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Finite Element Concepts & Software
طرائق العناصر المنتهية وبرمجياتها
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3 What is this class?

1. “Direct Stiffness” approach for springs

2. Bar elements and truss analysis

3. Beams and Frames Elements and Analysis

4. Displacement-based finite element formulation in 2D:
formation of stiffness matrix and load vector for CST and
quadrilateral elements.
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3 1. “Direct Stiffness” approach for springs

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■Define the stiffness matrix.

■Derive the stiffness matrix for a spring element.

■Demonstrate how to assemble stiffness matrices into a global stiffness matrix.

■ Illustrate the concept of direct stiffness method to obtain the global stiffness matrix and solve a spring
assemblage problem.

■Describe and apply the different kinds of boundary conditions relevant for spring assemblages.

■ Show how the potential energy approach can be used to both derive the stiffness matrix for a spring and solve
a spring assemblage problem
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3 “Direct Stiffness” approach for springs

Introduction:

This chapter introduces some of the basic concepts on which the direct stiffness method is founded. The
linear spring is introduced first because it provides a simple yet generally instructive tool to illustrate the
basic concepts. We begin with a general definition of the stiffness matrix and then consider the derivation
of the stiffness matrix for a linear-elastic spring element. We next illustrate how to assemble the total
stiffness matrix for a structure comprising an assemblage of spring elements by using elementary concepts
of equilibrium and compatibility. We then show how the total stiffness matrix for an assemblage can be
obtained by superimposing the stiffness matrices of the individual elements in a direct manner. The term
direct stiffness method evolved in reference to this technique.

After establishing the total structure stiffness matrix, we illustrate how to impose boundary conditions—
both homogeneous and nonhomogeneous. A complete solution including the nodal displacements and
reactions is thus obtained.

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.1: Definition of the Stiffness Matrix:

Familiarity with the stiffness matrix is essential to understanding the stiffness method. We define the
stiffness matrix as follows: For an element, a stiffness matrix [k] is a matrix such that

where [k] relates nodal displacements {d} to nodal forces { f } of a single element, such as the spring
shown in Figure (a).

For a continuous medium or structure comprising a series of elements, such as shown for the spring
assemblage in Figure (b) , stiffness matrix [K] relates global-coordinate (x, y, z) nodal displacements {d}
to global forces {F} of the whole medium or structure. such that

where [K] represents the stiffness matrix of the whole spring assemblage.

𝑓 = 𝑘 𝑑

𝐹 = 𝐾 𝑑

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

Behavior of linear spring (recap):

Familiarity with the stiffness matrix is essential to understanding the stiffness method. We define the

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

• Using the direct equilibrium approach, we will now derive the stiffness matrix for a one- dimensional linear

spring—that is, a spring that obeys Hooke’s law and resists forces only in the direction of the spring. Consider

the linear spring element shown in next Figure. Reference points 1 and 2 are located at the ends of the element.

These reference points are called the nodes of the spring element.

• The local nodal forces are f1x and f2x for the spring element associated with the local axis x. The local axis acts in

the direction of the spring so that we can directly measure displacements and forces along the spring.

• The local nodal displacements are u1 and u2 for the spring element. These nodal displacements are called the

degrees of freedom at each node. Positive directions for the forces and displacements at each node are taken in

the positive x direction as shown from node 1 to node 2 in the figure. The symbol k is called the spring constant

or stiffness of the spring.

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

We now want to develop a relationship between nodal forces and nodal displacements for a spring

element. This relationship will be the stiffness matrix. Therefore, we want to relate the nodal force

matrix to the nodal displacement matrix as follows:

𝑓1𝑥
𝑓2𝑥

=
𝑘11 𝑘12
𝑘 21 𝑘22

𝑢1
𝑢2

(1.2.1)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

Step 1: Select the element type:

Consider the linear spring element (which can be an element in a system of springs) subjected to resulting nodal

tensile forces T (which may result from the action of adjacent springs) directed along the spring axial direction x

as shown in Figure, so as to be in equilibrium. The local x axis is directed from node 1 to node 2. We represent the

spring by labeling nodes at each end and by labeling the element number. The original distance between nodes

before deformation is denoted by L. The material property (spring constant) of the element is k.

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

Step 2 Define the Strain/Displacement and Stress/Strain Relationships

The tensile forces T produce a total elongation (deformation) d of the spring. The typical total

elongation of the spring is shown in Figure 4. Here u1 is a negative value because the direction of

displacement is opposite the positive x direction, whereas u2 is a positive value. The total deformation

of the spring is represented by the difference in nodal displacements as

For a spring element, we can relate the force in the spring directly to the deformation. Therefore, the

strain/displacement relationship is not necessary here. The stress/strain relationship can be expressed

in terms of the force/deformation relation- ship instead as

Now, using Eq. (1.2.2) in Eq. (1.2.3), we obtain

𝑇 = 𝑘𝛿

𝑇 = 𝑘 𝑢2 − 𝑢1

𝛿 = 𝑢2 − 𝑢1

(1.2.3)

(1.2.4)

(1.2.2)
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

Step 3 Derive the Element Stiffness Matrix and Equations

We now derive the spring element stiffness matrix. By the sign convention for nodal forces and

equilibrium, (see Figures 2 and 3) we have

Using Eqs. (1.2.4) and (1.2.5), we have

Rewriting Eqs. (1.2.6), we obtain

𝑓1𝑥 = −𝑇 𝑓2𝑥 = 𝑇 (1.2.5)

𝑇 = −𝑓1𝑥= 𝑘 𝑢2 − 𝑢1
𝑇 = 𝑓2𝑥 = 𝑘 𝑢2 − 𝑢1

(1.2.6)

𝑓1𝑥 = 𝑘 𝑢1 − 𝑢2

𝑓2𝑥 = 𝑘 𝑢2 − 𝑢1
(1.2.7)
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

Step 3 Derive the Element Stiffness Matrix and Equations

Now expressing Eqs (1.2.7) in a single matrix equation yields

This relationship holds for the spring along the x axis. From our basic definition of a stiffness matrix and 

application of Eq. (1.2.1) to Eq. (1.2.8), we obtain

𝑓1𝑥
𝑓2𝑥

=
𝑘 −𝑘
−𝑘 𝑘

𝑢1
𝑢2

𝑘 =
𝑘 −𝑘
−𝑘 𝑘

(1.2.8)

(1.2.9)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

Step 3 Derive the Element Stiffness Matrix and Equations

as the stiffness matrix for a linear spring element. Here [k] is called the local stiffness matrix for the element. We

observe from Eq. (1.2.9) that [k] has the following properties:

1. It is symmetric (that is, kij 5 k ji for i ? j ).

2. It is square (the number of rows equals the number of columns in [k]) as it relates the same number of nodal

forces to nodal displacements.

3. It is singular. That is, the determinant of [k] is equal to zero, so [k] cannot be inverted.

𝑘 =
𝑘 −𝑘
−𝑘 𝑘 (1.2.9)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

Step 4 Assemble the Element Equations to Obtain the Global Equations and Introduce Boundary Conditions

The global stiffness matrix and global force matrix are assembled using nodal force equilibrium equations,

force/deformation and compatibility equations from Section 1.3, and the direct stiffness method described in Section 1.4.

This step applies for structures composed of more than one element such that

where [k (e) ] and { f (e)} are now element stiffness and force matrices expressed in a global reference frame. This concept

becomes relevant for instance when considering truss structures in following chapters. (Throughout this text, the ∑ sign

used in this context does not imply a simple summation of element matrices but rather denotes that these element matrices

must be assembled properly according to the direct stiffness method described in Section 1.4.)

(1.2.10)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.2 Derivation of the Stiffness Matrix for a Spring Element:

Step 5 Solve for the Nodal Displacements

The displacements are then determined by imposing boundary conditions, such as support conditions,

and solving a system of equations simultaneously as

Step 6 Solve for the Element Forces

Finally, the element forces are determined by back-substitution, applied to each element, into

equations similar to Eqs. (1.2.7).

(1.2.11)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.3 Example of a Spring Assemblage

Structures such as trusses, building frames, and bridges comprise basic structural

components connected together to form the overall structures. To analyze these

structures, we must deter- mine the total structure stiffness matrix for an interconnected

system of elements. Before considering the truss and frame, we will determine the total

structure stiffness matrix for a spring assemblage by using the force/displacement

matrix relationships derived in Section 1.2 for the spring element, along with

fundamental concepts of nodal equilibrium and compatibility. Step 5 will then have been

illustrated.

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.3 Example of a Spring Assemblage

We will consider the specific example of the two-spring assemblage shown in Figure 5. This example is

general enough to illustrate the direct equilibrium approach for obtaining the total stiffness matrix of

the spring assemblage. Here we fix node 1 and apply axial forces for F3x at node 3 and F2x at node 2. The

stiffnesses of spring elements 1 and 2 are k1 and k2 , respectively. The nodes of the assemblage have

been numbered 1, 3, and 2 for further generalization because sequential numbering between elements

generally does not occur in large problems.

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.3 Example of a Spring Assemblage

The x axis is the global axis of the assemblage. The local x axis of each element coincides with the global axis of

the assemblage. For element 1, using Eq. (1.2.8), we have

and for element 2, we have

Furthermore, elements 1 and 2 must remain connected at common node 3 throughout the displacement. This is

called the continuity or compatibility requirement. The compatibility requirement yields

(1.3.1)

(1.3.2)

(1.3.3)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.3 Example of a Spring Assemblage

Where, throughout this text, the superscripts in parentheses above u refers to the element number to which they

are related. Recall that the subscript to the right identifies the node of displacement and that u3 is the node 3

displacement of the total or global spring assemblage. Free-body diagrams of each element and node (using the

established sign conventions for element nodal forces in Figure 2) are shown in Figure 6. Based on the free-body

diagrams of each node shown in Figure 6 and the fact that external forces must equal internal forces at each node,

we can write nodal equilibrium equations at nodes 3, 2, and 1 as

whereF1x results from the external applied reaction at the fixed support

(1.3.4)

(1.3.5)

(1.3.6)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.3 Example of a Spring Assemblage

Here Newton’s third law, of equal but opposite forces, is applied in moving from a node to an element associated with the
node. Using Eqs. (1.3.1) through (1.3.3) in Eqs. (1.3.4) through (1.3.6), we obtain

In matrix form, Eqs. (1.3.7) are expressed by

Rearranging Eq. (1.3.8) in numerically increasing order of the nodal degrees of freedom, we have

(1.3.7)

(1.3.8)

(1.3.9)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.3 Example of a Spring Assemblage

Equation (1.3.9) is now written as the single matrix equation

is called the total or global or system stiffness matrix.

In summary, to establish the stiffness equations and stiffness matrix, Eqs. (1.3.9) and (1.3.11), for a spring assemblage, we have
used force/deformation relationships Eqs. (1.3.1) and (1.3.2), compatibility relationship Eq. (1.3.3), and nodal force equilibrium
Eqs. (1.3.4) through (1.3.6).

(1.3.7)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.4 Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method)

We will now consider a more convenient method for constructing the total stiffness matrix. This

method is based on proper superposition of the individual element stiffness matrices making up a

structure. Referring to the two-spring assemblage of Section 1.3, the element stiffness matrices are

given in Eqs. (1.3.1) and (1.3.2) as

Here the ui s written above the columns and next to the rows in the [k]s indicate the degrees of freedom

associated with each element row and column.

(1.4.1)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.4 Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method)

The two element stiffness matrices, Eqs. (1.4.1), are not associated with the same degrees of freedom;

that is, element 1 is associated with axial displacements at nodes 1 and 3, whereas element 2 is

associated with axial displacements at nodes 2 and 3. Therefore, the element stiffness matrices cannot

be added together (superimposed) in their present form. To superimpose the element matrices, we

must expand them to the order (size) of the total structure (spring assemblage) stiffness matrix so that

each element stiffness matrix is associated with all the degrees of freedom of the structure. To expand

each element stiffness matrix to the order of the total stiffness matrix, we simply add rows and columns

of zeros for those displacements not associated with that particular element.

For element 1, we rewrite the stiffness matrix in expanded form so that Eq. (1.3.1) becomes

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.4 Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method)

For element 1, we rewrite the stiffness matrix in expanded form so that Eq. (1.3.1) becomes

where, from Eq. (1.4.2), we see that u(1), and f(1) are not associated with [k (1) ]. Similarly, for element

2, we have

Now, considering force equilibrium at each node results in

(1.4.3)

(1.4.2)

(1.4.4)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.4 Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method)

For element 1, we rewrite the stiffness matrix in expanded form so that Eq. (1.3.1) becomes

where, from Eq. (1.4.2), we see that u(1), and f(1) are not associated with [k (1) ]. Similarly, for element

2, we have

Now, considering force equilibrium at each node results in

(1.4.3)

(1.4.2)

(1.4.4)
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3 “Direct Stiffness” approach for springs

1.5 Boundary Conditions

We must specify boundary (or support) conditions for structure models such as the spring assemblage

of Figure 5, or [K ] will be singular; that is, the determinant of [K ] will be zero, and its inverse will not

exist. This means the structural system is unstable. Without our specifying adequate kinematic

constraints or support conditions, the structure will be free to move as a rigid body and not resist any

applied loads. In general, the number of boundary conditions necessary to make [K ] nonsingular is

equal to the number of possible rigid body modes.

Boundary conditions relevant for spring assemblages are associated with nodal displacements. These

conditions are of two types. Homogeneous boundary conditions—the more common—occur at

locations that are completely prevented from movement; nonhomogeneous boundary conditions occur

where finite nonzero values of displacement are specified, such as the settlement of a support.

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.5 Boundary Conditions

To illustrate the two general displacement types of boundary conditions, let us consider Eq. (1.4.6),

derived for the spring assemblage of Figure 5. which has a single rigid body mode in the direction of

motion along the spring assemblage.

Homogeneous Boundary Conditions: We first consider the case of homogeneous boundary conditions.

Hence all boundary conditions are such that the displacements are zero at certain nodes. Here we have

u1=0 because node1 is fixed. Therefore, Eq. (1.4.6) can be written as

(1.5.1)

https://manara.edu.sy/
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3 “Direct Stiffness” approach for springs

1.5 Boundary Conditions

Homogeneous Boundary Conditions: Equation (1.5.1), written in expanded form, becomes,

where F1x is the unknown reaction and F2x and F3x are known applied loads. Writing the second and third of Eqs. (1.5.2) in

matrix form, we have

We have now effectively partitioned off the first column and row of [K] and the first row of {d} and {F} to arrive at Eq. (1.5.3)

(1.5.2)

(1.5.3)
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3 “Direct Stiffness” approach for springs

1.5 Boundary Conditions

Homogeneous Boundary Conditions: For homogeneous boundary conditions, Eq. (1.5.3) could have been obtained directly by

deleting the row and column of Eq. (1.5.1) corresponding to the zero-displacement degrees of freedom. Here row 1 and column 1

are deleted because one is really multiplying column 1 of [K] by u1 = 0. However, F1x is not necessarily zero and can be determined

once u2 and u3 are solved for. After solving Eq. (1.5.3) for u2 and u3, we have

Now that u2 and u3 are known from Eq. (1.5.4), we substitute them in the first of Eqs. (1.5.2) to obtain the reaction F1x as

We can express the unknown nodal force at node 1 (also called the reaction) in terms of the applied nodal forces F2x and F3x by using

Eq. (1.5.4) for u3 substituted into Eq. (1.5.5). The result is

(1.5.4)

(1.5.5)

(1.5.6)

https://manara.edu.sy/


Slide 31https://manara.edu.sy/

Fi
n

it
e 

El
em

en
t 

C
o

n
ce

p
ts

 &
 S

o
ft

w
ar

e 
   

   
   

   
   

   
   

   
  B

. 
H

ai
d

ar
   

   
   

   
   

   
 2

3
/1

0
/2

0
2

3 “Direct Stiffness” approach for springs

1.5 Boundary Conditions

Homogeneous Boundary Conditions:

Therefore, for all homogeneous boundary conditions, we can delete the rows and columns

corresponding to the zero-displacement degrees of freedom from the original set of equations and then

solve for the unknown displacements. This procedure is useful for hand calculations.

https://manara.edu.sy/

	Slide 1: Finite Element Concepts & Software طرائق العناصر المنتهية وبرمجياتها
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

