Sets

Epp, chapter 5

- A set is a group of "objects"
- People in a class: \{ Alice, Bob, Chris \}
- Classes offered by a department: \{ CS 101, CS 202, ... \}
- Colors of a rainbow: \{ red, orange, yellow, green, blue, purple \}
- States of matter \{ solid, liquid, gas, plasma \}
- States in the US: \{ Alabama, Alaska, Virginia, ... \}
- Sets can contain non-related elements: \{3,a, red, Virginia \}
- Although a set can contain (almost) anything, we will most often use sets of numbers
- All positive numbers less than or equal to 5 : $\{1,2,3,4,5\}$
- A few selected real numbers: $\{2.1, \pi, 0,-6.32, \mathrm{e}\}$

Set properties 1

- Order does not matter
- We often write them in order because it is easier for humans to understand it that way
$-\{1,2,3,4,5\}$ is equivalent to $\{3,5,2,4,1\}$
- Sets are notated with curly brackets

Set properties 2

- Sets do not have duplicate elements
- Consider the set of vowels in the alphabet. -It makes no sense to list them as $\{a, a, a, e, i, o, o$, o, o, o, u\} -What we really want is just $\{a, e, i, o, u\}$
- Consider the list of students in this class -Again, it does not make sense to list somebody twice
- Note that a list is like a set, but order does matter and duplicate elements are allowed
- We won't be studying lists much in this class

Specifying a set 1

- Sets are usually represented by a capital letter (A, B, S, etc.)
- Elements are usually represented by an italic lower-case letter (a, x, y, etc.)
- Easiest way to specify a set is to list all the elements: $A=\{1,2,3,4,5\}$
- Not always feasible for large or infinite sets

Specifying a set 2

- Can use an ellipsis (...): $B=\{0,1,2,3, \ldots\}$
- Can cause confusion. Consider the set $\mathrm{C}=\{3,5,7$,
...\}. What comes next?
- If the set is all odd integers greater than 2, it is 9
- If the set is all prime numbers greater than 2, it is 11
- Can use set-builder notation
$-\mathrm{D}=\{x \mid x$ is prime and $x>2\}$
$-\mathrm{E}=\{x \mid x$ is odd and $x>2\}$
- The vertical bar means "such that"
- Thus, set D is read (in English) as: "all elements x such that x is prime and x is greater than 2"

Spegifying a set 3

- A set is said to "contain" the various "members" or "elements" that make up the set
- If an element a is a member of (or an element of) a set S , we use then notation $a \in S$ $\cdot 4 \in\{1,2,3,4\}$
- If an element is not a member of (or an element of) a set S, we use the notation $a \notin S$ - $7 \notin\{1,2,3,4\}$ -Virginia $\notin\{1,2,3,4\}$

Oftep used sets

- $\mathbf{N}=\{0,1,2,3, \ldots\}$ is the set of natural numbers
- $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of integers
- $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$ is the set of positive integers
(a.k.a whole numbers)
- Note that people disagree on the exact definitions of whole numbers and natural numbers
- $\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0\}$ is the set of rational numbers
- Any number that can be expressed as a fraction of two integers (where the bottom one is not zero)
- \mathbf{R} is the set of real numbers

The wiversal set 1

- \boldsymbol{U} is the universal set - the set of all of elements (or the "universe") from which given any set is drawn
- For the set $\{-2,0.4,2\}, \boldsymbol{U}$ would be the real numbers
- For the set $\{0,1,2\}$, \boldsymbol{U} could be the natural numbers (zero and up), the integers, the rational numbers, or the real numbers, depending on the context

The ymiversal set 2

- For the set of the students in this class, \boldsymbol{U} would be all the students in the University (or perhaps all the people in the world)
- For the set of the vowels of the alphabet, \boldsymbol{U} would be all the letters of the alphabet
- To differentiate \boldsymbol{U} from U (which is a set operation), the universal set is written in a different font (and in bold and italics)

Ven diagrams

- Represents sets graphically
- The box represents the universal set
- Circles represent the set(s)
- Consider set S , which is the set of all vowels in the alphabet
- The individual elements are usually not written in a Venn diagram

Sets of sets

- Sets can contain other sets

$$
\begin{aligned}
&-S=\{\{1\},\{2\},\{3\}\} \\
&-T=\{\{1\},\{\{2\}\},\{\{\{3\}\}\}\} \\
&-\mathrm{V}=\{\{\{1\},\{\{2\}\}\},\{\{\{3\}\},\{\{1\}, \text {, }\{2\}\},\{\{\{3\}\}\}\}\} \\
& \cdot V \text { has only } 3 \text { elements! }
\end{aligned}
$$

- Note that $1 \neq\{1\} \neq\{\{1\}\} \neq\{\{\{1\}\}\}$
- They are all different

The empty set 1

- If a set has zero elements, it is called the empty (or null) set
- Written using the symbol \varnothing
- Thus, $\varnothing=\{ \} \quad \leqslant$ VERY IMPORTANT
- If you get confused about the empty set in a problem, try replacing \varnothing by $\}$
- As the empty set is a set, it can be a element of other sets
$-\{\varnothing, 1,2,3, x\}$ is a valid set

The eiempty set 1

- Note that $\varnothing \neq\{\varnothing\}$
- The first is a set of zero elements
- The second is a set of 1 element (that one element being the empty set)
- Replace \varnothing by $\{$, and you get: $\} \neq\{$ \{ \} \} - It's easier to see that they are not equal that way

Seet equality

- Two sets are equal if they have the same elements
$-\{1,2,3,4,5\}=\{5,4,3,2,1\}$
-Remember that order does not matter!
$-\{1,2,3,2,4,3,2,1\}=\{4,3,2,1\}$
-Remember that duplicate elements do not matter!
- Two sets are not equal if they do not have the same elements
$-\{1,2,3,4,5\} \neq\{1,2,3,4\}$
- If all the elements of a set S are also elements of a set T, then S is a subset of T
- For example, if $S=\{2,4,6\}$ and $T=\{1,2,3,4,5,6$, 7\}, then S is a subset of T
- This is specified by $\mathrm{S} \subseteq \mathrm{T}$
\cdot Or by $\{2,4,6\} \subseteq\{1,2,3,4,5,6,7\}$
- If S is not a subset of T, it is written as such:
$\mathrm{S} \neq \mathrm{T}$
- For example, $\{1,2,8\} \nsubseteq\{1,2,3,4,5,6,7\}$

Subsets 2

- Note that any set is a subset of itself!
- Given set $S=\{2,4,6\}$, since all the elements of S are elements of S, S is a subset of itself
- This is kind of like saying 5 is less than or equal to 5
- Thus, for any set $S, S \subseteq S$
- The empty set is a subset of all sets (including itself!)
- Recall that all sets are subsets of themselves
- $A / /$ sets are subsets of the universal set
- A horrible way to define a subset:
$\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})$
- English translation: for all possible values of x, (meaning for all possible elements of a set), if x is an element of A, then x is an element of B
- This type of notation will be gone over later

Proper Subsets 1

- If S is a subset of T, and S is not equal to T, then S is a proper subset of T
- Let $\mathrm{T}=\{0,1,2,3,4,5\}$
- If $S=\{1,2,3\}, S$ is not equal to T, and S is a subset of T
- A proper subset is written as $S \subset T$
- Let $R=\{0,1,2,3,4,5\}$. R is equal to T, and thus is a subset (but not a proper subset) or T
-Can be written as: $\mathrm{R} \subseteq \mathrm{T}$ and $\mathrm{R} \not \subset \mathrm{T}$ (or just $\mathrm{R}=\mathrm{T}$)
- Let $Q=\{4,5,6\}$. Q is neither a subset or T nor a proper subşet of T T

Proper Subsets 2

- The difference between "subset" and "proper subset" is like the difference between "less than or equal to" and "less than" for numbers
- The empty set is a proper subset of all sets other than the empty set (as it is equal to the empty set)

Propersubsets: Venn diagram

$S \subset R$

Sef cardinality

- The cardinality of a set is the number of elements in a set
- Written as $|A|$
- Examples
- Let $R=\{1,2,3,4,5\}$. Then $|R|=5$
$-|\varnothing|=0$
- Let $S=\{\varnothing,\{a\},\{b\},\{a, b\}\}$. Then $|S|=4$
- This is the same notation used for vector length in geometry
- A set with one element is sometimes called a

Power sets 1

- Given the set $S=\{0,1\}$. What are all the possible subsets of S ?
- They are: \varnothing (as it is a subset of all sets), $\{0\}$, $\{1\}$, and $\{0,1\}$
- The power set of S (written as $P(S)$) is the set of all the subsets of S
$-P(S)=\{\varnothing,\{0\},\{1\},\{0,1\}\}$
- Note that $|S|=2$ and $|P(S)|=4$

Power sets 2

- Let $\mathrm{T}=\{0,1,2\}$. The $\mathrm{P}(\mathrm{T})=\{\varnothing,\{0\},\{1\}$, $\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$
-Note that $|\mathrm{T}|=3$ and $|\mathrm{P}(\mathrm{T})|=8$
- $P(\varnothing)=\{\varnothing\}$
-Note that $|\varnothing|=0$ and $|P(\varnothing)|=1$
- If a set has n elements, then the power set will have 2^{n} elements
- In 2-dimensional space, it is a (x, y) pair of numbers to specify a location
- In 3-dimensional $(1,2,3)$ is not the same as $(3,2,1)-$ space, it is a (x, y, z) triple of numbers
- In n-dimensional space, it is a n-tuple of numbers
- Two-dimensional space uses pairs, or 2-tuples
- Three-dimensional space uses triples, or 3-tuples
- Note that these tuples are ordered, unlike sets
- the x value has to come first

Cartestian products 1

- A Cartesian product is a set of all ordered 2tuples where each "part" is from a given set
- Denoted by A x B, and uses parenthesis (not curly brackets)
- For example, 2-D Cartesian coordinates are the set of all ordered pairs $\mathbf{Z} \times \mathbf{Z}$
-Recall \mathbf{Z} is the set of all integers
-This is all the possible coordinates in 2-D space
- Example: Given $A=\{a, b\}$ and $B=\{0,1\}$, what is their Cartiesian product?

$$
\cdot C=A \times B=\{(a, 0),(a, 1),(b, 0),(b, 1)\}
$$

Cartestan products 2

- Note that Cartesian products have only 2 parts in these examples (later examples have more parts)
- Formal definition of a Cartesian product:
$-\mathrm{A} \times \mathrm{B}=\{(a, b) \mid a \in \mathrm{~A}$ and $b \in \mathrm{~B}\}$

Cartestan products 3

- All the possible grades in this class will be a Cartesian product of the set S of all the students in this class and the set G of all possible grades
- Let $S=\{$ Alice, Bob, Chris $\}$ and $G=\{A, B, C\}$
- D = \{ (Alice, A), (Alice, B), (Alice, C), (Bob, A), (Bob, B), (Bob, C), (Chris, A), (Chris, B), (Chris, C) \}
- The final grades will be a subset of this: $\{$ (Alice, C), (Bob, B), (Chris, A) \}
-Such a subset of a Cartesian product is called a relation (more on this later in the course)

Cartestan products 4

- There can be Cartesian products on more than two sets
- A 3-D coordinate is an element from the Cartesian product of $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}$

