

Relations and Their Properties

- Let *A* and *B* be sets. A binary relation *R* is a subset of $A \times B$
- Example
 - Let A be the students in a the CS major
 •A = {Alice, Bob, Claire, Dan}
 - Let *B* be the courses the department offers
 •*B* = {CS101, CS201, CS202}
 - We specify relation $R = A \times B$ as the set that lists all students $a \in A$ enrolled in class $b \in B$
 - R = { (Alice, CS101), (Bob, CS201), (Bob, CS202), (Dan, CS201), (Dan, CS202) }

https://manara.edu.sy/

3

4

- Another relation example:
 - Let A be the cities in the US
 - Let B be the states in the US
 - We define R to mean a is a city in state b
 - Thus, the following are in our relation:
 - •(C'ville, VA)
 - •(Philadelphia, PA)
 - •(Portland, MA)
 - (Portland, OR)
 - •etc...
- Most relations we will see deal with ordered pairs of integers

https://manara.edu.sy/

https://manara.edu.sy/

- A relation on the set A is a relation from A to A
 - In other words, the domain and co-domain are the same set
 - We will generally be studying relations of this type

- Consider some relations on the set Z
- Are the following ordered pairs in the relation?

	(1,1)	(1,2) (2	2,1) (1,-	-1) (2,2)
• $R_1 = \{ (a,b) \mid a \leq b \}$					
• $R_2 = \{ (a,b) \mid a > b \}$	Х	Х			Х
• $R_3 = \{ (a,b) \mid a = b/\}$			Х	Х	
• $R_4 = \{ (a,b) \mid a=b \}$	х			х	Х
• $R_5 = \{ (a,b) \mid a=b+1 \}$	х				Х
• $R_6 = \{ (a,b) \mid a+b \le 3 \}$	~		Ň		~
			Х		
	Х	Х	Х	Х	
					7

- Six properties of relations we will study:
 - Reflexive انعكاسية –
 - Irreflexiveلاانعكاسية –
 - Symmetricمتماثلة –
 - Asymmetric غير متماثلة –
 - Antisymmetricضد متماثلة –
 - Transitive متعدية –

- A relation is reflexive if every element is related to itself
 − Or, (a,a)∈R
- Examples of reflexive relations:
 =, ≤, ≥
- Examples of relations that are not reflexive:

- <, >

- A relation is irreflexive if every element is *not* related to itself
 - Or, (*a*,*a*)∉*R*
 - Irreflexivity is the opposite of reflexivity
- Examples of irreflexive relations:

- <, >

• Examples of relations that are not irreflexive:

– =, ≤, ≥

10

- A relation can be neither reflexive nor irreflexive
 - Some elements are related to themselves, others are not

• We will see an example of this later on

- A relation is symmetric if, for every $(a,b) \in R$, then $(b,a) \in R$
- Examples of symmetric relations:
 =, isTwinOf()
- Examples of relations that are not symmetric:
 - <, >, ≤, ≥

- A relation is asymmetric if, for every (*a*,*b*)∈*R*, then (*b*,*a*)∉*R*
 - Asymmetry is the opposite of symmetry
- Examples of asymmetric relations:

- <, >

• Examples of relations that are not asymmetric:

- =, isTwinOf(), ≤, ≥

13

- A relation is antisymmetric if, for every (*a*,*b*)∈*R*, then (*b*,*a*)∈*R* is true only when *a*=*b*
 - Antisymmetry is not the opposite of symmetry
- Examples of antisymmetric relations:

 $- =, \leq, \geq$

Examples of relations that are not antisymmetric:
 – <, >, isTwinOf()

https://manara.edu.sy/

- A relation can be neither symmetric or asymmetric
 - $-R = \{ (a,b) | a=|b| \}$
 - This is not symmetric
 - -4 is not related to itself
 - This is not asymmetric
 - 4 is related to itself
 - Note that it is antisymmetric

A relation is transitive if, for every (*a*,*b*)∈*R* and (*b*,*c*)∈*R*, then (*a*,*c*)∈*R*

https://manara.edu.sy/

- If a < b and b < c, then a < c
 Thus, < is transitive
- If a = b and b = c, then a = c
 Thus, = is transitive

Consider isAncestorOf()

- Let Alice be Bob's parent, and Bob be Claire's parent
- Thus, Alice is an ancestor of Bob, and Bob is an ancestor of Claire
- Thus, Alice is an ancestor of Claire
- Thus, isAncestorOf() is a transitive relation

Consider isParentOf()

- Let Alice be Bob's parent, and Bob be Claire's parent
- Thus, Alice is a parent of Bob, and Bob is a parent of Claire
- However, Alice is not a parent of Claire
- Thus, isParentOf() is not a transitive relation

https://manara.edu.sy/

Relations of relations

17

			_	_	
	=	<	>	≤	≥
Reflexive	X			Х	Х
Irreflexive		Х	Х		
Symmetric	Х				
Asymmetric		Х	Х		
Antisymmetric	Х			Х	Х
Transitive	Х	Х	Х	Х	Х

https://manara.edu.sy/

- There are two ways to combine relations *R*₁ and *R*₂
 - Via Boolean operators
 - Via relation "composition"

20

Combining relations via relational composition

- Let *R* be a relation from *A* to *B*, and *S* be a relation from *B* to *C*
 - Let $a \in A$, $b \in B$, and $c \in C$
 - -Let $(a,b) \in R$, and $(b,c) \in S$
 - Then the composite of R and S consists of the ordered pairs (*a*,*c*)

•We denote the relation by $S \circ R$

•Note that *S* comes first when writing the composition!

https://manara.edu.sy/

Combining relations via relational composition

- Let *M* be the relation "is mother of"
- Let F be the relation "is father of"
- What is *M*∘ *F*?
 - If $(a,b) \in F$, then a is the father of b
 - If $(b,c) \in M$, then b is the mother of c
 - Thus, *M* · *F* denotes the relation "maternal grandfather"
- What is *F* ∘ *M*?
 - If $(a,b) \in M$, then a is the mother of b
 - If $(b,c) \in F$, then *b* is the father of *c*
 - Thus, F M denotes the relation "paternal grandmother"
- What is *M* ∘ *M*?
 - If $(a,b) \in M$, then a is the mother of b
 - If $(b,c) \in M$, then *b* is the mother of *c*
 - Thus, M
 o M denotes the relation "maternal grandmother"
- Note that *M* and *F* are not transitive relations!!!

https://manara.edu.sy/

22

Combining relations via relational composition

- Given relation R
 - $R \circ R$ can be denoted by R^2
 - $-R^2 \circ R = (R \circ R) \circ R = R^3$
 - Example: M⁸ is your mother's mother's mother

https://manara.edu.sy/

Representing Relations

- Matrix review
- Two ways to represent relations
 - Via matrices
 - Via directed graphs

- · We will only be dealing with zero-one matrices
 - Each element in the matrix is either a 0 or a 1 $\,$

[1	0	0	0
0	1	0	0
1	0	1	0
1	0	1	0

- These matrices will be used for Boolean operations
 - 1 is true, 0 is false

 Given a matrix M, the transposition of M, denoted M^t, is the matrix obtained by switching the columns and rows of M

- A *join* of two matrices performs a Boolean OR on each relative entry of the matrices
 - Matrices must be the same size
 - Denoted by the or symbol: \lor

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \lor \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

https://manara.edu.sy/

- A *meet* of two matrices performs a Boolean AND on each relative entry of the matrices
 - Matrices must be the same size
 - Denoted by the or symbol: \wedge

1	0	0	0	0	1	1	0		0	0	0	0	
0 1	1	0	0	0	1	1	0	=	0	1	0	0	
1	0	1	0	0	0	1	1	=	0	0	1	0	
1	0	1	0	1	1	1 1 0	0		1	0	0	0	
						/manara							29

- A *Boolean product* of two matrices is similar to matrix multiplication
 - $c_{1,1} = a_{1,1} * b_{1,1} + a_{1,2} * b_{2,1} + a_{1,3} * b_{3,1} + a_{1,4} * b_{4,1}$
 - Instead of the sum of the products, it's the conjunction (and) of the disjunctions (ors)

$$c_{1,1} = a_{1,1} \land b_{1,1} \lor a_{1,2} \land b_{2,1} \lor a_{1,3} \land b_{3,1} \lor a_{1,4} \land b_{4,1}$$

- Denoted by the or symbol:

Relations using matrices

- List the elements of sets A and B in a particular order
 - Order doesn't matter, but we'll generally use ascending order
- Create a matrix

$$\mathbf{M}_{R} = [m_{ij}]$$

$$m_{ij} = \begin{cases} 1 & \text{if } (a_{i}, b_{j}) \in R \\ 0 & \text{if } (a_{i}, b_{j}) \notin R \end{cases}$$

https://manara.edu.sy/

- · Consider the relation of who is enrolled in which class
 - Let A = { Alice, Bob, Claire, Dan }
 - Let B = { CS101, CS201, CS202 }
 - $R = \{ (a,b) \mid person a is enrolled in course b \}$

	CS101	CS201	CS202	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
Alice	Х			0 1 1	
Bob		Х	Х	$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	
Claire				0 1 1	
Dan		Х	Х		
			https://ma	ara.edu.sy/	32

Relations using matrices

- What is it good for?
 - It is how computers view relations
 •A 2-dimensional array
 - Very easy to view relationship properties
- We will generally consider relations on a single set
 - In other words, the domain and co-domain are the same set

https://manara.edu.sy/

- And the matrix is square

• Consider a reflexive relation: ≤

– One which every element is related to itself
– Let A = { 1, 2, 3, 4, 5 }

https://manara.edu.sy/

$$\mathbf{M}_{\leq} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

If the center (main) diagonal is all 1's, a relation is reflexive

34

- Consider a reflexive relation: <
 - One which every element is *not* related to itself

$$-$$
Let A = { 1, 2, 3, 4, 5 }

$$\mathbf{M}_{\leq} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

If the center (main) diagonal is all 0's, a relation is irreflexive

https://manara.edu.sy/

Symmetry

- Consider an symmetric relation R
 - One which if *a* is related to *b* then *b* is related to *a* for all (*a,b*)
 - Let A = { 1, 2, 3, 4, 5 }

$$\mathbf{M}_{\leq} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

 If, for *every* value, it is the equal to the value in its transposed position, then the relation is symmetric

https://manara.edu.sy/

36

- Consider an asymmetric relation: <
 - One which if a is related to b then b is not related to a for all (a,b)
 - Let A = { 1, 2, 3, 4, 5 }

- If, for every value and the value in its transposed position, if they are not both 1, then the relation is asymmetric
- An asymmetric relation must also be irreflexive

Thus, the main₃₇

https://manara.edu.sy/diagonal must be all 0's

- Consider an antisymmetric relation: ≤
 - One which if *a* is related to *b* then *b* is *not* related to *a* unless *a=b* for all (*a,b*)

$$\mathbf{M}_{\leq} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- If, for every value and the value in its transposed position, if they are not both 1, then the relation is antisymmetric
- The center diagonal can have both 1's and 0's

https://manara.edu.sy/

- Consider an transitive relation: ≤
 - One which if *a* is related to *b* and *b* is related to *c* then *a* is related to *c* for all (*a*,*b*), (*b*,*c*) and (*a*,*c*)
 - Let A = { 1, 2, 3, 4, 5 }

Representing relations using directed graphs

- A directed graph consists of:
 - A set V of vertices (or nodes)
 - A set *E* of edges (or arcs)
 - If (a, b) is in the relation, then there is an arrow from a to b
- Will generally use relations on a single set
- Consider our relation $R = \{ (a,b) \mid a \text{ divides } b \}$
- Old way:

- Consider a reflexive relation: \leq
 - One which every element is related to itself

$$-$$
 Let A = { 1, 2, 3, 4, 5 }

- Consider a reflexive relation: <
 - One which every element is not related to itself
 - Let A = { 1, 2, 3, 4, 5 }

If every node does *not* have a loop, a relation is irreflexive

44

https://manara.edu.sy/

- Consider an symmetric relation R
 - One which if *a* is related to *b* then *b* is related to *a* for all (*a,b*)
 - Let A = { 1, 2, 3, 4, 5 }

- Consider an asymmetric relation: <
 - One which if *a* is related to *b* then *b* is *not* related to *a* for all (*a,b*)
 - Let A = { 1, 2, 3, 4, 5 }

- A digraph is asymmetric if:
- 1. If, for every edge, there is *not* an edge in the other direction, then the relation is asymmetric
- 2. Loops are *not* allowed in an asymmetric digraph (recall it must be

https://manara.ed

- Consider an antisymmetric relation: ≤
 - One which if *a* is related to *b* then *b* is *not* related to *a* unless *a=b* for all (*a,b*)
 - Let A = { 1, 2, 3, 4, 5 }

- If, for every edge, there is not an edge in the other direction, then the relation is antisymmetric
 - Loops are allowed in the digraph

47

https://manara.edu.sy/

Transitivity

- Consider an transitive relation: ≤
 - One which if *a* is related to *b* and *b* is related to *c* then *a* is related to *c* for all (*a*,*b*), (*b*,*c*) and (*a*,*c*)
 - Let A = { 1, 2, 3, 4, 5 }

Equivalence Relations

 Certain combinations of relation properties are very useful

- We won't have a chance to see many applications in this course

- In this set we will study equivalence relations
 A relation that is reflexive, symmetric and transitive
- Next slide set we will study partial orderings
 A relation that is reflexive, antisymmetric, and transitive
- The difference is whether the relation is symmetric or antisymmetric

51

- A relation on a set *A* is called an *equivalence relation* if it is reflexive, symmetric, and transitive
- Consider relation *R* = { (*a*,*b*) | *len*(*a*) = *len*(*b*) }
 - Where *len*(*a*) means the length of string *a*
 - It is reflexive: *len*(*a*) = *len*(*a*)
 - It is symmetric: if *len(a)* = *len*(b), then *len(b)* = *len(a)*
 - It is transitive: if *len(a)* = *len*(b) and *len*(b) = *len*(c), then *len*(a) = *len*(c)
 - Thus, R is a equivalence relation

Equivalence relation

- Consider the relation R = { (a,b) | m | a-b }
 Called "congruence modulo m"
- Is it reflexive: $(a,a) \in R$ means that $m \mid a-a = -a a = 0$, which is divisible by m
- Is it symmetric: if $(a,b) \in R$ then $(b,a) \in R$
 - (*a,b*) means that $m \mid a-b$
 - Or that km = a-b. Negating that, we get b-a = -km
 - Thus, $m \mid b$ -a, so (b,a) $\in R$
- Is it transitive: if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$
 - (a,b) means that $m \mid a-b$, or that km = a-b
 - (b,c) means that $m \mid b-c$, or that lm = b-c
 - (a,c) means that $m \mid a-c$, or that nm = a-c
 - Adding these two, we get km+lm = (a-b) + (b-c)
 - Or (k+l)m = a-c
 - Thus, *m* divides *a*-*c*, where n = k+l
- Thus, congruence modulo *m* is an equivalence relation

Dr. lyad Hatem , S11 https://manara.edu.sy/ 53

- Which of these relations on {0, 1, 2, 3} are equivalence relations? Determine the properties of an equivalence relation that the others lack
- a) { (0,0), (1,1), (2,2), (3,3) }
 - Has all the properties, thus, is an equivalence relation
- b) { (0,0), (0,2), (2,0), (2,2), (2,3), (3,2), (3,3) }
 Not reflexive: (1,1) is missing
 - Not transitive: (0,2) and (2,3) are in the relation, but not (0,3)
- c) { (0,0), (1,1), (1,2), (2,1), (2,2), (3,3) }
- Has all the properties, thus, is an equivalence relation
 d) { (0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2) (3,3) }
- Not transitive: (1,3) and (3,2) are in the relation, but not (1,2)
 - Not transitive. (1,3) and (3,2) are in the relation, but not (1,2)
- e) { (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3) }
 - Not symmetric: (1,2) is present, but not (2,1)
 Not transitive: (2,0) and (0,1) are in the relation
 - Not transitive: (2,0) and (0,1) are in the relation, but not (2,1)