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Introduction to Graphs

Def 1. Agraph G=(V, E) consists of V, a nonempty
set of vertices (or nodes), and £, a set of edges.
Each edge has either one or two vertices
associated with it, cg

€g. 5;LG=(1V/, ), where
v, " V={v,,V,,..., L}

E={{v, L}, {1, Va}, {5, 3}
7 R IAA R INARIAS
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Def A graph in which each edge connects two

different vertices and where no two edges connect
the same pair of vertices is called a simple graph.

Def Multigraph:
simple graph + r‘%edges (multiedges)
o-points to allow multiple edges)

ojli_oll
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Def. Pseudograph:

simple graph + multiedge
+ loop

lﬁl_oop: o )
= Ss

pa—g:
eg. -2 e




Def 2. Directed graph (digraph):
simple graph with each edge directed

o—»0

Note: 4 Is allowed in a directed graph
Note:

U ¢ N <) V u o, e V
The two edges The two edges (u,v),
(u,v),(u,v) (v,u) are not multiedges.

are multiedges. _ _ _
Def. Directed multigraph: digraph+multiedges
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Table 1. Graph Terminology

Type Edges Multiple = Loops
Edges

(simple) graph undirected X X
edge: {u,v}

Multigraph v %

Pseudograph v v

Directed graph directed X v
dge: (u,

Directed multigraph edge: (UV) v v
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Graph Models

Example 1. (Niche Overlap graph)
We can use a simple graph to represent interaction of

different species of animals. Each animal is represented
by a vertex. An undirected edge connects two vertices Iif
the two species represented by these vertices compete.

Raccoon

€9

Squirrel

Opossum
Crow

Woodpecker

Shrew -

Mouse



Example 2. (Acquaintanceship graphs)

We can use a simple graph to represent whether
two people know each other. Each person is
represented by a vertex. An undirected edge Is used

to connect two people when these people know each
other.

eg Kamini

FIGURE 6  An Acquaintanceship Graph.
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Example 3. (Influence graphs)

In studies of group behavior it is observed that
certain people can influence the thinking of others.
Simple digraph = Each person of the group Is
represented by a vertex. There is a directed edge
from vertex ato vertex b when the person ainfluences
the person b.

eg

10



Example 9. (Precedence graphs and concurrent processing)
Computer programs can be executed more rapidly by

executing certain statements concurrently. It is important not to
execute a statement that requires results of statements not yet
executed.

Simple digraph = Each statement is represented by a vertex,
and there is an edge from ato 6
If the statement of 6 cannot be

executed before the statement of 2. ' ="
eg 5, bi=1

S c:=a+ 1

S d=b+a

S e =d+ 1

S e =c+d
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Graph Terminology

Def 1. Two vertices v and vin a undirected graph G
are called adjacent (or neighbors) in Gif {u, 1V} Is an
edge of G.

Note : adjacent: a vertex connected to a vertex
Incident: a vertex connected to an edge

Def 2. The degree of a vertex v, denoted by deg(V),
In an undirected graph is the number of edges

Incident with It.
(Note : Aloop adds 2 to the degree.)

12



Example 1. What are the degrees of the
vertices in the graph H ?

eg(a)=4
¢ Sol:

eg(H)=6
eg(0)=1
eg(a)=>
eg(e)=6
eg(/)=0

OO O O O o o

Def. A vertex of degree 0 Is called isolated.

Def. A vertex Is pendant if and only iIf it has
degree one.

13



Thm 1. (The Handshaking Theorem)
Let G=(V, E) be an undirected graph with
e edges (l.e., |£] = ¢). Then

deg(v)=2e

VE

14



eg. The graph Hhas 11
- edges, and

' EV deg(v)= 22

Example 3. How many edges are there in a
graph with 10 vertices each of
degree six?

Sol :
10-6=2¢ = &30

15



Thm 2. An undirected graph G=(V, £) has an even

number of vertices of odd degree.

Pf : Let V,={ve V/deg(V) is even},
V,={ve V/deg(V) is odd}.

Zvdeg +Zdeg ) deg(v

VE 'V,

IS even.

Def 3. G=(V, E): directed graph,
e=(u, V) € E: uis adjacentto v
vis adjacent from y

U Initlal vertex of e

The initial
vertex and
terminal vertex
of a loop are
the same ,

V. terminal (end) vertex of e

® >®
7 e /4

16
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Def 4.
G=(V, E) : directed graph, veV
deg (V) : # of edges with vas a terminal.
(in-degree)

deg*(V) : # of edges with vas a initial vertex
(out-degree)

eg-(a)=2, deg*(a)=4
eg-(b)=2, deg*(H)=1
eg” (0= 3, deg*(c)=2
deg*(a)=2
eg-(e)= 3, deg*(e)=3
eg~(£)=0, deg*(£)=0

17
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Thm 3. Let G=(V, E) be a digraph. Then
Y deg”(v)=) deg” (v)=|E]

vel veld

18
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Reqular Graph

A simple graph G=(V, E) is called regular if
every vertex of this graph has the same

degree. A reqgular graph is called nregular if
deg(VW=n, Ve V.

eg.
IXI IS 3-reqgular.

K,

19



Some Special Simple Graphs

Example 5.
The complete gra
by K, Is the simp
exactly one edge
distinct vertices.

® o—©O
K;

Ki

0h on nvertices, denoted
e graph that contains

netween each pair of

S

Note. K, Is (m-1)-regular, | {K)|=n,

E(K,)

-(3)

20
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Example 6. The cycle C,, 7>3, consists of 7

vertices v, v, ..., V,and edges {v;, .}, {V,, 3},

aiv Vv h{V, Y}
A 10T
C, C, C.

Note C,is 2-regular, | LC)|=n, |E(C)

[
S

21
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Example 7. We obtained the wheel W, when we
add an additional vertex to the cycle C,, for /2>3,

and connect this new vertex to each of the »n
vertices in C,, by new edges.

W, We

Note. |(W,)| = n+ 1, |KW,)| = 2n,
W 1s not a regular graph if 7+ 3.

22
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Example 8. The ndimensional hypercube, or
n-cube, denoted by @, is the graph that has vertices
representing the 27 bit strings of length ».

Two vertices are adjacent if and only if the bit strings
that they represent differ in exactly one bit position.

10 11 110 111

0 1 100
®o—©
o
00 01 ’ 011
&

000 001
5

Note. Q, is r-regular, | (Q)| =27, |E(Q,)| = (2"n)I2 =2"1n

23
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Some Special Simple Graphs

Def 5. A simple graph G=(V,E) is called bipartite if
V/can be partitioned into V; and V,, VN V,=J,
such that every edge In the graph connect a
vertex in V, and a vertex in V..

Example 9.

~ Cg IS bipartite.

24
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Example 10. Is the graph G bipartite ?

a
[ - C

a
g
C e

- °

b
f V/.d d

©

Yes |

25



Thm 4. A simple graph is bipartite if and only if it is
possible to assign one of two different colors to
each vertex of the graph so that no two adjacent
vertices are assigned the same color.

Example 12. Use Thm 4 to show that G is bipartite.

1la 1p
2
29 -
2
f dl
2

26
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m Example 11. Complete Bipartite graphs (K, )

AN PR

Ky Kss

Note. | UK, )| = m+n, |EK,, )| = mn,
K., Is regular if and only if m=n.

27
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New Graphs from Old

Def 6. A subgraph of a graph G=(V, £E) is a

graph H=(W, F) where W< Vand Fc E

(Notice the f point w to connect)

Example 14. A subgraph of K

a a

d C C

e subgraph of K

28
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Def 7. The union of two simple graphs
G,=(V,, E) and G,=(V,, E) is the simple graph
GUG=(VUV,, EUE)

Example 15.
a b c a b c
® ® ® ®
Gl / Gz /\

® o

a e d f
a b c
®

o GUG,
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Representing Graphs and
Graph Isomorphism

M Adjacency list

Example 1. Use adjacency lists to describe the
simple graph given below.

b

Sol :

Vertex Adjacent Vertices
a b.ce
b a
c ada.e
d ce
€

acd

30
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Example 2. (digraph)

Initial vertex Terminal vertices
a b,cde
b b,d
c a,c,e
a
e b.cd

31
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M Adjacency Matrices

Def. G=(V, E) : simple graph, V\={v,,\,,...,V}.
A matrix A is called the adjacency matrix of G
it A=[a],.,, where g;= { 1,1t {v,v}eE,

0, otherwise.
Example 3. b
a b ¢ d _ ¢ a
) , al0 1 1 11 g 1 1 1
o1 01 1 d1 0 0 1
A: N —
110 0 © 91 0 0 1
- 4 gl 1 0 0 91 1 1 0]
Note:

1.There are n! different adjacency matrices for a graph with 7 vertices.

2.The adjacency matrix of an undirected graph is symmetric.
3. a;= 0 (simple matrix has no loop)

32



Example 5. (Pseudograph) (Matrix may not be 0,1 matrix.)

-

b
3
0
1
1

) d L :

Det. If A=[a,] Is the adjacency matrix for the directed

graph, then
1 ,if &—e
{ Vi Vi (So the matrix is

_ not necessarily
0 , otherwise symmetrical)

a3 = = 0

[N
Il
=)
[ I e T VR N e

= = 2

a;=

33
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*Incidence Matrices
Def. Let G=(V, E) . be an undirected graph. Suppose that
1, V...V, are the vertices and ¢,6,,...,6, are the edges of G .
Then the incidence matrix with respect to this ordering of V
and E is the n x m matrix M=[m;] where

. Lwhenedge e, isincident with Vi,
m = Votherwise.

Example 6. Example 7.

III] 1’2 £ 1-’3

0 0 0 0
€1 € €3 & €5 € 1 0 1 1
l ] 1 1 0 0
vif1l 1 0 0 0 0 oo
w|O0 0 1T 1 0 1 O
vi| O O O 0 1 1
w1 0 1T 0 0 0
vs O 1T 0 1 1 0]

€4 €5 € €7 €§
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XIsomorphism of Graphs

U U Vi Vs
I I I><I G is isomorphic to H
Us U, V. Vy

G 4 3 H
Def 1.
The simple graphs G,=(V},£,) and G,=(V,,E))
are iIsomorphic if there Is an one-to-one and

onto function 7 from V; to V, with the property
that &~0In G, Iff {a)~Ab) In G,, Vabe V;

fis called an isomorphism.

35
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Example 8. Show that Gand H are
Isomogphic. IUZ “ .

G H

Sol.

The function fwith Aw) = v, Aw,) = v,, A) = v, and
fu,) = 1, 1s a one-to-one correspondence between

U G) and UA).

>:Isomorphism graphs there will be:

(1) The same number of points (vertices)

(2) The same number of edges

(3) The same number of degree

36
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> Given figures, judging whether they are isomorphic in
general Is not an easy task.

Example 9. Show that G and H are not isomorphic.

Sol :
G has a vertex of degree =1, Hdon't

37



Example 10.
Determine whether G and A are isomorphic.
ae b S ®!
w X
d ®cC ‘ y °,
G H
Sol : +In G, deg(a)=2, which must correspond to either t, u,

X, ory in H degree
Each of these four vertices in H is adjacent to
another vertex of degree two in H,
which is not true fora in G
~. G and H are not isomorphic.

38
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Example 11. Determine whether the graphs Gand H
are isomorphic.

Sol:

[u)=Vg, Rtn)=vs, Rp)=Vv,, Rup)=vs, Ats)=v1, Ale)=V,
=Yes

39
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Connectivity

Def. 1:

In an undirected graph, a path of length nfrom v
to vis a sequence of /#1 adjacent vertices going
from vertex vto vertex v.

(e.9., P u=x,, x;, %, ..., x,=V.) ( Phas nedges.)

Def. 2:

path: Points and edges in unrepeatable
trail: Allows duplicate path (not repeatable)
walk: Allows point and duplicate path

Example y

W
path: u, v,y
u.@ trail: u, v, w, vy, v, X, y
walk: u, v, w, v, X, v, y

X Yy 40
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Def:
cycle: path with y=v
circuit; trail with v=v
closed walk: walk with v=v

Example

W
cycle: u, v, y, X, U
| trail: u, v, w, y, v, X, U
walk: u, v, w, v, X, v, y, X, U

41
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Paths in Directed Graphs

The same as in undirected graphs, but the path
must go Iin the direction of the arrows.

Connectedness in Undirected Graphs

Def. 3:
An undirected graph is connected if there Is a
path between every pair of distinct vertices in the
graph.

Def:
Connected component. maximal connected
subgraph. (An unconnected graph will have
several component) 4




Example 6 What are the connected
components of the graph H?

43



Def:
A cut vertex separates one connected component
Into several components If it Is removed.
A cut edge separates one connected component
Into two components if it IS removed.

Example 8. Find the cut vertices and cut edges in the
graph G.

Sol:

d f 9  cutvertices: b, c e
G , ; l cut edges:
{a1 b}’ {C’ e}

44
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Connectedness in Directed Graphs

Def. 4: Adirected graph is strongly connected if
there Is a path from ato b for any two vertices a, 0.
A directed graph is weakly connected if there Is a
path between every two vertices in the underlying
undirected graphs.

Example 9 Are the directed graphs G and H strongly
connected or weakly connected?

a’_>b a’ b
ST

strongly connected weakly connected ®
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Paths and Isomorphism

Note that connectedness, and the existence of a
circuit or simple circuit of length kA are graph
Invariants with respect to isomorphism.

Example 12. Determine whether the graphs G and
H are iIsomorphic.

%
U, H

Sol: No, Because G has no simple circuit of length three, but / does 46
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Example 13. Determine whether the graphs G and
H are iIsomorphic.

Sol.

Both G and H have 5 vertices, 6 edges, two vertices of
deg 3, three vertices of deg 2, a 3-cycle, a 4-cycle, and
a 5-cycle. = G and H may be isomorphic.

The function fwith Aw) = v, Aw,) =v,, A) = v,

fu,) = v, and ) = K IS a one-to-one correspondence
between LG) and H). = G and H are isomorphic.

47
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Counting Paths between Vertices

Theorem 2:
Let G be a graph with adjacency matrix Awith respect to
the ordering v, v, ..., v,. The number of walks of length r
from v;to v;is equal to (A); .

Proof (Only simple examples)

48



Example 14. How many walks of length 4 are
there from ato din the graph G?

a b
Sol.
The adjacency matrix of G G
(orderingas a4, b, ¢, a) IS J ;
a b ¢ d
al0 1 1 0] 0 0
»|1 0 0 1 s 0 8 8 0
_ Ad=
A_r 1 0 0 1 — 0 8 80 = 8
o110 8 00 8

a-b-a-b-d, a-b-a-c-d, a-c-a-b-d, a-c-a-c-d,
a-b-d-b-d, a-b-d-c-d, a-c-d-b-d, a-c-d-c-d

49
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Euler & Hamilton Paths

Graph Theory

m 1736, Euler solved the Konigsberg Bridge
Problem (Seven bridges problem)

Q:ls there a way
can each bridge
once, and return
to the starting
point?

50
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Konigsberg Bridge Problem
C

B

Q: Is there a way, you can walk down each side, and back to the starting
point?
Ans: (Because each time a point is required from one side to
the point, then the other side out, so after each time you
want to use a pair of side.
« connection must be an even number of sides on each
point
- the move does not exist .
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Def 1.
An Euler circuitin a graph G is a simple circuit
containing every edge of G.

An Euler pathin Gis a simple path containing
every edge of G.

Thm. 1:
A connected multigraph with at least two vertices
has an Euler circuit if and only if each of its
vertices has even degree.

Thm. 2:
A connected multigraph has an Euler path (but
not an Euler circuit) if and only if it has exactly 2
vertices of odd degree.

52



Example 1. Which of the following graphs have
an Euler circuit or an Euler path?

a b a b ° b G
G e G, e
°
d c ¢ c d e

Euler circuit none Euler path

53



V3

C. Vi, Vo, Vo Vi, Ve Vay Vi Ve, Wy

§L‘ embedded

Step 1: find the 1%t circuit

C Wy, Vi, Va, Vg Vi, g

Step2: H= G- C+# O,
find subcircuit

SC. Vs, Vi, Ve, Vg

Step 3:
C=Cu 5C,
H=G- C=0, stop

54
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APPLICATIONS OF EULER PATHS
AND CIRCUITS

m Euler paths and circuits can be used to solve many practical
problems

traversing each street in a neighborhood

each road in a transportation network

each connection in a utility grid, or

each link in a communications network exactly once

m  Among the other areas where Euler circuits and paths are applied is
In

the layout of circuits,
In network multicasting, and

iIn molecular biology, where Euler paths are used in the
sequencing of DNA

Ch9-55
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Hamilton Paths and Circuits

Def. 2: A Hamilton pathis a path that traverses
each vertex in a graph G exactly once.
A Hamilton circuitis a circuit that traverses each
vertex in G exactly once.

Example 1. Which of the following graphs have
a Hamilton circuit or a Hamilton path?

a b
G, G,
e C
C .0’ ‘c 5 9 f
d G,

Hamilton circuit: G, Hamilton path: G,,G,

56
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Thm. 3 (Dirac’s Thm.):
If (but not only if) Gis a simple graph with /72>3
vertices such that the degree of every vertex in
G is at least 7/2, then G has a Hamilton circuit.

Example

each vertex has deg > n/2 =3.5
g =Hamilton circuit exists
Suchas:aceg90b4dfa

S7



Thm. 4 (Ore’s Thm.):
If Gis a simple graph with />3 vertices such that
deg(w)+deg(Vv) > nfor every pair of nonadjacent
vertices v and v, then G has a Hamilton circuit.

Example

b 4 each nonadjacent vertex pair
has deg sum > n=7
—Hamilton circult exists
Suchas:.gadfecbga

g

58



Applications of Hamilton Circuits

m The famous traveling salesperson
oroblem or TSP (also known In older
iterature as the traveling salesman
oroblem)

Ch9-59
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Shortest-Path Problems

Def:

1. Graphs that have a number assigned
to each edge are called weighted graphs.
2. The length of a path in a weighted graph is

the sum of the weights of the edges of this
path.

Shortest path Problem:

Determining the path of least sum of the

weights between two vertices in a weighted
graph.

60



Example 1. What is the length of a shortest path
between gaand zin the weighted graph G?

Sol. (1) » @™\ =

z [=4 a
b
4
(3) a< (4) a 4
2 2 L.:5
d d 3 e

b
), 5

> / length=6

a 3 € 61
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Dijkstra’s Algorithm(ind the length of a shortest path from ato 2)

Procedure Dijkstra( G. weighted connected simple graph,
with all weights positive)

{Ghas vertices a= , v, ..., V,= zand weights (v, v)
where m(v; v) = o if {v; v} Is not an edge in G}

for/.=1ton
L(v) = This algorithm can be extended
L(a) =0 to construct a shortest path.
S=J
whilez¢ S
. trace(we add a variable
begin o
_ _ o record thing is u before v
u .= avertex not in Swith L(¢) minimal previous (v): Finally, going
S=5U {u} on from z = u algorithm
for all vertices vnotin S trace)
if L(u)+ w(, V) < L(V) then L(V) = L(u) + Wy, <
V)
and /(A — lanath - Af a chartect nath framm a9+ 21 62
CI11U 11_\4} - ICIIULII UT A SITUTLTCOL IJG.I.II MUl 4 tu LJ‘
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Example 2. Use Dijkstra’s algorithm to find the
length of a shortest path between gand zin the

weighted graph.

c e
2(@)  10(q)

63



3(9) 8(4
b5

> 13(¢)

= path: a, ¢ b, 4d e z
length: 13

64



Thm. 1
Dijkstra’s algorithm finds the length of a shortest

path between two vertices in a connected simple
undirected weighted graph.

Thm. 2
Dijkstra’s algorithm uses O(s7) operations
(additions and comparisons) to find the length of
a shortest path between two vertices in a
connected simple undirected weighted graph
with 77 vertices.

65
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The Traveling Salesman Problem:

A traveling salesman wants to visit each of ncities
exactly once and return to his starting point. In
which order should he visit these cities to travel
the minimum total distance?

Example (starting point D)

K D—>T->K—>G—>S5—>D. 458
D—>T—>5->G—>K—>D: 504
D—> T—->5->K—>G—->D: 540

66
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Planar Graphs

Def 1.

A graph is called p/anarif it can be drawn in the
plane without any edge crossing. Such a drawing

IS cal

Examp

ed a planar representation of the graph.

e 1: Is K, planar?

>< \ .. K is planar

K,
K, drawn with
NO Crossings

67



Example 2: Is Q, planar?

. @, Is planar

s Q, drawn with no crossings

Example 3: Show that K55 Is nonplanar

c Sol. Rl
In any drawmg, aebd is Regardless of which region
cycle, and will cut the plane | ' ¢, could no longer put the fin

into two region that side staggered o
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Euler’s Formula

A planar representation of a graph splits the plane
Into regions, including an unbounded region.

Example : How many regions are there in the
following graph?

Thm 1 (Euler’s Formula)
Let G be a connected planar simple graph with e
edges and vvertices. Let rbe the number of regions
In a planar representation of G. Then r=e-v+2.

69
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Example 4: Suppose that a connected planar
graph has 20 vertices, each of degree 3. Into
how many regions does a representation of this
planar graph split the plane?
Sol.
v=20,2¢e=3x20=60, e=30
r=e-1+2=30-20+2=12

Corollary 1
If GIs a connected planar simple graph with e
edges and vvertices, where v> 3, then e<3v- 6.

Example 5: Show that K; Is nonplanatr.

Sol.
=5, e=10, but3v-6=09.

70



Corollary 2
If Gis a connected planar simple graph, then G
has a vertex of degree <5.

pof: Let G be a planar graph of vvertices and ¢ edges.

If deg(V) > 6 for every ve LG)

— z deg(v)2 6v

ve V(G)

— 2626V —<« (e<3v-06)

71



Corollary 3
If a connected planar simple graph has eedges
and vvertices with v> 3 and no circuits of length

three, then e<2v-4.

Example 6: Show that Kj; Is nonplanar by Cor. 3.
Sol.

Because K, has no circuits of length three,
and v=6,e=9, bute=9>2v-4.

72
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Kuratowski’s Theorem

If a graph is planar, so will be any graph obtained by
removing an edge {v, v} and adding a new vertex w
together with edges {v, w} and {v, w}.

u 14 4
® @ o

Such an operation is called an elementary subdivision.

Two graphs G, =(V4, &), G,=(V,, £,) are called
homeomorphic if they can be obtained from the same
graph by a sequence of elementary subdivisons.

73
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Example 7: Show that the graphs G;, G,, and G;
are all homeomorphic.

a b a b a b
h /
/
g g
c d e c 4 e c d e

Sol: all three can be obtained from G,

Thm 2. (Kuratowski Theorem)
A graph is nonplanar if and only if it contains
a subgraph homeomorphic to K;;or K.

74
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Example 9: Show that the Petersen graph is not

planar.
Sol:

75
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Graph Coloring

Def. 1:

A coloring of a simple graph is the assignment of a
color to each vertex of the graph so that no two
adjacent vertices are assigned the same color.

Example:

5-coloring 3-coloring
Less the number of colors, the better 76
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Def. 2:

The chromatic number of a graph is the least
number of colors needed for a coloring of this
graph. (denoted by y(G))

Example 2: y(K5)=5

Note: y(K)=n

77
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Example: y(K,3) = 2.

Note: (K, ,) =2
Note: If Gis a bipartite graph, y(G) = 2.

78
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Example 1. What are the chromatic numbers of the
graphs G and H?

2 3
1 . 1 a g
3 2
G H
Sol: Ghas a 3-cycle Sol: any 3-coloring for
= %(G5)=3 H-{(a,9)} gives the
G has a 3-coloring same color to aand g
= y(G)<3 = v(H)>3

= ¢(G)=3 4-coloring exists = y(H)=4

79
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Example 4: x(C, :{2 If nis

even,
3if nis odd.
1
C, is bipartite ¢
when nis even. 3 1

Thm 1. (The Four Color Theorem)
The chromatic number of a planar graph is no
greater than four.

Corollary
Any graph with chromatic number >4 is nonplanar.

80
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