## Relations and Their Properties

## Whats a relation

- Let $A$ and $B$ be sets. A binary relation $R$ is a subset of $A$ $\times B$
- Example
- Let $A$ be the students in a the CS major
- $A$ = \{Alice, Bob, Claire, Dan\}
- Let $B$ be the courses the department offers $\cdot B=\{C S 101$, CS201, CS202 $\}$
- We specify relation $R=A \times B$ as the set that lists all students $a \in$ $A$ enrolled in class $b \in B$
- $R=\{$ (Alice, CS101), (Bob, CS201), (Bob, CS202),
(Dan, CS201), (Dan, CS202) \}


## More retation examples

- Another relation example:
- Let $A$ be the cities in the US
- Let $B$ be the states in the US
- We define $R$ to mean $a$ is a city in state $b$
- Thus, the following are in our relation:
-(C'ville, VA)
-(Philadelphia, PA)
-(Portland, MA)
-(Portland, OR)
-etc...
- Most relations we will see deal with ordered pairs of integers


## Representing relations

We can represent relations graphically:

We can represent relations in a table:

|  | CS101 | CS201 | CS202 |
| :--- | :---: | :---: | :---: |
| Alice | X |  |  |
| Bob |  | X | X |
| Claire |  |  |  |
| Dan |  | X | X |

## Relafiens on a set

- A relation on the set $A$ is a relation from $A$ to $A$
- In other words, the domain and co-domain are the same set
- We will generally be studying relations of this type


## Relatiens on a set

- Let $A$ be the set $\{1,2,3,4\}$
- Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$
- $\quad R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$



## More examples

- Consider some relations on the set $\mathbf{Z}$
- Are the following ordered pairs in the relation?

$$
(1,1) \quad(1,2) \quad(2,1) \quad(1,-1) \quad(2,2)
$$

- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b)|a=| b /\}$
- $R_{4}=\{(a, b) \mid a=b\}$
$x$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$
$x \quad x$
$x$
X X X X


## Relation properties

- Six properties of relations we will study:
- انعكاسية Reflexive
- الانعكاسية|rreflexive
- متماثلة Symmetric
- غير متماثلة Asymmetric
- ضد متماثلة Antisymmetric
- متعدية Transitive
- A relation is reflexive if every element is related to itself
- Or, $(a, a) \in R$
- Examples of reflexive relations:
$-\quad=, \leq, \geq$
- Examples of relations that are not reflexive:
- <, >
- A relation is irreflexive if every element is not related to itself
- Or, $(a, a) \notin R$
- Irreflexivity is the opposite of reflexivity
- Examples of irreflexive relations:
- <, >
- Examples of relations that are not irreflexive:
$-=, \leq, \geq$


## Reflexivisy vs. Irreflexivity

- A relation can be neither reflexive nor irreflexive
- Some elements are related to themselves, others are not
- We will see an example of this later on

- A relation is symmetric if, for every $(a, b) \in R$, then $(b, a) \in R$
- Examples of symmetric relations:
$-=$, isTwinOf()
- Examples of relations that are not symmetric:
$-<,>, \leq, \geq$
- A relation is asymmetric if, for every $(a, b) \in R$, then $(b, a) \notin R$
- Asymmetry is the opposite of symmetry
- Examples of asymmetric relations:
- <, >
- Examples of relations that are not asymmetric:
$-=$, isTwinOf( $), \leq, \geq$


## Antisymmetry

- A relation is antisymmetric if, for every $(a, b) \in R$, then $(b, a) \in R$ is true only when $a=b$
- Antisymmetry is not the opposite of symmetry
- Examples of antisymmetric relations:
$-=, \leq, \geq$
- Examples of relations that are not antisymmetric:
$-<,>$, isTwinOf()


# Noteson *symmetric Felations 

- A relation can be neither symmetric or asymmetric
$-\mathrm{R}=\{(\mathrm{a}, \mathrm{b})|\mathrm{a}=|\mathrm{b}|\}$
- This is not symmetric
-4 is not related to itself
- This is not asymmetric
$\bullet 4$ is related to itself
- Note that it is antisymmetric
- A relation is transitive if, for every $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$
- If $a<b$ and $b<c$, then $a<c$
- Thus, < is transitive
- If $a=b$ and $b=c$, then $a=c$
- Thus, = is transitive


## Transikivity examples

- Consider isAncestorOf()
- Let Alice be Bob's parent, and Bob be Claire's parent
- Thus, Alice is an ancestor of Bob, and Bob is an ancestor of Claire
- Thus, Alice is an ancestor of Claire
- Thus, isAncestorOf() is a transitive relation
- Consider isParentOf()
- Let Alice be Bob's parent, and Bob be Claire's parent
- Thus, Alice is a parent of Bob, and Bob is a parent of Claire
- However, Alice is not a parent of Claire
- Thus, isParentOf() is not a transitive relation


# Relations of relations <br> جَــامعة <br> summary 

|  | $=$ | $<$ | $>$ | $\leq$ | $\geq$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Reflexive | X |  |  | X | X |
| Irreflexive |  | X | X |  |  |
| Symmetric | X |  |  |  |  |
| Asymmetric |  | X | X |  |  |
| Antisymmetric | X |  |  | X | X |
| Transitive | X | X | X | X | X |

## Combining relations

- There are two ways to combine relations $R_{1}$ and $R_{2}$
- Via Boolean operators
- Via relation "composition"


## Combinling relations via Booleán operators

- Consider two relations $R_{\geq}$and $R_{\leq}$
- We can combine them as follows:
- $R_{\geq} \cup R_{\leq}=$all numbers $\geq \mathrm{OR} \leq$
-That's all the numbers
$-R_{\geq} \cap R_{\leq}=$all numbers $\geq \mathrm{AND} \leq$
-That's all numbers equal to
- $R_{\geq} \oplus R_{\leq}=$all numbers $\geq$or $\leq$, but not both
-That's all numbers not equal to
$-R_{\geq}-R_{\leq}=$all numbers $\geq$that are not also $\leq$
-That's all numbers strictly greater than
$-R_{\leq}-R_{\geq}=$all numbers $\leq$that are not also $\geq$
-That's all numbers strictly less than
- Note that it's possible the result is the empty set


## Combiniling relations via relationăl composition

- Let $R$ be a relation from $A$ to $B$, and $S$ be a relation from $B$ to $C$
- Let $a \in A, b \in B$, and $c \in C$
- Let $(a, b) \in R$, and $(b, c) \in S$
- Then the composite of $R$ and $S$ consists of the ordered pairs (a,c)
-We denote the relation by $S \circ R$
- Note that $S$ comes first when writing the composition!


## Combiniing relations via relationtal composition

- Let $M$ be the relation "is mother of"
- Let $F$ be the relation "is father of"
- What is $M \circ F$ ?
- If $(a, b) \in F$, then $a$ is the father of $b$
- If $(b, c) \in M$, then $b$ is the mother of $c$
- Thus, $M \circ F$ denotes the relation "maternal grandfather"
- What is $F \circ M$ ?
- If $(a, b) \in M$, then $a$ is the mother of $b$
- If $(b, c) \in F$, then $b$ is the father of $c$
- Thus, $F \circ M$ denotes the relation "paternal grandmother"
- What is $M \circ M$ ?
- If $(a, b) \in M$, then $a$ is the mother of $b$
- If $(b, c) \in M$, then $b$ is the mother of $c$
- Thus, $M \circ M$ denotes the relation "maternal grandmother"
- Note that $M$ and $F$ are not transitive relations!!!


## Combiniling relations via relationăal composition

- Given relation $R$
- $R \circ R$ can be denoted by $R^{2}$
- $R^{2} \circ R=(R \circ R) \circ R=R^{3}$
- Example: $N \beta$ is your mother's mother's mother

Representing Relations

# In this slide set... 

- Matrix review
- Two ways to represent relations
- Via matrices
- Via directed graphs


## Mątrix review

- We will only be dealing with zero-one matrices
- Each element in the matrix is either a 0 or a 1
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]$
- These matrices will be used for Boolean operations
- 1 is true, 0 is false


## Matrixemransposition

- Given a matrix $\mathbf{M}$, the transposition of $\mathbf{M}$, denoted $\mathbf{M}^{\mathrm{t}}$, is the matrix obtained by switching the columns and rows of $\mathbf{M}$

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \\
& \mathbf{M}^{t}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{M}=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right]
$$

- In a "square" matrix, the main diagonal stays unchanged

$$
\mathbf{M}^{t}=\left[\begin{array}{cccc}
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
4 & 8 & 12 & 16
\end{array}\right]
$$

- A join of two matrices performs a Boolean OR on each relative entry of the matrices
- Matrices must be the same size
- Denoted by the or symbol: v

- A meet of two matrices performs a Boolean AND on each relative entry of the matrices
- Matrices must be the same size
- Denoted by the or symbol: $\wedge$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \wedge\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

## Matrix Beolean product

- A Boolean product of two matrices is similar to matrix multiplication

$$
c_{1,1}=a_{1,1} * b_{1,1}+a_{1,2} * b_{2,1}+a_{1,3} * b_{3,1}+a_{1,4} * b_{4,1}
$$

- Instead of the sum of the products, it's the conjunction (and) of the disjunctions (ors)

$$
c_{1,1}=a_{1,1} \wedge b_{1,1} \vee a_{1,2} \wedge b_{2,1} \vee a_{1,3} \wedge b_{3,1} \vee a_{1,4} \wedge b_{4,1}
$$

- Denoted by the or symbol:
$\left.\left[\begin{array}{llll}\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 1 & \mathbf{0} & \mathbf{1} & \mathbf{0}\end{array}\right] \odot\left[\begin{array}{llll}\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0}\end{array}\right]=\left[\begin{array}{llll}\mathbf{0} & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]\right]$ tr://manara.edu.sy


## Relations using matrices

- List the elements of sets $A$ and $B$ in a particular order
- Order doesn't matter, but we'll generally use ascending order
- Create a matrix

$$
\begin{array}{r}
\mathbf{M}_{R}=\left[m_{i j}\right] \\
m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\
0 & \text { if }\left(a_{i}, b_{j}\right) \notin R\end{cases}
\end{array}
$$

## Relations using matrices

- Consider the relation of who is enrolled in which class
- Let A = \{ Alice, Bob, Claire, Dan \}
- Let B = \{ CS101, CS201, CS202 \}
- $R=\{(a, b) \mid$ person $a$ is enrolled in course $b\}$

|  | CS101 | CS201 | CS202 |
| :--- | :---: | :---: | :---: |
| Alice | X |  |  |
| Bob |  | X | X |
| Claire |  |  |  |
| Dan |  | X | X |

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

## Relations using matrices

- What is it good for?
- It is how computers view relations
-A 2-dimensional array
- Very easy to view relationship properties
- We will generally consider relations on a single set
- In other words, the domain and co-domain are the same set
- And the matrix is square
- Consider a reflexive relation: $\leq$
- One which every element is related to itself
- Let $A=\{1,2,3,4,5\}$
$\mathbf{M}_{\leq}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] \quad \begin{aligned} & \text { If the center (main) } \\ & \text { diagonal is all 1's, } a \\ & \text { relation is reflexive }\end{aligned}$
- Consider a reflexive relation: <
- One which every element is not related to itself
- Let $A=\{1,2,3,4,5\}$
$\mathbf{M}_{\leq}=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \quad \begin{aligned} & \text { If the center (main) } \\ & \text { diagonal is all 0's, a } \\ & \text { relation is irreflexive }\end{aligned}$
- Consider an symmetric relation $R$
- One which if $a$ is related to $b$ then $b$ is related to $a$ for all $(a, b)$
- Let $\mathrm{A}=\{1,2,3,4,5\}$
$\mathbf{M}_{\leq}=\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]$
- If, for every value, it is the equal to the value in its transposed position, then the relation is symmetric
- Consider an asymmetric relation: <
- One which if $a$ is related to $b$ then $b$ is not related to $a$ for all $(a, b)$ - Let $\mathrm{A}=\{1,2,3,4,5\}$
- If, for every value and the value in its

$$
\mathbf{M}_{\leq}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$ transposed position, if they are not both 1, then the relation is asymmetric

- An asymmetric relation must also be irreflexive
- Thus, the main hteps/I/manareedusydidiagonal must be all 0 's


## Antisymmetry

- Consider an antisymmetric relation: $\leq$
- One which if $a$ is related to $b$ then $b$ is not related to $a$ unless $a=b$ for all ( $a, b$ )
- Let $A=\{1,2,3,4,5\}$
- If, for every value and the value in its
$\mathbf{M}_{\leq}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ transposed position, if they are not both 1 , then the relation is antisymmetric
- The center diagonal can have both 1's and 0 's

- Consider an transitive relation: $\leq$
- One which if $a$ is related to $b$ and $b$ is related to $c$ then $a$ is related to $c$ for all $(a, b),(b, c)$ and ( $a, c$ )
- Let $A=\{1,2,3,4,5\}$
- If, for every spot $(a, b)$

$$
\mathbf{M}_{\leq}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$ and ( $b, c$ ) that each have a 1 , there is a 1 at $(a, c)$, then the relation is transitive

- Matrices don't show this property easily


## Combining relations: via Boơlean operators

- Let: $\mathbf{M}_{R}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \quad \mathbf{M}_{S}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
- Join: $\quad \mathbf{M}_{R \cup S}=\mathbf{M}_{R} \vee \mathbf{M}_{S}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
- Meet: $\quad \mathbf{M}_{R \cap S}=\mathbf{M}_{R} \wedge \mathbf{M}_{S}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad 40$


## Combining relations: via relation composition

- Let:
- But why is this the case?

$$
\begin{aligned}
& \mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}=\mathrm{b}\left[\begin{array}{lll}
\mathrm{b} & \mathrm{~h} & \mathrm{i} \\
\mathrm{c} & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

## Represénting relations using difected graphs

- A directed graph consists of:
- A set $V$ of vertices (or nodes)
- A set $E$ of edges (or arcs)
- If $(a, b)$ is in the relation, then there is an arrow from $a$ to $b$
- Will generally use relations on a single set
- Consider our relation $R=\{(a, b) \mid a$ divides $b\}$
- Old way:

- Consider a reflexive relation: $\leq$
- One which every element is related to itself
- Let $\mathrm{A}=\{1,2,3,4,5\}$



## leeflexivity

- Consider a reflexive relation: <
- One which every element is notrelated to itself
- Let $\mathrm{A}=\{1,2,3,4,5\}$


If every node does not have a loop, a relation is irreflexive

- Consider an symmetric relation $R$
- One which if $a$ is related to $b$ then $b$ is related to $a$ for all $(a, b)$
- Let $A=\{1,2,3,4,5\}$


Asymmetry

- Consider an asymmetric relation: <
- One which if $a$ is related to $b$ then $b$ is not related to $a$ for all $(a, b)$
- Let $\mathrm{A}=\{1,2,3,4,5\}$
- A digraph is asymmetric if:


1. If, for every edge, there is not an edge in the other direction, then the relation is asymmetric
2. Loops are not allowed in an asymmetric digraph
https://manara.edipr'eflexive)

## Antisymmetry

- Consider an antisymmetric relation: $\leq$
- One which if $a$ is related to $b$ then $b$ is not related to $a$ unless $a=b$ for all ( $a, b$ )
- Let $A=\{1,2,3,4,5\}$



## Dansitivity

- Consider an transitive relation: $\leq$
- One which if $a$ is related to $b$ and $b$ is related to $c$ then $a$ is related to $c$ for all $(a, b),(b, c)$ and $(a, c)$
- Let $\mathrm{A}=\{1,2,3,4,5\}$

- A digraph is transitive if, for there is a edge from $a$ to $c$ when there is a edge from $a$ to $b$ and from $b$ to $c$


## Sample questions



Which of the graphs are reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive

|  | 23 | 24 | 25 | 26 | 27 | 28 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Reflexive |  | Y |  | Y |  | Y |
| Irreflexive | Y |  | Y |  |  |  |
| Symmetric |  |  |  |  | Y | Y |
| Asymmetric |  |  | Y |  |  |  |
| Anti- <br> symmetric |  | Y | Y |  |  |  |
| Transitive |  |  |  |  |  | Y |

## Equivalence Relations

- Certain combinations of relation properties are very useful
- We won't have a chance to see many applications in this course
- In this set we will study equivalence relations
- A relation that is reflexive, symmetric and transitive
- Next slide set we will study partial orderings
- A relation that is reflexive, antisymmetric, and transitive
- The difference is whether the relation is symmetric or antisymmetric

$$
\begin{gathered}
\text { Dr. Iyad Hatem, S11 }
\end{gathered}
$$

## Equivatence relations

- A relation on a set $A$ is called an equivalence relation if it is reflexive, symmetric, and transitive
- Consider relation $R=\{(a, b) \mid \operatorname{len}(a)=\operatorname{len}(b)\}$
- Where len $(a)$ means the length of string $a$
- It is reflexive: $\operatorname{len}(a)=\operatorname{len}(a)$
- It is symmetric: if $\operatorname{len}(a)=\operatorname{len}(b)$, then $\operatorname{len}(b)=\operatorname{len}(a)$
- It is transitive: if $\operatorname{len}(\mathrm{a})=\operatorname{len}(\mathrm{b})$ and $\operatorname{len}(\mathrm{b})=\operatorname{len}(\mathrm{c})$, then $\operatorname{len}(\mathrm{a})=$ len(c)
- Thus, $R$ is a equivalence relation


## Equivalence relation example

- Consider the relation $R=\{(a, b)|m| a-b\}$
- Called "congruence modulo $m$ "
- Is it reflexive: $(\mathrm{a}, \mathrm{a}) \in R$ means that $m \mid a-a$ - $a-a=0$, which is divisible by $m$
- Is it symmetric: if $(a, b) \in R$ then $(b, a) \in R$
- (a,b) means that $m \mid a-b$
- Or that $k m=a-b$. Negating that, we get $b-a=-k m$
- Thus, $m \mid b$-a, so (b,a) $\in R$
- Is it transitive: if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$
- $(a, b)$ means that $m \mid a-b$, or that $k m=a-b$
- $(b, c)$ means that $m \mid b-c$, or that $/ m=b-c$
- ( $a, c$ ) means that $m \mid a-c$, or that $n m=a-c$
- Adding these two, we get $k m+/ m=(a-b)+(b-c)$
- $\operatorname{Or}(k+1) m=a-c$
- Thus, $m$ divides $a-c$, where $n=k+1$
- Thus, congruence modulo $m$ is an equivalence relation


## Sample questions

- Which of these relations on $\{0,1,2,3\}$ are equivalence relations?

Determine the properties of an equivalence relation that the others lack
a) $\quad\{(0,0),(1,1),(2,2),(3,3)\}$

- Has all the properties, thus, is an equivalence relation
b) $\quad\{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
- Not reflexive: $(1,1)$ is missing
- Not transitive: $(0,2)$ and $(2,3)$ are in the relation, but not $(0,3)$
c) $\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3)\}$
- Has all the properties, thus, is an equivalence relation
d) $\{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2)(3,3)\}$
- Not transitive: $(1,3)$ and $(3,2)$ are in the relation, but not $(1,2)$
e) $\{(0,0),(0,1)(0,2),(1,0),(1,1),(1,2),(2,0),(2,2),(3,3)\}$
- Not symmetric: $(1,2)$ is present, but not $(2,1)$
- Not transitive: $(2,0)$ and $(0,1)$ are in the relation, but not $(2,1)$

