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What is a relation

• Let A and B be sets.  A binary relation R is a subset of  A
 B

• Example

– Let A be the students in a the CS major

•A = {Alice, Bob, Claire, Dan}

– Let B be the courses the department offers

•B = {CS101, CS201, CS202}

– We specify relation R = A  B as the set that lists all students a 

A enrolled in class b  B

– R = { (Alice, CS101), (Bob, CS201), (Bob, CS202),

(Dan, CS201), (Dan, CS202) }
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More relation examples

• Another relation example:
– Let A be the cities in the US

– Let B be the states in the US

– We define R to mean a is a city in state b

– Thus, the following are in our relation:

•(C’ville, VA)

•(Philadelphia, PA)

•(Portland, MA)

•(Portland, OR)

•etc…

• Most relations we will see deal with ordered pairs of 
integers
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Representing relations

4

CS101

CS201

CS202

Alice

Bob

Claire

Dan

CS101 CS201 CS202

Alice X

Bob X X

Claire

Dan X X

We can represent 

relations graphically:

We can represent 

relations in a table:
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Relations on a set

• A relation on the set A is a relation from A
to A

– In other words, the domain and co-domain are 

the same set

– We will generally be studying relations of this 

type

5
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Relations on a set

• Let A be the set { 1, 2, 3, 4 }

• Which ordered pairs are in the relation R = { (a,b) | a divides b }

• R = { (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4) }

6

1

2

3

4

1

2

3

4

R 1 2 3 4

1 X X X X

2 X X

3 X

4 X
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More examples

• Consider some relations on the set Z

• Are the following ordered pairs in the relation?

(1,1)   (1,2)   (2,1)   (1,-1)   (2,2)

• R1 = { (a,b) | a≤b }

• R2 = { (a,b) | a>b }

• R3 = { (a,b) | a=|b| }

• R4 = { (a,b) | a=b }

• R5 = { (a,b) | a=b+1 }

• R6 = { (a,b) | a+b≤3 }

7
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Relation properties

• Six properties of relations we will study:

– انعكاسية Reflexive

– Irreflexiveلاانعكاسية

– Symmetricمتماثلة

– متماثلةغير Asymmetric

– متماثلةضد Antisymmetric

– متعدية Transitive

8
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Reflexivity

• A relation is reflexive if every element is related to itself

– Or, (a,a)R

• Examples of reflexive relations:

– =, ≤, ≥

• Examples of relations that are not reflexive:

– <, >

9
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Irreflexivity

• A relation is irreflexive if every element is not related to 

itself

– Or, (a,a)R

– Irreflexivity is the opposite of reflexivity

• Examples of irreflexive relations:

– <, >

• Examples of relations that are not irreflexive:

– =, ≤, ≥

10
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Reflexivity vs. Irreflexivity

• A relation can be neither reflexive nor 

irreflexive

– Some elements are related to themselves, 

others are not

• We will see an example of this later on

11
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Symmetry

• A relation is symmetric if, for every (a,b)R, then (b,a)R

• Examples of symmetric relations:

– =, isTwinOf()

• Examples of relations that are not symmetric:

– <, >, ≤, ≥

12
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Asymmetry

• A relation is asymmetric if, for every (a,b)R, then 

(b,a)R

– Asymmetry is the opposite of symmetry

• Examples of asymmetric relations:

– <, >

• Examples of relations that are not asymmetric:

– =, isTwinOf(), ≤, ≥

13
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Antisymmetry

• A relation is antisymmetric if, for every (a,b)R, then 

(b,a)R is true only when a=b

– Antisymmetry is not the opposite of symmetry

• Examples of antisymmetric relations:

– =, ≤, ≥

• Examples of relations that are not antisymmetric:

– <, >, isTwinOf()

14
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Notes on *symmetric 

relations
• A relation can be neither symmetric or 

asymmetric

– R = { (a,b) | a=|b| }

– This is not symmetric

•-4 is not related to itself

– This is not asymmetric

•4 is related to itself

– Note that it is antisymmetric

15
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Transitivity

• A relation is transitive if, for every (a,b)R
and (b,c)R, then (a,c)R

• If a < b and b < c, then a < c

– Thus, < is transitive

• If a = b and b = c, then a = c

– Thus, = is transitive

16
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Transitivity examples

• Consider isAncestorOf()
– Let Alice be Bob’s parent, and Bob be Claire’s parent

– Thus, Alice is an ancestor of Bob, and Bob is an ancestor of 
Claire

– Thus, Alice is an ancestor of Claire

– Thus, isAncestorOf() is a transitive relation

• Consider isParentOf()
– Let Alice be Bob’s parent, and Bob be Claire’s parent

– Thus, Alice is a parent of Bob, and Bob is a parent of Claire

– However, Alice is not a parent of Claire

– Thus, isParentOf() is not a transitive relation

17
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Relations of relations 

summary

18

= < > ≤ ≥

Reflexive X X X

Irreflexive X X

Symmetric X

Asymmetric X X

Antisymmetric X X X

Transitive X X X X X
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Combining relations

• There are two ways to combine relations 

R1 and R2

– Via Boolean operators

– Via relation “composition”

19
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Combining relations via 

Boolean operators
• Consider two relations R≥ and R≤
• We can combine them as follows:

– R≥ U R≤ = all numbers ≥ OR ≤
•That’s all the numbers

– R≥ ∩ R≤ = all numbers ≥ AND ≤
•That’s all numbers equal to

– R≥  R≤ = all numbers ≥ or ≤, but not both
•That’s all numbers not equal to

– R≥ - R≤ = all numbers ≥ that are not also ≤
•That’s all numbers strictly greater than

– R≤ - R≥ = all numbers ≤ that are not also ≥
•That’s all numbers strictly less than

• Note that it’s possible the result is the empty set

20
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Combining relations via 

relational composition
• Let R be a relation from A to B, and S be a 

relation from B to C

– Let a  A, b  B, and c  C

– Let (a,b)  R, and (b,c)  S

– Then the composite of R and S consists of the 

ordered pairs (a,c)

•We denote the relation by S ◦ R

•Note that S comes first when writing the 

composition!

21
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Combining relations via 

relational composition
• Let M be the relation “is mother of”

• Let F be the relation “is father of”

• What is M ◦ F?
– If (a,b)  F, then a is the father of b
– If (b,c)  M, then b is the mother of c

– Thus, M ◦ F denotes the relation “maternal grandfather”

• What is F ◦ M?
– If (a,b)  M, then a is the mother of b

– If (b,c)  F, then b is the father of c
– Thus, F ◦ M denotes the relation “paternal grandmother”

• What is M ◦ M?
– If (a,b)  M, then a is the mother of b

– If (b,c)  M, then b is the mother of c
– Thus, M ◦ M denotes the relation “maternal grandmother”

• Note that M and F are not transitive relations!!!

22
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Combining relations via 

relational composition
• Given relation R

– R ◦ R can be denoted by R2

– R2 ◦ R = (R ◦ R) ◦ R = R3

– Example: M3 is your mother’s mother’s 

mother

23
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Representing Relations

24
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In this slide set…

• Matrix review

• Two ways to represent relations

– Via matrices

– Via directed graphs

25
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Matrix review

• We will only be dealing with zero-one matrices

– Each element in the matrix is either a 0 or a 1

• These matrices will be used for Boolean operations

– 1 is true, 0 is false

26
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Matrix transposition

• Given a matrix M, the transposition of M, denoted Mt, is 
the matrix obtained by switching the columns and rows 
of M

• In a “square” matrix, the main 
diagonal stays unchanged 27
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Matrix join

• A join of two matrices performs a Boolean 

OR on each relative entry of the matrices

– Matrices must be the same size

– Denoted by the or symbol: 

28
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Matrix meet

• A meet of two matrices performs a 

Boolean AND on each relative entry of the 

matrices

– Matrices must be the same size

– Denoted by the or symbol: 

29
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Matrix Boolean product

• A Boolean product of two matrices is similar to 

matrix multiplication

– Instead of the sum of the products, it’s the conjunction 

(and) of the disjunctions (ors)

– Denoted by the or symbol: 

30
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Relations using matrices

• List the elements of sets A and B in a particular order

– Order doesn’t matter, but we’ll generally use ascending order

• Create a matrix

31

][ ijR m=M
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Rba
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Relations using matrices

• Consider the relation of who is enrolled in which class

– Let A = { Alice, Bob, Claire, Dan }

– Let B = { CS101, CS201, CS202 }

– R = { (a,b) | person a is enrolled in course b }

32
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000
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001

RM

CS101 CS201 CS202

Alice X

Bob X X

Claire

Dan X X
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Relations using matrices

• What is it good for?

– It is how computers view relations

•A 2-dimensional array

– Very easy to view relationship properties

• We will generally consider relations on a single 

set

– In other words, the domain and co-domain are the 

same set

– And the matrix is square

33
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Reflexivity

• Consider a reflexive relation: ≤

– One which every element is related to itself

– Let A = { 1, 2, 3, 4, 5 }

34
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If the center (main)

diagonal is all 1’s, a

relation is reflexive
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Irreflexivity

• Consider a reflexive relation: <

– One which every element is not related to 

itself

– Let A = { 1, 2, 3, 4, 5 }

35
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M

If the center (main)

diagonal is all 0’s, a

relation is irreflexive
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Symmetry

• Consider an symmetric relation R

– One which if a is related to b then b is related to a for all (a,b)

– Let A = { 1, 2, 3, 4, 5 }

36
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M

• If, for every value, it is

the equal to the value in

its transposed position,

then the relation is

symmetric
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Asymmetry

• Consider an asymmetric relation: <

– One which if a is related to b then b is not related to a for all (a,b)

– Let A = { 1, 2, 3, 4, 5 }

37
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• If, for every value and

the value in its

transposed position, if

they are not both 1,

then the relation is

asymmetric

• An asymmetric relation

must also be irreflexive

• Thus, the main

diagonal must be all 0’s
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Antisymmetry

• Consider an antisymmetric relation: ≤

– One which if a is related to b then b is not related to a unless a=b
for all (a,b)

– Let A = { 1, 2, 3, 4, 5 }

38
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• If, for every value

and the value in its

transposed position,

if they are not both 1,

then the relation is

antisymmetric

• The center diagonal

can have both 1’s

and 0’s
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Transitivity

• Consider an transitive relation: ≤

– One which if a is related to b and b is related to c then a is 

related to c for all (a,b), (b,c) and (a,c)

– Let A = { 1, 2, 3, 4, 5 }

39























=

10000

11000

11100

11110

11111

M

• If, for every spot (a,b)

and (b,c) that each

have a 1, there is a 1

at (a,c), then the

relation is transitive

• Matrices don’t show

this property easily
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Combining relations: 

via Boolean operators

• Let:

• Join:

• Meet:

40
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Combining relations: 

via relation composition

• Let:

• But why is this the case?

41
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Representing relations 

using directed graphs
• A directed graph consists of:

– A set V of vertices (or nodes)

– A set E of edges (or arcs)

– If (a, b) is in the relation, then there is an arrow from a to b

• Will generally use relations on a single set

• Consider our relation R = { (a,b) | a divides b }

• Old way:

42

1

2

3

4

1

2

3

4

1 2

3 4
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Reflexivity

• Consider a reflexive relation: ≤

– One which every element is related to itself

– Let A = { 1, 2, 3, 4, 5 }

43

If every node has a

loop, a relation is

reflexive

1 2

5 3

4
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Irreflexivity

• Consider a reflexive relation: <

– One which every element is not related to itself

– Let A = { 1, 2, 3, 4, 5 }

44

If every node does

not have a loop, a

relation is irreflexive

1 2

5 3

4
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Symmetry

• Consider an symmetric relation R

– One which if a is related to b then b is related to a for all (a,b)

– Let A = { 1, 2, 3, 4, 5 }

45

• If, for every edge, there

is an edge in the other

direction, then the

relation is symmetric

• Loops are allowed, and

do not need edges in the

“other” direction

1 2

5 3

4 Note that this relation is neither 

reflexive nor irreflexive!

Called anti-

parallel pairs
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Asymmetry

• Consider an asymmetric relation: <

– One which if a is related to b then b is not related to a for all (a,b)

– Let A = { 1, 2, 3, 4, 5 }

46

• A digraph is asymmetric if:

1. If, for every edge, there is

not an edge in the other

direction, then the relation

is asymmetric

2. Loops are not allowed in

an asymmetric digraph

(recall it must be

irreflexive)

1 2

5 3

4
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Antisymmetry

• Consider an antisymmetric relation: ≤

– One which if a is related to b then b is not related to a unless a=b
for all (a,b)

– Let A = { 1, 2, 3, 4, 5 }

47

1 2

5 3

4

• If, for every edge, there is

not an edge in the other

direction, then the relation

is antisymmetric

• Loops are allowed in the

digraph
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Transitivity

• Consider an transitive relation: ≤

– One which if a is related to b and b is related to c then a is 

related to c for all (a,b), (b,c) and (a,c)

– Let A = { 1, 2, 3, 4, 5 }

48

1 2

5 3

4

• A digraph is transitive if, for

there is a edge from a to c
when there is a edge from

a to b and from b to c
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Sample questions

49

Which of the graphs are reflexive, 

irreflexive, symmetric, asymmetric, 

antisymmetric, or transitive

23 24 25 26 27 28

Reflexive Y Y Y

Irreflexive Y Y

Symmetric Y Y

Asymmetric Y

Anti-
symmetric

Y Y

Transitive Y
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Equivalence Relations

Dr. Iyad Hatem , S11 50
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Introduction

• Certain combinations of relation properties are very 
useful
– We won’t have a chance to see many applications in this course

• In this set we will study equivalence relations
– A relation that is reflexive, symmetric and transitive

• Next slide set we will study partial orderings
– A relation that is reflexive, antisymmetric, and transitive

• The difference is whether the relation is symmetric or 
antisymmetric

Dr. Iyad Hatem , S11 51
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Equivalence relations

• A relation on a set A is called an equivalence relation if it 
is reflexive, symmetric, and transitive

• Consider relation R = { (a,b) | len(a) = len(b) }
– Where len(a) means the length of string a

– It is reflexive: len(a) = len(a)

– It is symmetric: if len(a) = len(b), then len(b) = len(a)

– It is transitive: if len(a) = len(b) and len(b) = len(c), then len(a) = 
len(c)

– Thus, R is a equivalence relation

Dr. Iyad Hatem , S11 52
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Equivalence relation 

example
• Consider the relation R = { (a,b) | m | a-b }

– Called “congruence modulo m”

• Is it reflexive: (a,a)  R means that m | a-a
– a-a = 0, which is divisible by m

• Is it symmetric: if (a,b)  R then (b,a)  R
– (a,b) means that m | a-b

– Or that km = a-b.  Negating that, we get b-a = -km

– Thus, m | b-a, so (b,a)  R

• Is it transitive: if (a,b)  R and (b,c)  R then (a,c)  R
– (a,b) means that m | a-b, or that km = a-b

– (b,c) means that m | b-c, or that lm = b-c

– (a,c) means that m | a-c, or that nm = a-c

– Adding these two, we get km+lm = (a-b) + (b-c)

– Or (k+l)m = a-c

– Thus, m divides a-c, where n = k+l

• Thus, congruence modulo m is an equivalence relation
Dr. Iyad Hatem , S11 53
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Sample questions

• Which of these relations on {0, 1, 2, 3} are equivalence relations?  
Determine the properties of an equivalence relation that the 
others lack

a) { (0,0), (1,1), (2,2), (3,3) }
Has all the properties, thus, is an equivalence relation

b) { (0,0), (0,2), (2,0), (2,2), (2,3), (3,2), (3,3) }
Not reflexive: (1,1) is missing

Not transitive: (0,2) and (2,3) are in the relation, but not (0,3)

c) { (0,0), (1,1), (1,2), (2,1), (2,2), (3,3) }
Has all the properties, thus, is an equivalence relation

d) { (0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2) (3,3) }
Not transitive: (1,3) and (3,2) are in the relation, but not (1,2)

e) { (0,0), (0,1) (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3) }
Not symmetric: (1,2) is present, but not (2,1)

Not transitive: (2,0) and (0,1) are in the relation, but not (2,1)

Dr. Iyad Hatem , S11 54
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