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 Introduction to Systems of Linear Equations

 Gaussian Elimination 

 Operations with Matrices

 Properties of Matrix Operations

 Inverse matrices

 Elementary Matrices

 LU factorization
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( ) n nA M KConsider

Then  (1) A is invertible (or nonsingular)

(2) B is the inverse of A

 Inverse matrix:

If there exists a matrix such that AB = BA = In,
 n nB M K( )
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 Note:

A matrix that does not have an inverse is called noninvertible (or singular).

 Theorem (The inverse of a matrix is unique):

If B and C are both inverses of the matrix A, then B = C.

 Notes:

(1) The inverse of A is denoted by 1A

(2)  = =AA A A I1 1

Consequently, the inverse of a matrix is unique.
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     A I I A 1| |

 Ex : (Find the inverse of the matrix)

 
=    

A
1 4

1 3
Sol:

=AX I

     
=           

x x

x x
11 12

21 22

1 4 1 0

1 3 0 1

11 21 12 22

11 21 12 22

4 4 1 0

3 3 0 1

    
=         

x x x x

x x x x

 Find the inverse of a matrix by Gauss-Jordan Elimination:

Gauss-Jordan Elimination
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Thus

 =

  =

 =

  =

x x

x x

x x

x x

11 21

11 21

12 22

12 22

4 1
       (1)

3 0

4 0
       (2)

3 1

   
   =  =       

x x
11 21

1 4 1 1 0 3
(1) 3, 1

1 3 0 0 1 1

r r(1) ( 4)

12 21
, 

   
   =  =       

x x
12 22

1 4 0 1 0 4
(2) 4, 1

1 3 1 0 1 1

r r(1) ( 4)

12 21
, 

     
= = = = =   

   

x x
X A AX I AA

x x
1 -111 12

21 22

3 4
  ( )

1 1
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r r(1) ( 4)

12 21
, 

If A can’t be row reduced to I, then A is singular.

 Note:



    
       

A I I A 1

1 4 1 0 1 0 3 4

1 3 0 1 0 1 1 1

                                                 

Sol:

 Ex : (Find the inverse of the following matrix)

 
 = 
  

A
1 1 0
1 0 1
6 2 3

 
 =   
  

A I
1 1 0 1 0 0
1 0 1 0 1 0
6 2 3 0 0 1
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1 1 0 1 0 0
0 1 1 1 1 0
6 2 3 0 0 1

r ( 1)

12
 

   
  

1 1 0 1 0 0
0 1 1 1 1 0
0 4 3 6 0 1

r (6)

13

 
   
  

1 1 0 1 0 0
0 1 1 1 1 0
0 0 1 2 4 1

r (4)

23
 

   
    

1 1 0 1 0 0
0 1 1 1 1 0
0 0 1 2 4 1

r ( 1)

3

 
    
    

1 1 0 1 0 0
0 1 0 3 3 1
0 0 1 2 4 1

r (1)

32
   

    
    

1 0 0 2 3 1
0 1 0 3 3 1
0 0 1 2 4 1

r (1)

21  =  I A 1  

So the matrix A is invertible, and its inverse is 
   

 =   
    

A 1
2 3 1
3 3 1
2 4 1

 Check:  = =AA A A I1 1
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=A I0(1)

= k

k

A AA A k
 factors

(2)       ( 0)

  
  
 =  = 
  
     

k

k
k

kn
n

dd

d d
D D

d d

11

2 2

0 00 0

0 0 0 0
(5)

0 0 0 0

 Power of a square matrix:

, =r s r sA A A r s(3)     : integers

=r s rsA A(4) ( )
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 Theorem (Properties of inverse matrices):

If A is an invertible matrix, k is a positive integer, and c is a scalar not equal to zero,

then

(1) is invertible and ( )   =A A A1 1 1

 factors

(2) is  invertible and ( ) ( )     = = =k k k k

k

A A A A A A A1 1 1 1 1

(4) is invertible and ( ) ( ) =T T TA A A1 1

(3) is invertible and ( ) , 0 = cA cA A c
c

1 11
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 Theorem (The inverse of a product):

If A and B are invertible matrices of size n, then AB is invertible and

( )  =AB B A1 1 1

 Note:

 
1 1 1 1 1

1 2 3 3 2 1

    =n nAA A A A A A A

 Theorem (Cancellation properties)

If C is an invertible matrix, then the following properties hold:

(1) If AC = BC, then A = B (Right cancellation property)

(2) If CA = CB, then A = B (Left cancellation property)

If C is not invertible, then cancellation is not valid. Note:
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 Theorem (Systems of equations with unique solutions):

If A is an invertible matrix, then the system of linear equations Ax = b has a

unique solution given by x = A1b

 Note:

For square systems (those having the same number of equations as variables), Previous

Theorem can be used to determine whether the system has a unique solution.

Ax = b (A is an invertible matrix) Note:

      =      A A A A I A1 1 1| | |b b b
A 1
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 Ex : Use an inverse matrix to solve each system

  = 

  =

  = 

x y z
x y z
x y z

2 3 1

3 3 1

2 4 2

  =

  =

  =

x y z
x y z
x y z

2 3 0

3 3 0

2 4 0

(a) (b)

Sol:
Gauss-Jordan Elimination 

 =
  

A
2 3 1
3 3 1
2 4 1


 

 = 
   

A 1
1 1 0
1 0 1
6 2 3

(a) 
          

         = =  =   = 
                      

x
A y

z

1
1 1 0 1 2 2
1 0 1 1 1 1
6 2 3 2 2 2

x b

(b) 
         

         = =  =  =
                   

x
A y

z

1
1 1 0 0 0 0
1 0 1 0 0 0
6 2 3 0 0 0

x b
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Elementary Matrices

 Row elementary matrix:

An nn matrix is called an elementary matrix if it can be obtained from the identity

matrix In by a single elementary operation.

 Three row elementary matrices:

Interchange two rows .

Multiply a row by a nonzero constant.

Add a multiple of a row to another row.

=

= 

=

ij ij

k k
i i

k k
ij ij

R r I

R r I k

R r I

( ) ( )

( ) ( )

(1) ( )

(2) ( )      ( 0)

(3) ( )
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Note: Permutation matrix

Row Exchange Matrix 𝑷𝒊𝒋 is the identity matrix with rows 𝑖 and 𝑗 reversed.

When this "permutation matrix" 𝑷𝒊𝒋 multiplies a matrix, it exchanges 

rows 𝑖 and 𝑗.

To exchange equations 1 and 3 multiply by

𝑷𝒊𝒋 =
0 0 1
0 1 0
1 0 0
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 Ex : (Elementary matrices and non elementary matrices)

(3)

2 3Yes ( ( ))r I No (not square)

23 3Yes ( ( ))r I (2)

12 2Yes ( ( ))r I

   
    
     

   

a b c

1 0 0 1 0 0
1 0 0

( ) 0 3 0 ( ) ( ) 0 1 0
0 1 0

0 0 1 0 0 0

No (Row multiplication must

be by a nonzero constant)

   
    
         

d e f

1 0 0 1 0 0
1 0

( ) 0 0 1 ( ) ( ) 0 2 0
2 1

0 1 0 0 0 1

No (Use two elementary

row operations)
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 Theorem (Representing elementary row operations):

Let E be the elementary matrix obtained by performing an elementary row operation on

Im. If that same elementary row operation is performed on an mn matrix A, then the

resulting matrix is given by the product EA.

 Notes:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

=

=

=

ij ij

k k
i i

k k
ij ij

r A R A

r A R A

r A R A

1

2

3

( )

( )

=

=

r I E

r A EA
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 Ex : (Elementary matrices and elementary row operation)

( ) ( )

( )  ( ( ) )

( )  ( ( ) )

( ) 

     
      = =
     

      

 
     

    =  = 
    
     

  
   
 
  

a r A R A

b r A R A

c

12 12

1 1

2 2
2 2

0 1 0 0 2 1 1 3 6

1 0 0 1 3 6 0 2 1

0 0 1 3 2 1 3 2 1

1 0 0
1 0 4 1 1 0 4 1

1
0 0 0 2 6 4 0 1 3 2

2
0 1 3 1 0 1 3 10 0 1

1 0 0 1 0 1

2 1 0 2 2 3

0 0 1 0 4 5

( ) ( ) ( ( ) )

  
   =  =
   

  

r A R A2 2

12 12

1 0 1

0 2 1

0 4 5
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 Ex : (Using elementary matrices)

Find a sequence of elementary matrices that can be used to write the matrix A in row-

echelon form.

A
 
 = 
  

0 1 3 5
1 3 0 2
2 6 2 0

Sol:

( )A r A E A
 

 = = =
  

1 12 1

1 3 0 2
0 1 3 5
2 6 2 0

( ) ( )E r I
 
 = =
  

2

2 13 3

1 0 0
0 1 0
2 0 1

( )E r I
 
 = =
  

1 12 3

0 1 0
1 0 0
0 0 1

( ) ( )A r A E A
 

 = = =
  

2

2 13 1 2 1

1 3 0 2
0 1 3 5
0 0 2 4
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( )

( )
/

E r I
 
 = =
  

1

2
3 3 3

1 0 0
0 1 0
0 0 1 2

( )

( )A r A E A
 

 = = =
  

1

2
3 3 2 3 2

1 3 0 2
0 1 3 5
0 0 1 2

/
B E E E A

       
       = = 
               

3 2 1

1 0 0 1 0 0 0 1 0 0 1 3 5
0 1 0 0 1 0 1 0 0 1 3 0 2
0 0 1 2 2 0 1 0 0 1 2 6 2 0

/

     
     =
           

1 0 0 1 0 0 1 3 0 2
0 1 0 0 1 0 0 1 3 5
0 0 1 2 2 0 1 2 6 2 0

/

      
     = =
           

1 0 0 1 3 0 2 1 3 0 2
0 1 0 0 1 3 5 0 1 3 5
0 0 1 2 0 0 2 4 0 0 1 2
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Matrix B is row-equivalent to A if there exists a finite number of elementary matrices

such that

 Row-equivalent:

k kB E E E E A= 1 2 1

 Theorem : (Elementary matrices are invertible)

If E is an elementary matrix, then E1 exists and is an elementary matrix.

 Notes:

( ) ( )ij ijR R =11

( )
( )( ) ( )k k
i iR R =

1

12

( ) ( )( ) ( )k k
ij ijR R =13
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 Ex :

Elementary Matrix Inverse Matrix

(Elementary Matrix)

E R
 
 = =
  

1 12

0 1 0
1 0 0
0 0 1

( )R E R 
 
 = = =
  

1 1

12 1 12

0 1 0
1 0 0
0 0 1

( )E R 
 
 = =
  

2

2 13

1 0 0
0 1 0
2 0 1

( ) ( )( )R E R  
 
 = = =
  

2 1 1 2

13 2 13

1 0 0
0 1 0
2 0 1 (Elementary Matrix)

( )

E R
 
 = =
  

1

2
3 3

1
2

1 0 0
0 1 0
0 0

( )
( )( )R E R 

 
 = = =
  

1

1 1 22
3 3 3

1 0 0
0 1 0
0 0 2 (Elementary Matrix)
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A square matrix A is invertible if and only if it can be written as the product of

elementary matrices.

 Theorem (A property of invertible matrices):

A
  

=
  

1 2

3 8

Sol:

A

I

      
=  

          

   
  =

      

1 2 1 2 1 2
3 8 3 8 0 2

1 2 1 0
0 1 0 1

( )
( ) ( ) ( )Therefore R R R R A I   =

1

2 3 12
21 2 12 1

 Ex 5: Find a sequence of elementary matrices whose product is

( )r 1

1
( )r 3

12

( )r 2

21

( / )r 1 2

2
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( )
( ) ( ) ( )Thus ( ) ( ) ( ) ( )A R R R R      =

1

1 1 3 1 1 2 12
1 12 2 21

( ) ( ) ( ) ( ) R R R R= 1 3 2 2

1 12 2 21

       
=

              

1 0 1 0 1 0 1 2
0 1 3 1 0 2 0 1

 Note:

If A is invertible then

kE E E E A I=3 2 1

kA E E E E =1
3 2 1

1 1 1 1
1 2 3 kA E E E E   =
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If A is an nn matrix, then the following statements are equivalent.

(1) A is invertible.

(2) Ax = b has a unique solution for every n1 column matrix b.

(3) Ax = 0 has only the trivial solution.

(4) A is row-equivalent to In.             

(5) A can be written as the product of elementary matrices.

 Theorem (Equivalent conditions):
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 𝐿𝑈factorization:

If the 𝑛𝑛 matrix 𝐴 can be written as the product of a lower triangular matrix 𝐿 and

an upper triangular matrix U, then 𝐴 = 𝐿𝑈 is an 𝐿𝑈factorization of 𝐴

 Note:

If a square matrix A can be row reduced to an upper triangular matrix 𝑈 using only

the row operation of adding a multiple of one row to another row below it, then it is

easy to find an 𝐿𝑈factorization of A.

( )

k

k

k

E E E A U

A E E E U

A LU L E E E

  

  

=

=

= =

2 1

1 1 1

1 2

1 1 1

1 2
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 Ex :(𝐿𝑈 −factorization)

Sol: (a)

( )R A U =1

12

( ) ( )( )L R R   
 = = =

  

1 1 1

12 12

1 0
1 1

( ) a A  
=

  

1 2
1 0

( ) b A
 

 =
  

1 3 0
0 1 3
2 10 2

 A U   
=  =

      

1 2 1 2
1 0 0 2

( )r 1

12

( )( )A R U LU  = =1 1

12
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(b)

  A U
       

     =   =
           

1 3 0 1 3 0 1 3 0
0 1 3 0 1 3 0 1 3
2 10 2 0 4 2 0 0 14

( ) ( )( ) ( )A R R U LU   = =2 1 4 1

13 23

( )r 2

13
( )r 4

23

( ) ( )R R A U =4 2

23 13

( ) ( ) ( ) ( )( ) ( )L R R R R    = =2 1 4 1 2 4

13 23 13 23

     
     = =
           

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
2 0 1 0 4 1 2 4 1
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 Two steps:

 Solving 𝐴𝒙 = 𝒃 with an 𝐿𝑈factorization of A
𝐴𝒙 = 𝒃 If 𝐴 = 𝐿𝑈, then 𝐿𝑈𝒙 = 𝒃

Let 𝒚 = 𝑈𝒙, then 𝐿𝒚 = 𝒃

(1) Write 𝒚 = 𝑈𝒙, and solve 𝐿𝒚 = 𝒃 for y

(2) Solve 𝑈𝒙 = 𝒚 for 𝒙
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 Ex : (Solving a linear system using 𝐿𝑈factorization)

Sol:

 A LU

      
     = = =
           

1 3 0 1 0 0 1 3 0

0 1 3 0 1 0 0 1 3

2 10 2 2 4 1 0 0 14

x x
x x

x x x

 = 
 = 

  = 

1 2

2 3

1 2 3

3 5
3 1

2 10 2 20

(1) Let 𝒚 = 𝑈𝒙, and solve for 𝐿𝒚 = 𝒃

 
y y
y y
y y y y

    =  
     =   = 
     =    =      

1 1

2 2

3 3 1 2

1 0 0 5 5
0 1 0 1 1

20 2 4 142 4 1 20
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( )( )

( )

x

x x

x x

= 

=   =    =

=   =   =

3

2 3

1 2

1

1 3 1 3 1 2

5 3 5 3 2 1

Thus, the solution is
 
 =
  

1

2

1

x

(2) Solve the following system 𝑈𝒙 = 𝒚

 
x
x
x

     
     = 
         

1

2

3

1 3 0 5

0 1 3 1

0 0 14 14

So
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The Cost of Elimination


