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Chapter 4
Applications of Derivatives

4.1 Extreme Values of Functions on Closed Intervals
4.2 The Mean Value Theorem
4.3 Monotonic Functions and the First Derivative Test
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DAV Extreme Values of Functions on Closed Intervals

R, L R

DEFINITIONS Let f be a function with domain [2. Then f has an absolute 1

maximum value on D at a point ¢ if y = cosx ¥ =sinx
fix) = f(c) for all x in D
I
and an absolute minimum value on D at ¢ if _g_ 0 x

flx) = flec) for all x in [,

—1k

Maximum and minimum values are called extreme values of the funcuon f. Absolute
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval [:11*‘.1"2, ar /2] the function f(x) = cos x takes on
an absolute maximum value of 1 (once) and an absolute mummum value of (0 (twice). On

the same interval, the function g(x) = sin x takes on a maximum value of 1 and a mini-
mum value of —1 ¢
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[Z\y Extreme Values of Functions on Closed Intervals

6)lioJl .
-A—— - v v=ax2 v = x2 . — .
D = [0, 2] D=0, 2] D=0, 2)
x }:'_ T .I, ’Il * T T 'Il * T
(a) abs min only () abs max and min () abs max only (d) no max or min
Function rule Domain D Absolute extrema on I
(a) v=a" (—oo, oa) No absolute maximum
Absolute mummum of 0 at x = 0
(b) v = a7 [0,2] Absolute maximum of 4 at x = 2
Absolute mimimum of O at x = 0
() v=2x? (0,2] Absolute maximum of 4 at x = 2
Mo absolute minimum
(d) v= 2 (0, 2) Mo absolute extrema
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[Z\y Extreme Values of Functions on Closed Intervals

LIETUERE AN ot

THEOREM 1 —The Extreme Value Theorem

If f is continuous on a closed interval [a, b ], then f attains both an absolute
maximum value M and an absolute minimum value min [a, b]. That is, there are
numbers x; and x; in [a, b] with fix)) = m, fix;) = M, and m = fix) = M
for every other xin [a, b].

b,
¥

Mo larpest value

Sl best value
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Extreme Values of Functions on Closed Intervals
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[Z\y Local (Relative) Extreme Values

s e DEFINITIONS A function f has a local maximum value at a point ¢ within its
domain D if f(x) = f(c) for all x € D lying in some open nterval contaiming c.

A funcuon f has a local minimum value at a point ¢ within 1ts domain D 1f
flx) = fic) for all x € D lying in some open interval containing c.

Absolute maximum
No greater value of fanywhere.

Local maximum Also a local maximum.

Mo greater value of
f nearby.

Local minimum
Mo smaller value

|
| |
| , of f nearby.
Absolute minimum : |
Mo smaller value of : Local minimum :
f anywhere. Alsoa | I I No smaller value of 1
local minimum. : : : f nearby. : :
| | ] ] | X
17 c € d b
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THEOREM 2—The First Derivative Theorem for Local Extreme Values
If f has a local maximum or minimum value at an interior point ¢ of its domain,
and if ' 1s defined at ¢, then

f'c)y = 0.

DEFINITION An interior point of the domain of a function f where f' 1s zero
or undefined is a eritical point of f.

https://manara.edu.sy/



https://manara.edu.sy/

Finding the Absolute Extrema of a Continuous Function f on a Finite
Closed Interval

1. Find all critical points of f on the interval.
2. Evaluate f at all critical points and endpoints.

3. Take the largest and smallest of these values.

EXAMPLE 2 Find the absolute maximum and minimum values of f(x) = x* on
[—2,1].

https://manara.edu.sy/
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Solution The function is differentiable over its entire domain, so the only critical point
occurs where f'(x) = 2x = 0, namely x = 0. We need to check the function’s values at
x = 0 and at the endpoints x = —2 and x = 1:

LIETUERE AN ot

Critical point value: fl0y =10
Endpoint values: fi=2)=4

f(l) = 1.
The function has an absolute maximum value of 4 at x = —2 and an absolute minimum
value of 0 at x = (. N
EXAMPLE 3 Find the absolute maximum and minimum values of g(1) = 8 — * on

[—2,1].

https://manara.edu.sy/
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LIETUERE AN ot

Solution The function is differentiable on its entire domain, so the only critical points
occur where g'(f) = 0. Solving this equation gives

8§ — 41 = or =2 = 1.

a point not in the given domain. The function’s absolute extrema therefore occur at the
endpoints, g(—2) = —32 (absolute minimum), and g(1) = 7 (absolute maximum).
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THEOREM 3—Rolle’s Theorem

Suppose that ¥ = f(x) is continuous over the closed interval [ a, b] and differen-
tiable at every point of its intenior (a, b). If fila) = f{b), then there is at least one
number ¢ in {a, &) at which f'{c) = 0.

¥ = fix)
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Sl THEOREM 4—The Mean Value Theorem
Suppose y = f(x) is continuous over a closed interval [a, b] and differentiable
on the interval’s interior (a, b). Then there 1s at least one point ¢ 1n (a, b) at which

fb) — fla)
h — a - f {E} {1}
EXAMPLE 2 The function f(x) = x* (Figure 4.17) is continuous for 0 = x = 2 4

and differentiable for 0 << x << 2. Since f(0) = 0 and f(2) = 4, the Mean Value Theo-
rem says that at some point ¢ in the interval, the derivative f'(x) = 2x must have the value

(4 —0)/(2 — 0) = 2. In this case we can identify ¢ by solving the equation 2¢ = 2 to 2

cel ¢ = 1. However, 1t 15 not always easy to find ¢ algebraically, even though we know 1t
always exists. O |

(1 1)

B2, 4)

A0, 09
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PAV The Mean Value Theorem

6)liall

LT,

Find all values of ¢ in the open interval

(1, 4) such that £(c) = f(d— f()
4—1
4 _ fH-f)

=12’ =1 z=142

f(m)z:zr2 4—1

S0, in the interval (1,4), c =2
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[ZV First Derivative Test for Local Extrema

s - COROLLARY 3 Suppose that f is continuous on [a, b| and differentiable on
(a, b).

If f'(x) = 0 at each point x € (a, b), then f is increasing on [a, b].
If f'(x) < O at each point x € (a, b), then f is decreasing on [a, b].

Absolute max
1" undefined

No extremum

fr=0

Local min

Local min |
fr=0

|
I
|
. |
Absolute min I
]

|
|
|
|
|
il € 2 C3 ©
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[ZV First Derivative Test for Local Extrema

LIETUERE AN ot

First Derivative Test for Local Extrema
Suppose that ¢ 1s a critical point of a continuous function f, and that f 1s differ-

entiable at every point in some interval containing ¢ except possibly at ¢ itself.
Moving across this interval from left to rght,
1. if f’ changes from negative to positive at ¢, then f has a local minimum at ¢;

2. if f' changes from positive to negative at ¢, then f has a local maximum at ¢;

3. if ' does not change sign at ¢ (that is, [’ is positive on both sides of ¢ or nega-
tive on both sides), then f has no local extremum at c.

https://manara.edu.sy/
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First Derivative Test for Local Extrema

e EXAMPLE 2 Find the critical points of
flx) = II,#}{I —4) = ¥4 — 413

Identify the open intervals on which f is increasing and decreasing. Find the function’s
local and absolute extreme values.

Solution The function f is continuous at all x since it is the product of two continuous
functions, x'/* and (x — 4). The first derivative

d 4 4
' Y R I i R L S G ¥
f() = 2= = ax'F) =3x8 = 2

_ 4 o
=3 (x — 1) =

4x — 1)
3;'_,1,-’3

https://manara.edu.sy/
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First Derivative Test for Local Extrema

Interval x =0 0<x<I x =1
Sign of f’ — — +
Behavior of f decreasing decreasing increasing
| ¢ ¢ 1 > X
—1 0 1 2

The value of the local minimum is f(1) = 1'/73(1 — 4) = =3.

https://manara.edu.sy/
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DAV First Derivative Test for Local Extrema

SO A = (=2

ot
Py == =
R T
Y oA

f{r)does notexist at r=2. Thus, 2is a
sritical value

Interval —w<r<? 2<r<w

Test Value r=0 F=3

Signof f{z) [f{0)<0 {3} =0

Conclusion Decreasing Increasing | 1 | | |

-1 | 2 3 $ X
Therefore, by the First-Derivative Test, Decreasing ' Increasing
fhas a relative maximum at »=2 fi(x) <0 f'(x) >0
f2)=1
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DEFINITION The graph of a differentiable function y = f(x) is

(a) concave up on an open interval / if f' is increasing on [;

(b) concave down on an open interval [ if f' is decreasing on /.

A function whose graph 1s concave up is also often called convex.

The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval /.

1. If f" = 0 on [, the graph of f over [ is concave up.
2. If f" << 0 on I, the graph of f over [ is concave down.

https://manara.edu.sy/
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Yag Concovity

o)lioJ '_I
EXAMPLE 1
(a) The curve y = X (Figure 4.24) is concave down on (—oco, 0), where y" = 6x < 0,
and concave up on (0, o), where y" = 6x > 0.

(b) The curve y = x* (Figure 4.25) is concave up on (—oco, c0) because its second deriva-
tive y" = 2 is always positive. N

?-

L .
&4 f' increases

https://manara.edu.sy/
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EXAMPLE 2 Determine the concavity of y = 3 + sinxon [0, 27 |.

Solution The first derivative of y = 3 + sinx is ¥ = cos x, and the second derivative
15 y' = —sin x. The graphof y = 3 + sin x is concave down on (0, 7), where y" = —sin x
15 negative. It is concave up on (7, 27), where y" = —sin x is positive (Figure 4.26). W

vy =3+ sinx

[ R
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https://manara.edu.sy/

Points of Inflection

DEFINITION A point (¢, f(c)) where the graph of a function has a tangent line
and where the concavity changes is a point of inflection.

At a point of inflection (¢, f(c)), either f"(¢) = 0 or f"(c) fails to exist.

https://manara.edu.sy/
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Points of Inflection

EXAMPLE 3 Determine the concavity and find the inflection points of the function

flx) =2 — 32 + 2.

Solution We start by computing the first and second derivatives.
fiixy=3x> —6x, f"(x) = 6x — 6.

To determine concavity, we look at the sign of the second derivative f"(x) = 6x — 6.
The sign is negative when x << 1,is0at x = 1, and is positive when x = 1. It follows that
the graph of f is concave down on (—oo, 1), 1s concave up on (1, o), and has an inflection
point at the point (1, 0) where the concavity changes.

The graph of f is shown in Figure 4.27. Notice that we did not need to know the shape
of this graph ahead of time in order to determine its concavity. ]

3 3
B y=x —3x +2

Concave down

~ Point of
inflection

Concave up
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Points of Inflection

R - The next example illustrates that a function can have a point of inflection where the
first derivative exists but the second derivative fails to exist.
EXAMPLE 4  The graph of f(x) = x* has a horizontal tangent at the origin because X _
f'(x) = (5/ 3x2? = 0 when x = 0. However, the second derivative ] T /3
men — d [ 2 _ 10 _yp L -
) a‘_r(EI ) 9" |
X
fails to exist at x = (). Nevertheless, f"(x) << 0 for x << 0 and f"(x) = 0 for x = 0, so _, L Pointof
the second derivative changes sign at x = 0 and there is a point of inflection at the origin. inflection
The graph is shown in Figure 4.28. ] —2r
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LIETUERE AN ot

The following example shows that an inflection point need not occur even though
both derivatives exist and f" = 0.

EXAMPLE 5 The curve y = x* has no inflection point at x = 0 (Figure 4.29). Even
though the second derivative y" = 12x” is zero there, it does not change sign. The curve is
concave up everywhere. ]

https://manara.edu.sy/
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EXAMPLE 6 The graph of y = x'/* has a point of inflection at the origin because
the second derivative 1s positive for x << 0 and negative for x = (:

Y = ff_: (x'3) = d (l_r—z,m) — 2.5

3 9

el

However, both ¥' = x™%7/3 and v" fail to exist at x = 0, and there is a vertical tangent
there. See Figure 4.30. L]

Point of
imflection

https://manara.edu.sy/
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Second Derivative Test for Local Extrema

raaas e THEOREM 5—Second Derivative Test for Local Extrema
Suppose " is continuous on an open interval that contains x = c.

1. If f'(¢) = 0 and f"(¢) < 0, then f has a local maximum at x = c.
2. If f'(¢) = 0 and f"(c) = 0, then f has a local minimum at x = c.

3. If f'(¢) = 0 and f"(¢) = 0, then the tesi fails. The function f may have a local
maximum, a local mummum, or neither.

fr=0f"<0  f=0/F=0

= local max == local min

https://manara.edu.sy/
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EXAMPLE 8 Sketch a graph of the function
fx) =2 —4x* + 10

using the following steps.

(a)
(b)

(c)
(d)
(e)

Identify where the extrema of f occur.

Find the intervals on which f i1s increasing and the intervals on which f 1s
decreasing.

Find where the graph of f 1s concave up and where it 1s concave down.
Sketch the general shape of the graph for f.

Plot some specific points, such as local maximum and mimmimum points, points of in-
Aection, and intercepts. Then sketch the curve.

https://manara.edu.sy/
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DA‘V Procedure for Graphing

ﬂJ'-z:ﬂJl Solution The function f is continuous since f'(x) = 4x° — 12x” exists. The domain of
f is (—oo, 0o), and the domain of f' is also (—oo, o0). Thus, the critical points of f occur
only at the zeros of f'. Since

fl0) = 4x® — 1242 = 4%(x — 3),

the first derivative 1s zero at x = 0 and x = 3. We use these critical points to define inter-
vals where f 1s increasing or decreasing.

Interval x <10 0<x<3 3 <x
Sign of f’ — — +
Behavior of f decreasing decreasing increasing

https://manara.edu.sy/
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(a) Using the First Dernivatuve Test for local extrema and the table above, we see that there
15 no extremum at x = 0 and a local mimmmum at x = 3.

(b) Using the table above, we see that f is decreasing on (—oo, 0] and [0, 3], and in-
creasing on [ 3, cg).

(e} f"ix) = 12x2 — 24x = 12x(x — 2)is zero at x = 0 and x = 2. We use these points
to define intervals where f i1s concave up or concave down.

Interval x<10 0<x=<2 2 <x
Sign of f" + — +
Behavior of f concave up concave down concave up

We see that f 1s concave up on the intervals (—oo, 0) and (2, oc), and concave down on
(0, 2).

https://manara.edu.sy/
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(d) Summarizing the information in the last two tables, we obtain the following.

x <0 D<x <2 2<x<3 I <x
decreasing decreasing decreasing increasing
concave up concave down concave up concave up

The general shape of the curve is shown in the accompanying figure.

https://manara.edu.sy/
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Inflection
—10F p-nint
—15
(3, =17
-0 -
Local
minimum

FIGURE 4.31 The graph of fix) =
¥ — 4% + 10 (Example 8).
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Procedure for Graphing y = fi(x)

1.
2.
3.

Identify the domain of f and any symmetries the curve may have.
Find the derivatives v and v".

Find the critical points of f, if any, and identfly the function’s behavior at
each one.

. Find where the curve 1s increasing and where 1t 1s decreasing.
. Find the points of inflection, if any occur, and determine the concavity of the

curve.

. Identify any asymptotes that may exist.
. Plot key points, such as the intercepts and the points found in Steps 3-5, and

sketch the curve together with any asymptotes that exist.

https://manara.edu.sy/
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Procedure for Graphing

LR A LT T

8
- —4

Hz)=

1. Intercepts:
no z-intercept yintercept (0, —2)

2. Asymptotes:

x=-2 and x= 2 are vertical asymptotes y = 018 horizontal asymptote
3. Asymptotes: .
| , ~162 . 16(3z7 +4)
Domain = B\{-2, 2 T)=—5—>, Ty=——
(22} F@= s S@= s

4. Critical values:
Ff(xy=0=1=0,

f'(r) does not exist at —2 and 2, but neither value 1s 1n the domain of f

—

https://manara.edu.sy/
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vl Procedure for Graphing

6)liadl
o 5. Increasing and/or decreasing; relative extrema:

Interval —o0 < T < —2 2 <z<0 0< <
Test Value rT=-3 r=-1 r=1
Sign of f'(xz) f(-3)>0 fi{-1)>0 f{1)=-8<0
Conclusion Increasing Increasing Decreasing

F(0)=—1<0= (0,-2) relative maximum

6. Concavity:
Interval —n << T —2 —2<r<? 2 < r<on
Test Value r=-3 =10 r=73
Sign of f'(x) f(=3)>0 1 0)<0 '(3)=-8>0

Conclusion Concave Up Concave Down Concave Up

https://manara.edu.sy/
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DAV Procedure for Graphing

sl 7. Inflection points:
F'(x)y =0, f*(r) does not exist at —2 and 2, but neither value is in the domain of f

no points of inflection

.H*:
e

I O O O O

o b R T O =1 QD

I -
o | 1 12 3 4 5 X
~_~Relativelmaximum

https://manara.edu.sy/
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(x + 1)

EXAMPLE 9 Sketch the graph of f(x) =

1 + x2

Solution

1. The domain of f i1s (—oo, oco) and there are no symmetries about either axis or the ori-
gin (Section 1.1).

2. Find ' and f".

(x + 1) v-intercept at x = —1,
1 + 12 y-intercept at y = |
) (1 +x)-2x+ 1) — (x+ 1)*- 2
filx) = 7
(1 + x2)
2(1 — x%) -
= "= Crtical points: x = —1l, x =
(1 + 27

flx) =

oo (L) 2(=20) — 201 — )21 + &) - 2]
o= (1 + 2

_ dalx® — 3)

- After some algebra
(1 + x%?

https://manara.edu.sy/
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[ZV Procedure for Graphing

3. Behavior at critical points. The critical points occur only at x = 1 where

?J ,,,,, - I f'(x) = 0 (Step 2) since f' exists everywhere over the domain of f. At x = —1,
f(—=1) = 1 = 0, yielding a relative minimum by the Second Derivative Test. At
x=1,f(1=-1<0, yielding a relative maximum by the Second Derivative test.

4. Increasing and decreasing. We see that on the interval (—oo,—1) the derivative
f'(x) < 0, and the curve is decreasing. On the interval (—1, 1), f'(x) = 0 and the
curve is increasing; it is decreasing on (1, co) where f'(x) << 0 again.

5. Inflection points. Notice that the denominator of the second derivative (Step 2) 1s al-
ways positive. The second derivative f" is zero when x = —V/3,0, and \/3. The sec-
ond derivative changes sign at each of these points: negative on [—c:::' \/{_} positive
on ( V3, [}J negative on {[} V(_:l and positive again on (‘\f(_ m} Thus each point is
a point of inflection. The curve is concave down on the interval (—-::ﬂ, V/_}, concave
up on [— \@, D}ﬁ concave down on {ﬂ, \.@)ﬁ and concave up again on { \ﬁ. DCJJ.

6. Asymptotes. Expanding the numerator of f(x) and then dividing both numerator and
denominator by x* gives

C+ 1P 2420+ ]
1 + 22 1 + 22

1L+ @2/ + (1)
T (a/H+1r

flx) =

Expanding numerator

Dividing by x~

We see that f(x) — 1" as x — oo and that f(x) — 1™ as x — —oc. Thus, the line y = 1
1s a horizontal asymptote.

https://manara.edu.sy/
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¥ Point of inflection
where x = /3

E_[LE}/

Honzontal
asymptote

; i .
=1 |1 "

Point of inflection
where x = — \._,-“'E

(x + 1)°

FIGURE 4.32 The graphof vy = 1+ 2

(Example 9).
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I:A Exercices
Ef_'j In Exercises 1-6, determine from the graph whether the function has

''''''''' any absolute extreme values on [a.b]. Then explain how your
answer is consistent with .Theorem 1

|
0 il c b 0 i c b

https://manara.edu.sy/
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Y

6)liaJl

1. An absolute mimmum at x = ¢y, an absolute maximum at x = b. Theorem | guarantees the existence of such
extreme values because /1 15 continuous on[a, b].

[

An absolute minimum at x = b, an absolute maximum at x = ¢. Theorem 1 guarantees the existence of such
extreme values because f1s continuous on [a, b].

3. No absolute mmimum. An absolute maximum at x = ¢. Smnce the function’s domain 1s an open 1nterval, the
function does not satisfy the hypotheses of Theorem 1 and need not have absolute extreme values.

4. No absolute extrema. The function 15 neither contmuous nor defined on a closed interval, so 1t need not fulfill
the conclusions of Theorem 1.

https://manara.edu.sy/
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%‘\7 Exercices

e find the absolute maximum and minimum values
of each function on the given interval

22, flx)=—x—4, —4=x=1]

23, fxy)=xr"—1, —-1l=x=2
4. f(x) =4 —x, -2=x=1
25. F(x) = —~, 05<x=2

2

https://manara.edu.sy/
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f(x)=—x-4= f'(x) = =1=>no critical points;
f(—=4) =0, f(1) ==5 = the absolute maximum 1s 0 L ¥

- - . =, LY
at x = —4 and the absolute mimimum 1s =5 atx =1 J

fiths =k =4

f(x)= P = f'(x) =2x = a critical point at p

x=0; f(=1) =0, f(0) = -1, £(2) =3 = the absolute 3} S Al
maximum 15 3 at x = 2 and the absolute mimimum 1s —

(0, -1 Abs
(§uT1 1

https://manara.edu.sy/
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e At 24, f(x)=4=-x"= f'(x)==3x = a critical point at A
(-2,1%)

x=0; f(-2)=12, f(0)=4, f(1) =3 = the absolute
maximum 15 12 at x = =2 and the absolute
minimum11s 3 at x =1

2 1 0 1
25. F(x)= —L, == F'(x)= 2y = %, however :
X~ X
x =0 15 not a cnitical poimnt since 0 1s not in the doman; Al lu .
F(0.5)==4, F(2) ==0.25 = the absolute maximum -1 F Abs max
15 =0_25 at x = 2 and the absolute minimum 1s =4 at 2k

ys—t 055x52
’ .t-:!

Izﬂ-ﬁ 3k

(0.5, —4)
Abs mun

https://manara.edu.sy/
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%\7 Exercices

LANAR A LR Y

Al =

a. What are the critical points of f7

b. On what open intervals is f increasing or decreasing ?

¢. At what points, if any, does f assume local maximum and mini-

mum values?
fiix) = xx — 1) 2. fiix) =(x— 1)ix + 2)
fly=@—-Dx+2) 4 fl)=x—1Fx+ 27
fiix) =1(x— 1)
fiix) =1(x —Tix + 1)x + 3)

L =) ,
fo=—"7" 7~
ool —2)x + 4)
"ff'x}_[x-l-l}{x—E}' xr#=—1,3
F=1-—2 x#0 10. f()=3-—>=. x=0
X S Vi
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6)liall 1. (a) f'(x)=x(x-1)= critical points at 0 and 1
(b) f'=+++| ———| +++ = increasing on (- e, 0) and (1, =), decreasing on (0, 1)
0 1
(¢) Local maximum at x =0 and a local munimmum at x =1

-
—
]
p—

f'(x) =(x =1)(x + 2) = cntical points at =2 and 1

(b) f'=+++|-—=|+++ = mecreasing on (=, =2) and (1, =), decreasing on (=2, 1)
-2 1

(¢) Local maximum at x = =2 and a local nummum at x =1

3. (a) f'(x)= {I—I}E{I +2) = critical points at =2 and 1
(b) f'=——-|+++|+++ = mereasing on (=2, 1) and (1, ), decreasing on (—x, =2)
2 1

(¢) No local maximum and a local minimum at x = =2

4. (a) f'(x)=(x —l}z{x . 2}3 —> critical points at =2 and 1

(b) f=+++ | +++|+++ = increasmng on (—=x, =2) (=2, 1) U(l, «), never decreasing
9 1

(c) No local extrema
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deol o
o)lioJl

5. (a) f'(x)=(x=1)¢ " = critical pomt at x =1

(b) f'=-—-——|++++= decreasmg on (-wx, 1), ncreasing on (1, x)
1

(¢) Local (and absolute) minimmum at x = 1

6. (a) f'(x)=(x=7)x+1)(x+5) = critical points at -5, —~1 and 7
(b) f'==—-|+++ | ——=|+++ = mcreasing on (-5, —1) and (7, =), decreasing on (==, —5) and (-1, 7)
-5 -1 7
(¢) Local maximum at x = =1, local mimima at x = =5and x =7

7. (a) f'(x )—Til }}:cnhcalpﬂmtsat:r O.x=1land x = -

L) = +++)(——— | ——— |+ ++ = increasing on (-, —2) and (1, ¢), decreasing on (-2, 0) and (0, 1)
-2 0 1
(¢) Local mimimmm at x =1
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_x 2](x+ )
f =+++ | ———){ +++ | ——=) +++ = mereasing on (—=x, —4), (-1, 2) and (3, «), decreasing on
—4 -1 2 3
(-4, -1)and (2, 3)

Local maximumatx=—4and x =2

= critical pomtsat x =2, x==4, x ==L and x =3

flx)=1l-+=X= ‘4 = critical pomnts at v = =2, x =2 and x =
T
f'=+++ | ——=)---|+++ = increasing on (-, —2) and(}'i w), decreasing on (-2,0)and (0, 2)
=2 0 2

Local maximum at x = =2, local mimimum at x =2

f(x) =3—j’— = Nj—_ﬁ = critical points at x =4 and x =0
X X
f"=(———|+++ = increasing on (4, =), decreasing on (0, 4)
0 4
Local mmminmmum at x = 4
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%\7 Exercices

ﬁ Find the value or values of ¢ that satisfy the equation
fib) — fla)
b—a fie)

in the conclusion of the Mean Value Theorem for the functions and
intervals in Exercises =8,

L fiy=x>+2x— 1, [0,1]
2. fix) = [0,1]

3. fix) =x+%, [%2]

4 fix)=Vx—1, [1,3]

7. floy = — x%, [—1,2]

O, 2=x=10
- 80 =12 p<r=2

T
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‘F\-?]:'um:lfl[;*{)=;~:2 +2x=1for0<x <1, then%=f’{c):>3=2r:+2:}c=

When f(x) —xP foro<x <1, then &—=—=—=——= fﬂ} ﬂ: ) = f'(c) =1 —(%)E_UE =c =1‘i?_

Whenf(a]_.1+—fnr <x<2, thenﬂ? ﬂglf’?} f{f):'ﬂ—l—c—:}f—l

When f(x) =+/x - fml*f.x*fSthenfﬁ} ﬂl} f(e:)::-ﬂ 1 Z}‘-C‘=%.

- WhEﬂf(I]=I3 —x? fﬂl‘-lE:EE,then%:f’{c} :2:3.:1_3;;:,;;:“;'5_

—1+;ﬁ =1.22 and % = —(.549 are both in the mnterval -1 <x < 2.

IE —2=x=0 3(1}_3(_2} . r M 2 P

- When g(x) = 5 :ﬂlﬂﬂw=§ (c)=3=g(c)If-2<x<0,then g'(x)=3x" =3 =g(c)
X7 O0<x=2

— 3¢? =3 = c=+1 Onlyc=-115 1 the interval If0 <x <2, theng'[:r}=2.1‘:}3=g’(c]:}2£=3::ac=%.
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Thank you for your attention
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