Applications 1

CEDC102: Linear Algebra

Manara University
2023-2024

- Graphs and networks.
- Incidence matrices.
- Kirchhoff's laws

The model consists of nodes connected by edges. This is called a graph.
Graphs of this node-edge kind lead to matrices.

Incidence matrix of a graph- tells how the n nodes are connected by the m edges. Normally $m>n$, there are more edges than nodes

For any \boldsymbol{m} by \boldsymbol{n} matrix there are two fundamental subspaces in $\mathbb{R}^{\boldsymbol{n}}$ and two in $\mathbb{R}^{\boldsymbol{m}}$ They are the column spaces and nullspaces of \boldsymbol{A} and $\boldsymbol{A}^{\boldsymbol{T}}$. Their dimensions r, \boldsymbol{n} $-\boldsymbol{r}$ and $\boldsymbol{r}, \boldsymbol{m}-\boldsymbol{r}$ come from the most important theorem in linear algebra.

Figure 1 displays a graph with $\boldsymbol{m}=\mathbf{6}$ edges and $\boldsymbol{n}=\mathbf{4}$ nodes. The $\mathbf{6}$ by $\mathbf{4}$ matrix \boldsymbol{A} tells which nodes are connected by which edges.

The first row -1, 1, $\mathbf{0}, \mathbf{0}$ shows that the first edge goes from node $\mathbf{1}$ to node $\mathbf{2}$ (

- $\mathbf{1}$ for node $\mathbf{1}$ because the arrow goes out, + $\mathbf{1}$ for node $\mathbf{2}$ with arrow in).

Row numbers in \boldsymbol{A} are edge numbers, column numbers 1,2,3,4 are node numbers!

حَــامعة الـمَــنارة

node
(1) (2) (3) (4)

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right] \quad \begin{array}{ll}
1 & \\
2 & \\
3 & \text { edge } \\
4 & \\
5 & \\
6 &
\end{array}
$$

Figure $\quad 1$: Complete graph with $m=6$ edges and $n=4$ nodes: 6 by 4 incidence matrix A.

You can write down the matrix by looking at the graph. The second graph has the same four nodes but only three edges. Its incidence matrix B is 3 by 4 .

Figure .1*: Tree with 3 edges and 4 nodes and no loops. Then B has independent rows.

The first graph is complete-every pair of nodes is connected by an edge.
The second graph is a tree-the graph has no closed loops

- The maximum number of edges is $\frac{1}{2} n(n-1)=6$
- and the minimum to stay connected is $n-l=3$.

Elimination reduces every graph to a tree.
Rows are dependent when edges form a loop.

حَـامعة
الـمَـنارة
When $x_{1}, x_{2}, x_{3}, x_{4}$ are voltages at the nodes, $A x$ gives voltage differences:

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & \vdash 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{2}-x_{1} \\
x_{3}-x_{1} \\
x_{3}-x_{2} \\
x_{4}-x_{1} \\
x_{4}-x_{2} \\
x_{4}-x_{3}
\end{array}\right]
$$

If the voltages are equal, the differences are zero. This tells us the nullspace of A.

1. The nullspace contains the solutions to $A x=0$. All six voltage differences are zero.

This means: All four voltages are equal. Every x in the nullspace is a constant vector:
$x=(c, c, c, c)$. The nullspace of A is a line in \mathbb{R}^{n}-its dimension is $n-r=1$.

The second incidence matrix B has the same nullspace. It contains $(1,1,1,1)$:

1-dimensional nullspace: same for the tree

$$
B \boldsymbol{x}=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We can raise or lower all voltages by the same amount c , without changing the differences. There is an "arbitrary constant" in the voltages.
2. The left nullspace contains the solutions to $\boldsymbol{A}^{\boldsymbol{T}} \mathrm{y}=0$. Its dimension is $m-r=6-3$:

$$
\text { Current Law } \quad A^{\mathrm{T}} \boldsymbol{y}=\left[\begin{array}{rrrrrr}
-1 & -1 & 0 & -1 & 0 & 0 \tag{2}\\
1 & 0 & -1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

The true number of equations is $r=3$ and not $n=4$. Reason: The four equations add to $0=0$.

The fourth equation follows automatically from the first three. What do the equations mean?

The first equation says that $-y_{1}-y_{2}-y_{4}=0$. The net flow into node 1 is zero.
The fourth equation says that $y_{4}+y_{5}+y_{6}=0$.
Flow into node 4 minus flow out is zero
The equations $\boldsymbol{A}^{T} \mathrm{y}=0$ are famous and fundamental:
Kirchhoff's Current Law: $A^{\mathrm{T}} y=0 \quad$ Flow in equals flow out at each node.

This law expresses "conservation" and "continuity" and "balance." Nothing is lost, nothing is gained.

What are the actual solutions to $\boldsymbol{A}^{\boldsymbol{T}} \mathrm{y}=0$?
The easiest way is to flow around a loop. If a unit of current goes around the big triangle (forward on edge 1 and 3, backward on 2), the six currents are $y=(1,-1,1,0,0,0)$.

Every loop current is a solution to the Current Law.
Flow in equals flow out at every node. A smaller loop goes forward on edge 1 , forward on 5 , back on 4 . Then $y=(1,0,0,-1,1,0)$ is also in the left nullspace.

We expect three independent $y^{\prime} s: m-r=6-3=3$. The three small loops in the graph are independent.

The big triangle seems to give a fourth y, but that flow is the sum of flows around the small loops. Flows around the 3 small loops are a basis for the left nullspace.

The incidence matrix A comes from a connected graph with n nodes and m edges. The row space and column space have dimensions $r=n-1$. The nullspaces of A and A^{T} have dimensions 1 and $m-n+1$:
$\boldsymbol{N}(A)$ The constant vectors (c, c, \ldots, c) make up the nullspace of $A: \operatorname{dim}=1$.
$\boldsymbol{C}\left(A^{\mathrm{T}}\right)$ The edges of any tree give r independent rows of $A: r=n-1$.
$C(A) \quad$ Voltage Law: The components of $A x$ add to zero around all loops: $\operatorname{dim}=n-1$.
$\boldsymbol{N}\left(A^{\mathrm{T}}\right)$ Current Law: $A^{\mathrm{T}} \boldsymbol{y}=($ flow in $)-($ flow out $)=\mathbf{0}$ is solved by loop currents.
There are $m-r=m-n+1$ independent small loops in the graph.
For every graph in a plane, linear algebra yields Euler's formula: Theorem 1 in topology! $($ number of nodes $)-($ number of edges $)+($ number of small loops $)=1$.

Voltages and Currents and $\boldsymbol{A}^{\boldsymbol{T}} A x=f$

- We started with voltages $x=\left(x_{1}, \ldots, x_{n}\right)$ at the nodes.
- So far we have $A x$ to find voltage differences $x_{i}-x_{j}$ along edges.
- And we have the Current Law $A^{T} y=0$ to find edge currents $y=\left(y_{1}, \ldots y_{n}\right)$

If all resistances in the network are 1 , Ohm's Law will match $y=A x$. Then $A^{T} y=A^{T} A y=0$.

Without any sources, the solution to $A^{T} A x=0$ will just be no flow: $\mathrm{x}=0$ and $\mathrm{y}=0$.

We can produce $x \neq 0$ and $\mathrm{y} \neq 0$ by adding current sources going into one or more nodes.

The currents y_{1} to y_{6} in a network with a source S from node 4 to node 1 .

