حَــامعة الـمَـنارة

Diggital Image Processing

تماربن تابع للمحاضبرة الر ابعة و الخامسـة Image Enhancement

Let x :old image
S:new image
$\mathrm{S}=\mathrm{x}+\mathrm{c}$ where c is constant value
>> S=imadd(x,50);// ----------------brighter image
$S=x-c$ where c is constant value
>> S=imsubtract(x,50);// --------------darker image

We can add 2 image :
>> S=x+y;//---------- (where x and $y 2$ image have same size)

- Example 1:

the following matrix represents the pixels values of an 8-bit image (r) , apply negative transform and find the resulting image pixel values.

solution:

$$
\begin{aligned}
& L=28=256 \\
& s=L-1-r \\
& s=255-r
\end{aligned}
$$

Apply this transform to each pixel to find the negative

Image (r)

100	110	90	95
98	140	145	135
89	90	88	85
102	105	99	115

Image (s)

155	145	165	160
157	115	110	120
166	165	167	170
153	150	156	140

- Exercise:
the following matrix represents the pixels values of a 5-bit image (r), apply negative transform and find the resulting image pixel values.

solution:

Image (r)

21	26	29	30
19	21	20	30
16	16	26	31
19	18	27	23

- The negative of an image can be obtained also with function imcomplement: g = imcomplement (f);

Logarithmic transformations are implemented using the expression:

$$
g=c * \log (1+\text { double }(f))
$$

But this function changes the data class of the image to double, so another sentence to return it back to uint8 should be done:

$$
\text { gs = im2uint8 (mat2gray }(\mathrm{g}) \text {); }
$$

Use of mat2gray brings the values to the range [0 1] and im2uint8 brings them to the range [0255]
$\gg f=$ imread('baby.jpg');
$\gg g=\log (1+\operatorname{double}(f)) ;$
$\gg \mathrm{gs}=$ im2uint8(mat2gray(g));
>> imshow(f), figure, imshow (g), figure, imshow(gs);

f
.

g

gs
high_out

Function imadjust is the basic IPT tool for intensity transformations of gray-scale images. It has the syntax:
>> g = imadjust (f, [low_in high_in], [low_out high_out], gamma)

This function maps the intensity values in image f to new values in g, such that values between low_in and high_in map to values between low_out and high_out.

Values below low_in and above high_in are clipped; that is values below low_in map to low_out, and those above high_in map to high_out.

- The input image can be of class uint 8 , uint 16 , or double, and the output image has the same class as the input.
All inputs to function imadjust, other than f, are specified as values between 0 and 1 , regardless of the class of f.
- If f is of class uint8, imadjust multiplies the value supplied by 255 to determine the actual values to use; if f is of class uint 16 , the values are multiplied by 65535.
Using the empty matrix ([]) for [low_in high_in] of for [low_out high_out] results in the default values [0 1].
- If high_out is less than low_out, the output intensity is reversed .
- Parameter gamma specifies the shape of the curve that maps the intensity values of \mathbf{f} to create \mathbf{g}.
- If gamma is less than 1, the mapping is weighted toward higher (brighter) output values, as fig 3.2 (a) shows.
- If gamma is greater than 1 , the mapping is weighted toward lower (darker) output values.
- If it is omitted from the function arguments, gamma defaults to 1 (linear mapping).

حَــامعة
الـمَـنارة

>> f = imread ('baby.jpg');
$\gg \mathrm{g}=$ imadjust (f, [lllll, [10]);
>> imshow(f), figure, imshow (g);
This Obtaining the negative image

g
>> $\mathrm{g}=$ imadjust ($\mathrm{f},\left[\begin{array}{lll}0.5 & \left.0.75],\left[\begin{array}{ll}0 & 1\end{array}\right], .5\right) \text {; }\end{array}\right.$
\gg imshow(f), figure, imshow (g);

f

g

حَــامعة
الـَـــنارة
>> g = imadjust ($\mathrm{f},\left[\begin{array}{ll}0.5 & 0.75],[0.61], 0.5) ; ~\end{array}\right.$
>> imshow(f), figure, imshow (g);

حَــامعة
الـَـــنارة
>> g = imadjust (f, [], [], 2);
>> imshow(f), figure, imshow (g);

Pixels less than 90 become 0

جَــامعة
الـَــنارة

$$
\begin{gathered}
\mathrm{T}=\left\{\begin{array}{l}
\text { If } \mathrm{r}>180 ; \mathrm{s}=255 \\
\text { If } \mathrm{r}<180 \text { and } \mathrm{r}>90 ; \mathrm{s}=\mathrm{T}(\mathrm{r}) \\
\text { If } \mathrm{r}<90 ; \mathrm{s}=0
\end{array}\right. \\
\quad s=T(r)=\frac{1}{1+(m / r)^{E}}
\end{gathered}
$$

- Econtrols the slope of the function.
- in the graph, suppose we have the following intensities:
$a=90, b=180, m=100$

This equation is implemented in MATLAB for the entire image as:

$$
g=1 . /\left(1+(m \cdot /(\text { double }(f)+e p s)) \cdot{ }^{\wedge} E\right)
$$

Note the use of eps to prevent overflow if f has any 0 values.

حَــامعة
الـمَـنارة
$\mathrm{g}=1 . /(1+(100 . /($ double $(\mathrm{f})+\mathrm{eps})) . \wedge 20) ;$
>> imshow(f), figure, imshow(g);

حَــامعة
الـمَـنارة
mesessumentry
$\mathrm{g}=1 . /(1+(50 . /($ double $(\mathrm{f})+\mathrm{eps})) . \wedge 20) ;$
>> imshow(f), figure, imshow(g);

حَــامعة الـمَـنارة
$\mathrm{g}=1 . /(1+(150 . /($ double $(\mathrm{f})+\mathrm{eps})) . \wedge 20)$;
>> imshow(f), figure, imshow(g);

- Exercise:
the following matrix represents the pixels values of a 8-bit image (r) , apply thresholding transform assuming that the threshold $m=95$, find the resulting image pixel values.

Image (r)

110	120	90	130
91	94	98	200
90	91	99	100
82	96	85	90

Image (s)

function a2 (x, s)
$y=x$;
[m n]=size (x);
for $\mathrm{i}=1$:m
for $\mathrm{j}=1$: n
if $x(i, j)>=s$
$y(i, j)=255$;
else $y(i, j)=0$;
end
end
end
figure, imshow(x);
figure, imshow(y);

حَــامعة
الـمَـنـنارة

نهاية المحاضرة

