$$

$$\neg(\forall y \exists x \ p(x,y)) \equiv \exists y \forall x \neg p(x,y) \cdot$$

$$\neg(\forall y \forall x \ [p(x,y) \lor Q(x,y)]) \equiv \exists y \exists x \neg (p(x,y) \lor Q(x,y)) \bullet$$
$$\equiv \exists y \exists x \ (\neg p(x,y) \land \neg Q(x,y))$$

Let $D = E = \{-2, -1, 0, 1, 2\}$. Explain why the following statements are true.

- **a.** $\forall x \text{ in } D, \exists y \text{ in } E \text{ such that } x + y = 0.$
- b. $\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, x + y = y.$

Solution:

- a. $\forall x \text{ in } D, \exists y = -x \text{ in } E : x+y=x+(-x)=0$
- b. $\exists x = 0 \text{ in } D$, $\forall y \text{ in } E : 0+y=y$

Predicates and Quantifiers

Let $D = \{-48, -14, -8, 0, 1, 3, 16, 23, 26, 32, 36\}$. Determine which of the following statements are true and which are false. Provide counterexamples for those statements that are false.

- **a.** $\forall x \in D$, if x is odd then x > 0.
- b. $\forall x \in D$, if x is less than 0 then x is even.
- **c.** $\forall x \in D$, if x is even then $x \leq 0$.
- d. $\forall x \in D$, if the ones digit of x is 2, then the tens digit is 3 or 4.
- e. $\forall x \in D$, if the ones digit of x is 6, then the tens digit is 1 or 2.

Solution:

- a. True
- b. True
- c. False, $\exists x = 16 \in D$ is even but x > 0
- d. True
- e. False, $\exists x = 36 \in D$, ones digit=6 but tens digit=3

Suppose the universe is the collection of numbers (1,2,3,4,5) and the following grid gives the truth value of the proposition P(X,Y) where x is the row and y is the column

Р	1	2	3	4	5
1	p(1,1): T	щ	I.	Т	Т
2	p(2,1):T	F	Т	Т	Т
3	F	F	Т	Т	Т
4	F	Т	F	Т	F
5	Т	F	Т	Т	Т

1-
$$\forall x \exists y p (x, y)$$
: True

2-
$$\exists y \ \forall x \ p \ (x, y)$$
: True

3-
$$\forall$$
y \exists x p (x , y): True

4-
$$\exists$$
x \forall y p (x , y): False

Predicates and Quantifiers

كامعة كامعة المسلم

Translate from English statements to quantified statements

- the sum of two positive integers is always positive.
- $\forall x \in \mathbb{Z} \ \forall y \in \mathbb{Z}$, $(x>0) \land (y>0) \longrightarrow (x+y>0)$
- There is a real number whose square equals 5.
- $\exists x \in \mathbb{R}$, $(x^2=5)$
- The square of real number is greater than or equal 0.
- $\forall x \in \mathbb{R}$, $(x^2 \ge 0)$
- If an integer is divisible by 2, then it is even.
- $\forall x \in \mathbb{Z}$, (x is divisible by 2 $\rightarrow x$ is even)
- A product of two real numbers is 0 if one of number is 0.
- $\forall x \in R \ \forall y \in R \ , (x=0) \lor (y=0) \longrightarrow (xy=0)$

Predicates and Quantifiers

Translate from English statements to quantified statements

- The difference between two positive integers is not necessarily positive
- $\exists x \in \mathbb{Z} \ \exists y \in \mathbb{Z}$, $(x>0) \land (y>0) \land (x-y<0)$
- Every positive real numbers has exactly two square roots.
- $\forall x \in \mathbb{R}$, $(x>0) \rightarrow x$ has two square roots
- For every odd integer number n ,there is integer number k :n=2k+1
- $\forall n \in \mathbb{Z} \exists k \in \mathbb{Z}, (n \text{ is } odd) \longrightarrow (n=2k+1)$
- The product of two negative real numbers is positive.
- $\forall x \in R \ \forall y \in R \ , (x<0) \land (y<0) \longrightarrow (xy>0)$
- For every non zero real number n, there is real number m: nm=1.
- $\forall n \in \mathbb{R} \exists m \in \mathbb{R}, (n \neq 0) \longrightarrow (nm=1)$