mesesumethir

Lecture 2-A: Vector spaces

CEDC102: Linear Algebra

Manara University
2023-2024

[^0]- Vectors in \mathbb{R}^{n}
- Vector Spaces
- Subspaces of Vector Spaces
- Spanning Sets and Linear Independence
- Basis and Dimension
- Rank and Nullity of a Matrix

Vectors in \mathbb{R}^{n}

- Vectors in the plane:
a vector \boldsymbol{x} in the plane is represented by a directed line segment with its initial point at the origin and its terminal point at $\left(x_{1}, x_{2}\right)$.

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
X_{2}
\end{array}\right] \begin{aligned}
& x_{1}=\text { first component of } \boldsymbol{x} \\
& x_{2}=\text { second component of } \boldsymbol{x}
\end{aligned}
$$

- Ex :

Vector Addition $\boldsymbol{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right], \quad \boldsymbol{u}+\boldsymbol{v}=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right]$
Scalar Multiplication $c \boldsymbol{v}=c\left[\begin{array}{l}V_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}c v_{1} \\ c v_{2}\end{array}\right] \quad-\boldsymbol{V}=(-1) \boldsymbol{v} \Rightarrow \boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v})$

- Ex:

$$
w=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

- n-space: \mathbb{R}^{n}
$\mathbb{R}^{1}=1$-space $=$ set of all real number $\left(x_{1}, x_{2}\right)$
$\mathbb{R}^{2}=2$-space $=$ set of all ordered pair of real numbers $\left(x_{1}, x_{2}, x_{3}\right)$
$\mathbb{R}^{3}=3$-space $=$ set of all ordered triple of real numbers $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$!
$\mathbb{R}^{n}=n$-space $=$ set of all ordered n-tuple of real numbers
- Notes: An n-tuple ($x_{1}, x_{2}, \ldots, x_{n}$) can be viewed as
(1) a point in \mathbb{R}^{n} with the $x_{i}^{\prime} s$ as its coordinates.
(2) a vector \boldsymbol{X} in \mathbb{R}^{n} with the $x_{i}^{\prime} s$ as its components.
$\underline{\text { a vector } \boldsymbol{x}}$ in \mathbb{R}^{n} will be represented also as $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$

$$
\boldsymbol{X}=\left[\begin{array}{c}
x_{1} \\
X_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\boldsymbol{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right), \quad \boldsymbol{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right) \quad\left(\text { two vectors in } \mathbb{R}^{n}\right)
$$

- Equal:

$$
\boldsymbol{u}=\boldsymbol{v} \text { if and only if } u_{1}=v_{1}, u_{2}=v_{2}, \cdots, u_{n}=v_{n}
$$

- Vector addition (the sum of u and v):

$$
\boldsymbol{u}+\boldsymbol{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right)
$$

- Scalar multiplication (the scalar multiple of u by c):

$$
c \boldsymbol{u}=\left(c u_{1}, c u_{2}, \cdots, c u_{n}\right)
$$

- Notes:

The sum of two vectors and the scalar multiple of a vector in \mathbb{R}^{n} are called the standard operations in \mathbb{R}^{m}.

- Negative:

$$
-\boldsymbol{U}=\left(-u_{1},-u_{2}, \cdots,-u_{n}\right)
$$

- Difference:

$$
\boldsymbol{u}-\boldsymbol{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}, \cdots, u_{n}-v_{n}\right)
$$

- Zero vector:

$$
\mathbf{0}=(0,0, \cdots, 0)
$$

- Notes:
(1) The zero vector $\mathbf{0}$ in \mathbb{R}^{n} is called the additive identity in \mathbb{R}^{n}.
(2) The vector $-\boldsymbol{V}$ is called the additive inverse of \boldsymbol{v}.
- Ex :

Let $\boldsymbol{u}=(-1,0,1)$ and $\boldsymbol{v}=(2,-1,5)$ in \mathbb{R}^{3}.
Perform each vector operation:
(a) $u+\boldsymbol{v}$
(b) $2 \boldsymbol{u}$ (c) $\boldsymbol{v}-2 \boldsymbol{u}$

Sol:
(a) $\boldsymbol{u}+\boldsymbol{v}=(-1,0,1)+(2,-1,5)=(1,-1,6)$
(b) $2 \boldsymbol{u}=2(-1,0,1)=(-2,0,2)$
(c) $\boldsymbol{v}-2 \boldsymbol{u}=(2,-1,5)-(-2,0,2)=(4,-1,3)$

- Theorem: (Properties of vector addition and scalar multiplication)

Let $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} be vectors in \mathbb{R}^{n}, and let c and d be scalars
(1) $\boldsymbol{u}+\boldsymbol{v}$ is a vector in \mathbb{R}^{n}

Closure under addition
(2) $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$

Commutative property of addition
(3) $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$ Associative property of addition
(4) $\boldsymbol{u}+\boldsymbol{0}=\boldsymbol{u}$
(5) $\boldsymbol{u}+(-\boldsymbol{u})=0$
(6) $c u$ is a vector in R^{n}
(7) $c(u+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$

Additive identity property
Additive inverse property
Closure under scalar multiplication
(8) $(c+d) \boldsymbol{u}=c u+d \boldsymbol{u}$
(9) $c(d u)=(c d) u$
(10) $1(u)=u$

Distributive property
Distributive property
Associative property of multiplication
Multiplicative identity property

- Ex: (Vector operations in $\left.\mathbb{R}^{4}\right)$

Let $\boldsymbol{u}=(2,-1,5,0), \boldsymbol{v}=(4,3,1,-1)$ and $\boldsymbol{w}=(-6,2,0,3)$ be vectors in \mathbb{R}^{4}. Solve \boldsymbol{x} for each of the following:
(a) $\boldsymbol{x}=2 \boldsymbol{u}-(\boldsymbol{v}+3 \boldsymbol{w})$
(b) $3(\boldsymbol{x}+\boldsymbol{w})=2 \boldsymbol{u}-\boldsymbol{v}+\boldsymbol{x}$

Sol: (a) $\boldsymbol{x}=2 \boldsymbol{u}-(\boldsymbol{v}+3 \boldsymbol{w})=2 \boldsymbol{u}-\boldsymbol{v}-3 \boldsymbol{w}$

$$
=(4,-2,10,0)-(4,3,1,-1)-(-18,6,0,9)=(18,-11,9,-8)
$$

(b) $3(\boldsymbol{x}+\boldsymbol{w})=2 \boldsymbol{u}-\boldsymbol{v}+\boldsymbol{x} \Rightarrow 3 \boldsymbol{x}+3 \boldsymbol{w}=2 \boldsymbol{u}-\boldsymbol{v}+\boldsymbol{x}$

$$
\begin{aligned}
& 3 \boldsymbol{x}-\boldsymbol{x}=2 \boldsymbol{u}-\boldsymbol{V}-3 \boldsymbol{W} \Rightarrow 2 \boldsymbol{x}=2 \boldsymbol{u}-\boldsymbol{v}-3 \boldsymbol{W} \Rightarrow \boldsymbol{x}=\boldsymbol{u}-\frac{1}{2} \boldsymbol{v}-\frac{3}{2} \boldsymbol{W} \\
& \boldsymbol{x}=(2,1,5,0)+\left(-2,-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}\right)+\left(9,-3,0,-\frac{9}{2}\right)=\left(9,-\frac{11}{2}, \frac{9}{2},-4\right)
\end{aligned}
$$

- Theorem : (Properties of additive identity and additive inverse)

Let \boldsymbol{V} be a vector in \mathbb{R}^{n}, and c be a scalars. Then the properties below are true:
(1) The additive identity is unique. That is, if $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}$, then $\boldsymbol{u}=\mathbf{0}$
(2) The additive inverse of \boldsymbol{v} is unique. That is, if $\boldsymbol{v}+\boldsymbol{u}=\mathbf{0}$, then $\boldsymbol{u}=-\boldsymbol{v}$
(3) $0 \boldsymbol{v}=\mathbf{0}$
(4) $c \mathbf{0}=\mathbf{0}$
(5) If $c \boldsymbol{V}=\mathbf{0}$, then $c=0$ or $\boldsymbol{v}=\mathbf{0}$
(6) $-(-\boldsymbol{V})=\boldsymbol{V}$

- Linear combination:

The vector \boldsymbol{x} is called a linear combination of $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ if it can be expressed in the form $\boldsymbol{x}=c_{1} \boldsymbol{V}_{\mathbf{1}}+c_{2} \boldsymbol{V}_{2}+\cdots+c_{n} \boldsymbol{V}_{\boldsymbol{n}} \quad c_{1}, c_{2}, \ldots, c_{n}$: scalars

- Ex 5: Given $\boldsymbol{x}=(-1,-2,-2), \boldsymbol{u}=(0,1,4), \boldsymbol{v}=(-1,1,2)$, and $\boldsymbol{w}=(3,1,2)$ in \mathbb{R}^{3}, find a, b, and c such that $\boldsymbol{x}=a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}$.
Sol:

$$
\begin{array}{r}
-b+3 c=-1 \\
a+b+c=-2 \\
4 a+2 b+2 c=-2 \\
\Rightarrow a=1, b=-2, c=-1
\end{array}
$$

Thus $\boldsymbol{x}=\boldsymbol{u}-2 \boldsymbol{v}-\boldsymbol{w}$

Vector Spaces

- Vector spaces:

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{W} in \boldsymbol{V} and every scalar c and d, then V is called a vector space.

Addition:

(1) $u+v$ is in V

Closure under addition

(2) $u+v=v+u$

Commutative property

(3) $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w} \quad$ Associative property
(4) V has a zero vector $\mathbf{0}$; for every \boldsymbol{u} in $V, \boldsymbol{u}+\boldsymbol{0}=\boldsymbol{u}$

Additive identity
(5) For every \boldsymbol{u} in V, there is a vector in V denoted by $-\boldsymbol{u}: u+(-\boldsymbol{u})=\mathbf{0} \quad$ Scalar identity

Scalar multiplication:
(6) $c u$ is a vector in V
(7) $c(u+v)=c u+c v$
(8) $(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$
(9) $c(d u)=(c d) u$
(10) $1(u)=u$

Closure under scalar multiplication

Distributive property
Distributive property
Associative property
Scalar identity

- Notes:
(1) A vector space ($V,+,$.$) consists of four entities:$
a nonempty set V of vectors, a set of scalars, and two operations $(+,$.
(2) $V=\{0\} \quad$ zero vector space
(3) $K=R$: Real Vector Space $\quad K=C$: Complex Vector Space
- Examples of vector spaces:
(1) n-tuple space: $V=R^{n}$

$$
\begin{aligned}
& \left(u_{1}, u_{2}, \cdots, u_{n}\right)+\left(v_{1}, v_{2}, \cdots, v_{n}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right) \quad \text { vector addition } \\
& k\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\left(k u_{1}, k u_{2}, \cdots, k u_{n}\right) \quad \text { scalar multiplication }
\end{aligned}
$$

(2) Matrix space: $V=M_{m \times n}$ (the set of all $m \times n$ matrices with real values)

Ex: $(m=n=2)$

$$
\begin{gathered}
{\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]+\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right]=\left[\begin{array}{ll}
u_{11}+v_{11} & u_{12}+v_{12} \\
u_{21}+v_{21} & u_{22}+v_{22}
\end{array}\right] \text { vector addition }} \\
k\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]=\left[\begin{array}{ll}
k u_{11} & k u_{12} \\
k u_{21} & k u_{22}
\end{array}\right] \text { scalar multiplication }
\end{gathered}
$$

(3) Infinite Sequences space: $V=R^{\infty}$

$$
\left(u_{n}\right)_{n \in N}+\left(v_{n}\right)_{n \in N}=\left(u_{n}+V_{n}\right)_{n \in N} \quad c\left(u_{n}\right)_{n \in N}=\left(c u_{n}\right)_{n \in N}
$$

(4) polynomial space: $V=P_{\infty}$ (the set of all real polynomials) $(p+q)(x)=p(x)+q(x) \quad(c p)(x)=c p(x)$
(5) n-th degree polynomial space: $V=P_{n}(x)$ (the set of all real polynomials of degree n or less)

$$
\begin{aligned}
& p(x)+q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n} \\
& k p(x)=k a_{0}+k a_{1} x+\cdots+k a_{n} x^{n}
\end{aligned}
$$

(6) Function space: $V=c(-\infty, \infty)$ (the set of all real functions)

$$
(f+g)(x)=f(x)+g(x) \quad(k f)(x)=k f(x)
$$

- Theorem: (Properties of scalar multiplication)

Let \boldsymbol{V} any element of a vector space V, and let c be any scalars. Then the following properties are true:
(1) $0 \boldsymbol{v}=\mathbf{0}$
(2) $c \mathbf{0}=\mathbf{0}$
(3) If $c \boldsymbol{v}=\mathbf{0}$, then $c=0$ or $\boldsymbol{v}=\mathbf{0}$
(4) $(-1) \boldsymbol{V}=-\boldsymbol{V}$

- Note: To show that a set is not a vector space, you need only find one axiom that is not satisfied
- Ex: $V=R^{2}=$ the set of all ordered pairs of real numbers
vector addition: $\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)$
scalar multiplication: $c\left(u_{1}, u_{2}\right)=\left(c u_{1}, 0\right) \quad$ Verify that V is not a vector space.

Sol:
$1(1,1)=(1,0) \neq(1,1)$
\Rightarrow the set (together with the two given operations) is not a vector space

- Ex 2: Set of all real polynomials of degree n Is Not a vector space. Why?
- Complex Vector Spaces C^{n} :

A vector space in which scalars are allowed to be complex numbers is called a complex vector space

Vectors in C^{n} : If n is a positive integer, then a complex n-tuple is a sequence of n complex numbers $\boldsymbol{V}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. The set of all complex n-tuples is called complex n-space and is denoted by C^{n}.

- $\operatorname{Ex}\left(C^{3}\right): \quad \boldsymbol{u}=(1,-i+1,-2), \boldsymbol{v}=(i, 3,2 i), \boldsymbol{u}+\boldsymbol{v}=(1+i,-i+4,-2+2 i)$
- Note: The complex vector space C^{n} is a generalization of the real vector space R^{n}
- Vector Conjugate

$$
\boldsymbol{V}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \Rightarrow \overline{\boldsymbol{V}}=\left(\bar{V}_{1}, \bar{v}_{2}, \ldots, \bar{V}_{n}\right)
$$

- Ex: $\boldsymbol{u}=(3+i,-2 i, 5) \Rightarrow \overline{\boldsymbol{u}}=(3-i, 2 i, 5)$
- Properties of vector conjugate
$\boldsymbol{u}, \boldsymbol{v} \in C^{n}$
(1) $\overline{\bar{u}}=\boldsymbol{u}$
(2) $\overline{c \boldsymbol{u}}=\bar{c} \overline{\boldsymbol{u}}, \quad c \in C$
(3) $\overline{\boldsymbol{u} \pm \boldsymbol{v}}=\overline{\boldsymbol{u}} \pm \overline{\boldsymbol{V}}$

Subspaces of Vector Spaces

- Subspace:
$(V,+,$.$) \quad : a vector space$
$W \neq \emptyset \quad$: a nonempty subset
$W \subseteq V$
$(W,+,$.$) : a vector space (under the operations of addition and scalar$ multiplication defined in V)
$\Rightarrow W$ is a subspace of V
- Trivial subspace: Every vector space V has at least two subspaces
(1) Zero vector space $\{0\}$ is a subspace of V.
(2) V is a subspace of V.
- Theorem: (Test for a subspace)

If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold:
(1) If \boldsymbol{u} and \boldsymbol{v} are in W, then $\boldsymbol{u}+\boldsymbol{v}$ is in W.
(2) If \boldsymbol{u} is in W and c is any scalar, then $c u$ is in W.

- Notes:
(1) If \boldsymbol{u} and \boldsymbol{v} are in W, c and d are any scalars, then $c u+d \boldsymbol{v}$ is in W.
$\Rightarrow W$ is a subspace of V
(2) If W is a subspace of a vector space V, then W contains the zero vector $\mathbf{0}$ of V
- Ex: Subspace of \mathbb{R}^{2}

$$
W=\{(0,0)\}
$$

$W=$ all points on a line passing through the origin

$W=R^{2}$
(1) $\{0\} \quad \mathbf{0}=(0,0)$
(2) Lines through the origin
(3) R^{2}

- Ex: (A Subset of \mathbb{R}^{2} That Is Not a Subspace)

Show that the subset of R^{2} consisting of all points on $x^{2}+y^{2}=1$ is not a subspace
Sol:
points $(1,0)$ and $(0,1)$ are in the subset, but their sum $(1,0)+(0,1)=(1,1)$ is not. (not closed under addition)

- Ex: Subspace of R^{3}
(1) $\{0\} \quad \mathbf{0}=(0,0,0)$
(2) Lines through the origin
(3) Planes through the origin
(4) R^{3}
- Ex : (The set of first-quadrant vectors is not a subspace of \mathbb{R}^{2})

Show that $W=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0\right.$ and $\left.x_{2} \geq 0\right\} \quad$, with the standard operations, is not a subspace of R^{2}.

Sol:
Let $\boldsymbol{u}=(1,1) \in W$
$(-1) \boldsymbol{u}=(-1)(1,1)=(-1,-1) \in W \quad$ (not closed under scalar multiplication)
$\Rightarrow W$ is not a subspace of R^{2}

- Ex 5: (Determining subspaces of R^{3})

Which of the following subsets is a subspace of R^{3} ?
(a) $W=\left\{\left(x_{1}, x_{2}, 1\right) \mid x_{1}, x_{2} \in R\right\} \quad$ No $(0=(0,0,0) \notin W)$
(b) $W=\left\{\left(x_{1}, x_{1}+x_{3}, x_{3}\right) \mid x_{1}, x_{3} \in R\right\}$

- Ex : (A subspace of $M_{2 \times 2}$)

Let W be the set of all 2×2 symmetric matrices. Show that W is a subspace of the vector space $M_{2 \times 2}$, with the standard operations of matrix addition and scalar multiplication

- Ex : (The set of singular matrices is not a subspace of $M_{2 \times 2}$)

Let W be the set of singular matrices of order 2 . Show that W is not a subspace of $M_{2 \times 2}$ with the standard operations

- Ex : (Determining subspaces of R^{2})

Which of the following two subsets is a subspace of R^{2} ?
(a) The set of points on the line given by $x+2 y=0$. Yes
(b) The set of points on the line given by $x+2 y=1$. No

- Ex: (Subspaces of Functions)

Let W_{5} be the vector space of all functions defined on $[0,1]$
$W_{1}=$ set of all polynomial defined on $[0,1]$
$W_{2}=$ set of all functions differentiable on $[0,1]$
$W_{3}=$ set of all functions continuous on $[0,1]$
$W_{4}=$ set of all functions integrable on $[0,1]$
Show that $W_{1} \subset W_{2} \subset W_{3} \subset W_{4} \subset W_{5}$ and that W_{i} is a subspace of W_{j} for $i \leq j$

- Ex 10: P_{n} is a subspace of P_{∞}

- Theorem (The intersection of two subspaces is a subspace)

If V and W are both subspaces of a vector space U, then the intersection of V and W (denoted by $V \cap W$) is also a subspace of U.

- Note:

The union of F and G (denoted by $F \cup G$) is not necessarily a subspace of V

- Ex 12: Let $V=R^{2}$

$$
F=\left\{(x, y) \in R^{2} \mid x=0\right\}, G=\left\{(x, y) \in R^{2} \mid y=0\right\}
$$

$$
F \cap G=\{\mathbf{0}\}
$$

$$
(0,1)(\in F)+(1,0)(\in G)=(1,1) \notin F \cup G
$$

- Theorem: (The sum of two subspaces is a subspace)

If F and G are both subspaces of a vector space V, then the sum of F and G (denoted by F $+G$), consisting of all the elements $\boldsymbol{u}+\boldsymbol{v} \mid \boldsymbol{u} \in F, \boldsymbol{v} \in G$. It is also a subspace of V.

- Ex 13: Let $V=R^{2}$

$$
F=\left\{(x, y) \in R^{2} \mid x=0\right\}, G=\left\{(x, y) \in R^{2} \mid y=0\right\} \quad F+G=R^{2}
$$

- Ex 14: Let $V=R^{3}$

$$
F=\left\{(x, y, z) \in R^{3} \mid y=z=0\right\} \text { and } G=\left\{(x, y, z) \in R^{3} \mid x=z=0\right\}
$$

$$
F+G=\left\{(x, y, z) \in R^{3} \mid z=0\right\}
$$

The Column Space of A

The most important subspaces are tied directly to a matrix A.
To solve $\mathrm{Ax}=\mathrm{b}$.
If A is not invertible, the system is solvable for some b and not solvable for other b.
We want to describe the good right sides b-the vectors that can be written as A times some vector x

Those b' s form the "column space" of A

Remember: Ax is a combination of the columns of A .

Start with the columns of A and take all their linear combinations. This produces the column space of A.

It is a vector subspace space of \mathbb{R}^{m} made up of column vectors
DEFINITION The column space consists of all linear combinations of the columns. The combinations are all possible vectors Ax. They fill the column space $C(A)$.

Note: The system $A x=b$ is solvable if and only if b is in the column space of A.

حَــامعة الـَمـنارة

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 0 \\
4 & 3 \\
2 & 3
\end{array}\right] \\
& \boldsymbol{b}
\end{aligned}=.4\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right]+.3\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right], ~ \$
$$

$$
A x=b \text { has } x=\left[\begin{array}{l}
.4 \\
.3
\end{array}\right]
$$

Plane $=\boldsymbol{C}(A)=$ all vectors $A \boldsymbol{x}$

The column space $\boldsymbol{C}(A)$ is a plane containing the two columns. $A \boldsymbol{x}=\boldsymbol{b}$ is solvable when b is on that plane. Then \boldsymbol{b} is a combination of the columns.

Spanning Sets and Linear Independence

- Linear combination:

A vector v in a vector space V is called a linear combination of the vectors u_{1}, u_{2}, \ldots, u_{k} in V if v can be written in the form

$$
\boldsymbol{v}=c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{k} \boldsymbol{u}_{\boldsymbol{k}} \quad c_{1}, c_{2}, \ldots, c_{k} \text { scalars }
$$

- Ex 1: (Finding a linear combination)

$$
\boldsymbol{v}_{\mathbf{1}}=(1,2,3), \quad \boldsymbol{v}_{2}=(0,1,2), \quad \boldsymbol{v}_{3}=(-1,0,1)
$$

Prove (a) $\boldsymbol{W}=(1,1,1)$ is a linear combination of $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}$

$$
\text { (b) } \boldsymbol{W}=(1,-2,2) \text { is not a linear combination of } \boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}
$$

Sol: (a) $\boldsymbol{W}=c_{1} \boldsymbol{V}_{\mathbf{1}}+\boldsymbol{c}_{2} \boldsymbol{V}_{\mathbf{2}}+\boldsymbol{c}_{3} \boldsymbol{V}_{\mathbf{3}}$

$$
\begin{aligned}
(1,1,1)= & c_{1}(1,2,3)+c_{2}(0,1,2)+c_{3}(-1,0,1) \\
= & \left(c_{1}-c_{3}, 2 c_{1}+c_{2}, 2 c_{2}+c_{3}\right) \\
& -c_{3}=1 \\
c_{1} & =1 \\
\Rightarrow 2 c_{1}+c_{2} & =1 \\
3 c_{1}+2 c_{2}+c_{3}= & =1
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 1
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\Rightarrow c_{1}=1+t, c_{2}=-1-2 t, c_{3}=t \quad \text { (this system has infinitely many solutions) }
$$

$$
t=1 \Rightarrow \boldsymbol{w}=2 \boldsymbol{v}_{\mathbf{1}}-3 \boldsymbol{v}_{\mathbf{2}}+\boldsymbol{v}_{\mathbf{3}}
$$

(b) $\boldsymbol{W}=c_{1} \boldsymbol{V}_{\mathbf{1}}+c_{2} \boldsymbol{V}_{\mathbf{2}}+c_{3} \boldsymbol{V}_{\mathbf{3}}$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & -2 \\
3 & 2 & 1 & 2
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 7
\end{array}\right] \\
& \Rightarrow \text { this system has no solution }(0 \neq 7) \\
& \Rightarrow \boldsymbol{W} \neq c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+c_{3} \boldsymbol{v}_{\mathbf{3}}
\end{aligned}
$$

- The span of a set: $\operatorname{span}(S)$

If $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right\}$ is a set of vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S,
$\operatorname{span}(S)=\left\{c_{1} \boldsymbol{V}_{\mathbf{1}}+c_{2} \boldsymbol{V}_{2}+\cdots+c_{k} \boldsymbol{V}_{\boldsymbol{k}} \mid \forall c_{i} \in K\right\}$
(the set of all linear combinations of the vectors in S)

- A spanning set of a vector space:

If every vector in a given vector space can be written as a linear combination of vectors in a given set S, then S is called a spanning set of the vector space.

- Notes:

$$
\operatorname{span}(S)=V
$$

$\Rightarrow S$ spans (generates) V or V is spanned (generated) by S S is spanning set of V

- Notes:
(1) $\operatorname{span}(\varnothing)=\{0\}$
(2) $S \subseteq \operatorname{span}(S)$
(3) $S_{1}, S_{2} \subseteq V$

$$
S_{1} \subseteq S_{2} \Rightarrow \operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)
$$

- Ex 2: (Examples of Spanning Sets)

The set $S=(1,0,0)+(0,1,0)+(0,0,1)$ spans R^{3}
The set $S=\left\{1, x, x^{2}\right\}$ spans P_{2}

- Ex 3: (A spanning set for R^{3})

The set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ spans R^{3} because any vector $\boldsymbol{u}=\left(u_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ in R^{3} can be written as

$$
\boldsymbol{u}=u_{1}(1,0,0)+u_{2}(0,1,0)+u_{3}(0,0,1)=\left(u_{1}, u_{2}, u_{3}\right)
$$

- Ex 4: (A spanning set for R^{3})

Show that the set $S_{1}=\{(1,2,3),(0,1,2),(-2,0,1)\}$ spans R^{3}
Sol: We must determine whether an arbitrary vector $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ in R^{3} can be as a linear combination of $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{2}}$ and $\boldsymbol{v}_{\mathbf{3}}$.

$$
\boldsymbol{u} \in R^{3} \Rightarrow \boldsymbol{u}=c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{V}_{\mathbf{2}}+c_{3} \boldsymbol{v}_{\mathbf{3}} \Rightarrow \begin{aligned}
c_{1} & -2 c_{3}
\end{aligned}=u_{1}, \begin{aligned}
& \\
& 2 c_{1}+c_{2} \\
& 3 c_{1}+2 c_{2}+c_{3}
\end{aligned}=u_{2} .
$$

$$
|A|=\left|\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right| \neq 0
$$

$\Rightarrow A \boldsymbol{x}=\boldsymbol{b}$ has exactly one solution for every $\boldsymbol{u} \Rightarrow \operatorname{spans}\left(S_{1}\right)=\boldsymbol{R}^{b}$

- Ex 5: (A Set Does Not Span R^{3})

From Example 1: the set $S_{2}=\{(1,2,3),(0,1,2),(-1,0,1)\}$ does not span R^{3} because $\boldsymbol{W}=(1,-2,2)$ is in $\boldsymbol{R}^{\boldsymbol{j}}$ and cannot be expressed as a linear combination of the vectors in S_{2}.

جَــامعة الـَمَـنارة

$S_{1}=\{(1,2,3),(0,1,2),(-2,0,1)\}$
The vectors in S_{1} do not lie in a common plane
$S_{2}=\{(1,2,3),(0,1,2),(-1,0,1)\}$
The vectors in S_{2} lie in a common plane

جَــامعة الـَمَـنارة

- Ex 6: (A Geometric View of Spanning in \mathbb{R}^{3})

$\operatorname{span}\{\boldsymbol{V}\}$ is the line through the origin determined by \boldsymbol{V}

$\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is the plane through the origin determined by \boldsymbol{v}_{1} and \boldsymbol{v}_{2}

[^0]: https://manara.edu.sy/

