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Stokes’ Theorem

The Curl Vector Field
{xr.r, z)

F=Mi+Nj+ Pk

_ (P _eN\. , (M _ P\ , (v _ oM
““‘F‘(ay az)”(az ax)“(ax ay)"‘

culF =V X F (3)

Find the curl of F = (22 — i + x5 + ok
i Kk

d d 0 . . i
curl F =V X F = o i E=x[l—£=’}]—{y+l}_]+er‘k.

EXAMPLE 1
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Stokes’ Theorem 6)Uiol

THEOREM 6—Stokes’ Theorem

Let S be a piecewise smooth oriented surface having a piecewise smooth boundary
curve C. Let F = Mi + Nj + Pk be a vector field whose components have con-
tinuous first partial derivatives on an open region containing S. Then the circulation
of F around C in the direction counterclockwise with respect to the surface’s unit
normal vector n equals the integral of the curl vector field V X F over §:

%F-dr=[[(? X F)=ndo (4)
C 3

Counterclockwise Curl integral
circulation
Green: Stokes:
Circulation Circulation

https://manara.edu.sy/



Py

Stokes’ Theorem o)liaJi

Stokes’ Theorem
EXAMPLE 2 Evaluate Equation (4) for the hemisphere S: 2+ ;-,-'2 +2=09z:=0
its bounding circle C: x* + y* = 9,z = 0, and the field F = yi — xj.

r@) = 3cosB)i + (3sin@)j.0 =60 = 27
= (=3 sin @ d)i + (3 cos 0 dB)j

=vi— 2 = (3sinfi — (3cosd) Fedr = —9sin*8df — 9cos” #df = —9do

jﬁF dr—f —04df = —1877.
aly d  dP\. o oM

VXF= (ﬁ_y_d_f:)]_I_(E_E)‘]—'_(E_E)k_{D_D)]-:_{D_D]']+(_I_I}k__k

Ad+yj+zk A+ yj+zk 3
n = = = =

\f’f_r" + _vl + 3 do E{M

_i+1.+f:l{ - - —_ —_
(?KF}*HJU=(—ER)X(T ";' )dcr=—%%dﬂ=—2dfl —) [WKF]MJ /f 2dd =
1.+1"_=-'9
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Stokes’ Theorem
EXAMPLE 4  Find the circulation of the field F = (x> — y)i + 4zj + x’k around

the curve C in which the plane z = 2 meets the cone z = Vi + 3,-'2, counterclockwise as

viewed from above (Figure 16.62).
rir.08) = (rcos i + (rsin@)j + rk, D0=r=2  0=0 =27

r, X Ty —(rcos @i — (rsin@)j + rk = 1 (—{cﬂs i — (sin 'E"l] - k}

NI 2 V2

n

do = r\2 drd8 VXF=—4i—2xj+k=—4i — 2rcosfj + k.

| _ .
(VX F)'n= L(d‘ﬂﬂﬁﬂ + Zrcos@sind + I)= —(41:3':15!’5' + rsin 26 + l) :
V2

V2

2 p2
jlgF-ﬂ‘r= ff(‘? X F)-ndo =[ [L(Llcasﬂ—l- rsin 26 + 1)(rV2 drdf) = 4z
& ¢ o Jo VE

Gl

S:rir, @)= (rcosthi + (rsinf)j + rk
h\“'u.

¥
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Stokes’ Theorem
EXAMPLE 7 Calenlate the circulation of the vector field

F=(x2+2)i+(*+2X)j+ (2 —y)k

along the curve of intersection of the sphere x* + ¥ + z2 =1 with the cone
z = Vx* + y* traversed in the counterclockwise direction around the z-axis when viewed

from above.

The sphere and cone intersect when 1 = (2 +y?) + 2 =22+ 22 =272 =) z=1/V2
n=Kk

i J
— i .i i =g 1 / i = ——
VXF= o Iy . i+j+ 2k (VXF)-k=2
r + z f-l—lx zz—v
1 \2
fF'df = ﬂ(? X F)-kdo= ﬂldcr=2-areaﬂfdisk=2-w(—) = q
P & | V2
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EXAMPLE 9 Use Stokes” Theorem to evaluate f Fedr, if F = xzd + xyj + 3azk
and C is the boundary of the portion of the plane 11: + y + z = 2 in the first octant,
traversed counterclockwise as viewed from above (Figure 16.67).

The plane is the level surface f(x, v, £) = 2 of the function fix, v,z) = 2xr + v + =

Vi @2i+j+ k) 1(. ) )
“TIVA T larirk Vel I TK

i j k

d 4 o .
curl F=V X F = x 3 o = (x — 3z)) + yk

Xz Xy az
On the plane, z equals 2 — 2x — y,

VXF=0x-3C-2Zx—y)j +ryk=(Tx+ 3y —6)j +k (?xm-u=L(?x+3~—ﬁ+v)=l—(?x+41—6).
Ve ’ ) Ve ’

VS V6

do = —————dA = —dxdy.

| Vi K| 1
?g dr = ﬂ{f X F)-n der —f/ (?:r—l— dy — ﬁ)ﬁdydx= —1.
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Exercises

@ use the surface integral in Stokes’ Theorem to calculate the circulation of the field F around the curve C Ax

F =x%+ 2xj + 27k C: The ellipse 4x* + y> = 4 in the xy-plane, counterclockwise when viewed from above
@ Let n be the outer unit normal (normal away from the origin) of the parabolic shell §: 4x + y + 22 =4, y =0,

‘ _{_ 1 . =l 1 _ ) :
and let F = ( 2+ 51 I)l + (tan™ y)j + (x + 1T z)k Find the value of [/(T X F)-ndo A
¥

@® Let S be the cylinder x2 + y2 = a2, 0 < z < h, together with its top, x* + y* = d%, 7 = L.
Let F = —yi + xj + x’k. Use Stokes Theorem to find the flux of V X F outward through S.

2}’1’&2

@ use the surface integral in Stokes™ Theorem to calculate the flux of the curl of the field F across the surface S in the

direction of the outward unit normal n.

F = 2z1 + 3xj + 5yk S: r(r,@ = (rcos®i+ (rsin@)j+ 4 -2k, O0=r=2. 0=60=27
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The Divergence Theorem
Divergence in Three Dimensions
F = M[-I:- J}:- E)i + N{I,_}, E}j + P(I:- J}'.l E)k
: oM , aN , oP
divF = V-F = o +Ery +ﬂz'
EXAMPLE 1 The following vector fields represent the velocity of a gas flowing in
space. Find the divergence of each vector field and interpret its physical meaning.

Figure 16.72 displays the vector fields.

(a) Expansion: F(x,y,z) = xi + yj + zk

(b) Compression: F(x, y,z) = —xi — y] — zKk

(c) Rotation about the z-axis: F(x, v, z) = —yi + xj

(d) Shearing along parallel horizontal planes: F(x, v, 2) = zj

(a) divF = %{x) + %{y} + %(z} = 3: The gas is undergoing constant uniform

expansion at all points.

https://manara.edu.sy/
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Divergence in Three Dimensions
(b) divF = i (—x) + %{—y} + %(—z] = —3: The gas is undergoing constant uniform
compression at all points.

(c) divF = % (—y) + %{x} = (: The gas is neither expanding nor compressing at any

point.

(d) divF = ﬂiy (z) = 0: Again, the divergence is zero at all points in the domain of the

velocity field, so the gas is neither expanding nor compressing at any point. |
A
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The Divergence Theorem

THEOREM 8—Divergence Theorem

Let F be a vector field whose components have continuous first partial deriva-
tives, and let § be a piecewise smooth oriented closed surface. The flux of F
across & in the direction of the surface’s outward unit normal field n equals the
triple integral of the divergence V - F over the region D enclosed by the surface:

J| Fondo = [f[v-Fav )

5 D
Outward Divergence
flux integral
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The Divergence Theorem

EXAMPLE 2 Evaluate both sides of Equation (2) for the expanding vector field
F = xi + yj + zk over the sphere x*> + y*> + 7% = 4? (Figure 16.73).

f(IT")_I1+‘FE+EE—ﬂ2 n = Z{Ii‘FJ?jJrzk] _Ii+j.-’j‘|—zk
. s Yo L0 T . » — - .
Va(x? + v + %) d
2 4 32 4 2 5
F'ndﬂ'=x J; ° dﬂ'=%d{r=ﬂd{r.

[/F-ndﬂ' = /]ﬂffcr =a/f.:fcr = a(4wa®) = dmd’.

-9 9 9y —
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The Divergence Theorem

COROLLARY The outward flux across a piecewise smooth oriented closed
surface § is zero for any vector field F having zero divergence at every point of
the region enclosed by the surface.

EXAMPLE 3 Find the flux of F = xyi + yzj + xzk outward through the surface of
the cube cut from the first octant by the planes x = 1,y = 1,and z = 1.

9
3}1

~ 1ol gl
Flux = ﬂF-ndﬂ= //]?-FdV=/ff{x+y+g)dxdydz=%.
0JoJo

Cube Cube
surface interior

_a, I
?-F—ax(x}]—l- {}g)+az(xz]—y—l—z+x

https://manara.edu.sy/
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The Divergence Theorem
EXAMPLE 4

(a) Calculate the flux of the vector field F = x%i + 4xyzj + z¢'k
out of the box-shaped region D: 0=x=30=y=2,0=z=1. (See
Figure 16.74.)

(b) Integrate div F over this region and show that the result is the same value as in part (a),
as asserted by the Divergence Theorem.

outward normal n = k.

2R3
/ f e“dvdy = 2% — 2.
040

Consider the top side in the plane z = [,

The flux across this side F:n = z¢.

B
(2=

s

https://manara.edu.sy/
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The Divergence Theorem

Side Unit normal n F:n Flux across side
x=10 —i —x2 =10 0
x=3 i 2=9 18
y=0 —J —dxyz = 0 0
y=2 j 4xyz = 8x I8
z=10 —k —ze* = 0 0
z=1 k et = et 2e° — 2

(b)

18 + 18 + 2¢° — 2 = 34 + 2¢%

divF = V+F = 2x + 4xz + &%

I p2 3
[[/dh’ F dV =f[f (2x + dxz + ) dxdydz = 34 + 2¢°.
J oJdodo
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Divergence and the Curl

THEOREM 9 If F = Mi + Nj + Pk is a vector field with continuous second
partial derivatives, then

divicurl F) = V«-(V X F) = 0.

| M+ yj + ok }
EXAMPLE 5  Find the net outward flux of the field F = }‘]3 - p=Vae+y + 2 ikl
P SN

across the boundary of the region D: 0 < & = x> + y> + 72 = 4° (Figure 16.81). — ‘f;:su

dp 1 _ X M _ 3, 4 3 R B2, s\
=Ty )@y =3 o = a3 (p7) = p7 = 3xp il Rl /' -

oN _ 1 o P _ 132 |

C R g p

_ oM BE+E!F_3 3
de dy  dz p P

So the net outward flux of F across the boundary of D is zero by the corollary to the Divergence Theorem

https://manara.edu.sy/ —
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The Divergence Theorem
Divergence and the Curl

To find it, we evaluate the flux integral directly for an arbitrary sphere S,. The outward
unit normal on the sphere of radius « is

A+ oy + zk A+ yj+zk
n= = T .

Vil + _}-‘1 + r?

xityitzk i+yvj+rzk 2+ +2 2
F"n: * 7 3 3 =_4=_I
£l Fid £

ﬂj
1 1 ”
Fendo = —= || do = =(47a®) = 4.
[ i~
Sa

S

The outward flux of F in Equation (8) across any sphere centered at the origin is 4.
This result does not contradict the Divergence Theorem because F is not continuous at
the origin. O

https://manara.edu.sy/
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Exercises

@ use the Divergence Theorem to find the outward flux of F across the boundary of the region D.

F=x+yvj+ 2k a. Cube D The cube cut from the first octant by 3
the planes x = I,y = 1, and z = 1

¢. Cylindrical can D: The region cut from the solid cylinder
x* + y* = 4 by the planes z = 0 and
z=1

@ F = (53+ 120%)i+ (3% + &sin2)j +(52 + ¢ cos 1)k

D: The solid region between the spheres x* + y* + z2 = 1 and x> + y? + 72 = 2 (43\,5_]2);;
. 2 Y. 5
®r- In(x* + y?)i — (than'lj—[)J + zVx? + y'k
D: The thick-walled cylinder | = x> + y* =2, -1 =z =2 27(-31n2+242-1)
2

47
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