

**Lecture 2-A: Vector spaces** 

CEDC102: Linear Algebra

Manara University

2023-2024



- Vectors in  $\mathbb{R}^n$
- Vector Spaces
- Subspaces of Vector Spaces
- Spanning Sets and Linear Independence
- Basis and Dimension
- Rank and Nullity of a Matrix





Vectors in  $\mathbb{R}^n$ 

Vectors in the plane:

a vector x in the plane is represented by a directed line segment with its initial point at the origin and its terminal point at  $(x_1, x_2)$ .









## • *n*-space: $\mathbb{R}^n$

$$\mathbb{R}^1 = 1$$
-space = set of all real number  $(x_1, x_2)$   
 $\mathbb{R}^2 = 2$ -space = set of all ordered pair of real numbers  $(x_1, x_2, x_3)$   
 $\mathbb{R}^3 = 3$ -space = set of all ordered triple of real numbers  $(x_1, x_2, \dots, x_n)$ 

 $\mathbb{R}^n = n$ -space = set of all ordered *n*-tuple of real numbers

Notes: An *n*-tuple (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>) can be viewed as
(1) <u>a point</u> in R<sup>n</sup> with the x<sub>i</sub>'s as its coordinates.
(2) <u>a vector</u> x in R<sup>n</sup> with the x<sub>i</sub>'s as its components.

<u>a vector</u>  $\mathbf{x}$  in  $\mathbb{R}^n$  will be represented also as  $\mathbf{x} = (x_1, x_2, \dots, x_n)$ 

 $X_1$ 

 $X_2$ 

 $X_n$ 

**X** =



Equal:

$$\boldsymbol{u} = \boldsymbol{v}$$
 if and only if  $u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$ 

• Vector addition (the sum of  $\boldsymbol{u}$  and  $\boldsymbol{v}$ ):

 $\boldsymbol{u} + \boldsymbol{v} = (u_1 + v_1, u_2 + v_2, \cdots, u_n + v_n)$ 

Scalar multiplication (the scalar multiple of *u* by *c*):

$$c\boldsymbol{u} = (c\boldsymbol{u}_1, c\boldsymbol{u}_2, \cdots, c\boldsymbol{u}_n)$$

• Notes:

The sum of two vectors and the scalar multiple of a vector in  $\mathbb{R}^n$  are called the standard operations in  $\mathbb{R}^n$ .



#### • Negative:

$$-\boldsymbol{u} = (-\boldsymbol{u}_1, -\boldsymbol{u}_2, \cdots, -\boldsymbol{u}_n)$$

Difference:

$$\boldsymbol{u} - \boldsymbol{v} = (u_1 - v_1, u_2 - v_2, \cdots, u_n - v_n)$$

- Zero vector:
  - $\mathbf{0}=(0,\,0,\,\cdots,\,0)$
- Notes:

(1) The zero vector 0 in ℝ<sup>n</sup> is called the additive identity in ℝ<sup>n</sup>.
(2) The vector -*v* is called the additive inverse of *v*.



• Ex :

Let  $\boldsymbol{u} = (-1, 0, 1)$  and  $\boldsymbol{v} = (2, -1, 5)$  in  $\mathbb{R}^3$ . Perform each vector operation:

(a) u + v (b) 2u (c) v - 2u

Sol:

(a) 
$$\mathbf{u} + \mathbf{v} = (-1, 0, 1) + (2, -1, 5) = (1, -1, 6)$$
  
(b)  $2\mathbf{u} = 2(-1, 0, 1) = (-2, 0, 2)$   
(c)  $\mathbf{v} - 2\mathbf{u} = (2, -1, 5) - (-2, 0, 2) = (4, -1, 3)$ 





• Theorem: (Properties of vector addition and scalar multiplication)

Let  $\boldsymbol{u}, \boldsymbol{v}$ , and  $\boldsymbol{w}$  be vectors in  $\mathbb{R}^n$ , and let  $\boldsymbol{c}$  and  $\boldsymbol{d}$  be scalars

- (1)  $\boldsymbol{u} + \boldsymbol{v}$  is a vector in  $\mathbb{R}^n$ Closure under addition
- Commutative property of addition (2)  $\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$
- (3)  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$  Associative property of addition
- (4) u + 0 = u
- $(5) \quad \boldsymbol{\mathcal{U}} + (-\boldsymbol{\mathcal{U}}) = \boldsymbol{0}$
- (6) Cu is a vector in  $\mathbb{R}^n$
- (7)  $\mathcal{C}(\boldsymbol{u}+\boldsymbol{v})=\mathcal{C}\boldsymbol{u}+\mathcal{C}\boldsymbol{v}$
- (8) (C+d)u = Cu + du
- (9)  $\mathcal{C}(d\mathbf{u}) = (cd)\mathbf{u}$
- (10) 1(u) = u

Additive identity property Additive inverse property Closure under scalar multiplication **Distributive property** Distributive property Associative property of multiplication Multiplicative identity property



• Ex : (Vector operations in  $\mathbb{R}^4$ )

Let u = (2, -1, 5, 0), v = (4, 3, 1, -1) and w = (-6, 2, 0, 3) be vectors in  $\mathbb{R}^4$ . Solve *x* for each of the following:

(a)  $\mathbf{X} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$ 

$$(D) \quad 3(\mathbf{X} + \mathbf{W}) = 2\mathbf{U} - \mathbf{V} + \mathbf{X}$$

Sol: (a)  $\mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w}) = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$ = (4, -2, 10, 0) - (4, 3, 1, -1) - (-18, 6, 0, 9) = (18, -11, 9, -8)

(b) 
$$3(\mathbf{x} + \mathbf{w}) = 2\mathbf{u} - \mathbf{v} + \mathbf{x} \Rightarrow 3\mathbf{x} + 3\mathbf{w} = 2\mathbf{u} - \mathbf{v} + \mathbf{x}$$
  
 $3\mathbf{x} - \mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w} \Rightarrow 2\mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w} \Rightarrow \mathbf{x} = \mathbf{u} - \frac{1}{2}\mathbf{v} - \frac{3}{2}\mathbf{w}$   
 $\mathbf{x} = (2, 1, 5, 0) + (-2, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}) + (9, -3, 0, -\frac{9}{2}) = (9, -\frac{11}{2}, \frac{9}{2}, -4)$ 



- Theorem : (Properties of additive identity and additive inverse)
  - Let  $\mathbf{v}$  be a vector in  $\mathbb{R}^n$ , and c be a scalars. Then the properties below are true: (1) The additive identity is unique. That is, if  $\mathbf{u} + \mathbf{v} = \mathbf{v}$ , then  $\mathbf{u} = \mathbf{0}$ (2) The additive inverse of  $\mathbf{v}$  is unique. That is, if  $\mathbf{v} + \mathbf{u} = \mathbf{0}$ , then  $\mathbf{u} = -\mathbf{v}$ (3)  $0\mathbf{v} = \mathbf{0}$ 
    - (4)  $C \mathbf{0} = \mathbf{0}$
    - (5) If  $C\mathbf{v} = \mathbf{0}$ , then C = 0 or  $\mathbf{v} = \mathbf{0}$

(6) - (- v) = v



#### Linear combination:

The vector x is called a linear combination of  $v_1, v_2, ..., v_n$  if it can be expressed in the form  $x = c_1v_1 + c_2v_2 + \dots + c_nv_n$   $c_1, c_2, \dots, c_n$ ; scalars

• Ex 5: Given x = (-1, -2, -2), u = (0, 1, 4), v = (-1, 1, 2), and w = (3, 1, 2) in  $\mathbb{R}^3$ , find *a*, *b*, and *c* such that x = au + bv + cw.

Sol:

-b + 3c = -1 a + b + c = -2 4a + 2b + 2c = -2  $\Rightarrow a = 1, b = -2, c = -1$ Thus x = u - 2v - w



## Vector Spaces

Vector spaces:

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every u, v, and w in V and every scalar C and d, then V is called a vector space.

## Addition:

(1) *u* + *v* is in *V*(2) *u* + *v* = *v* + *u*(3) *u* + (*v* + *w*) = (*u* + *v*) + *w*(4) *V* has a zero vector **0**: for every *u* in *V*, *u* + **0** = *u*(5) For every *u* in *V*, there is a vector in *V* denoted by -*u*: *u* + (-*u*) = **0**(6) Scalar identity



# Scalar multiplication:

- (6)  $C \boldsymbol{u}$  is a vector in V
- (7)  $C(\boldsymbol{u}+\boldsymbol{v})=C\boldsymbol{u}+C\boldsymbol{v}$
- (8)  $(C+d)\mathbf{u} = C\mathbf{u} + d\mathbf{u}$
- $(9) \quad \mathcal{C}(d\mathbf{u}) = (cd)\mathbf{u}$
- $(10) 1(\boldsymbol{u}) = \boldsymbol{u}$

Closure under scalar multiplication Distributive property Distributive property Associative property Scalar identity

- Notes:
  - (1) A vector space (V, +, .) consists of <u>four entities</u>:
    a nonempty set V of vectors, a set of scalars, and two operations (+, .)
  - (2)  $V = \{0\}$  zero vector space
  - (3) K = R: Real Vector Space K = C: Complex Vector Space



- Examples of vector spaces:
  - (1) *n*-tuple space:  $V = R^n$

 $(u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$  vector addition  $k(u_1, u_2, \dots, u_n) = (ku_1, ku_2, \dots, ku_n)$  scalar multiplication

(2) Matrix space:  $V = M_{m_{X}n}$  (the set of all  $m \times n$  matrices with real values) Ex: (m = n = 2)

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{bmatrix}$$
 vector addition  
$$k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{bmatrix}$$
 scalar multiplication



(3) Infinite Sequences space:  $V = R^{\infty}$  (set of all infinite sequences of real numbers)  $(u_n)_{n \in N} + (v_n)_{n \in N} = (u_n + v_n)_{n \in N}$   $C(u_n)_{n \in N} = (Cu_n)_{n \in N}$ 

(4) polynomial space:  $V = P_{\infty}$  (the set of all real polynomials) (p+q)(x) = p(x) + q(x) (cp)(x) = cp(x)

(5) *n*-th degree polynomial space:  $V = P_n(x)$ (the set of all real polynomials of degree *n* or less)  $p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$  $kp(x) = ka_0 + ka_1x + \dots + ka_nx^n$ 

(6) Function space:  $V = c(-\infty, \infty)$  (the set of all real functions) (f + g)(x) = f(x) + g(x) (kf)(x) = kf(x)



• Theorem: (Properties of scalar multiplication)

Let v any element of a vector space V, and let c be any scalars. Then the following properties are true:

(2)  $C \mathbf{0} = \mathbf{0}$ (4)  $(-1)\mathbf{v} = -\mathbf{v}$ (1) 0 v = 0

- (3) If  $C\mathbf{v} = \mathbf{0}$ , then C = 0 or  $\mathbf{v} = \mathbf{0}$
- Note: To show that a set is not a vector space, you need only find one axiom that is not satisfied
- Ex :  $V = R^2$  = the set of all ordered pairs of real numbers vector addition:  $(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$ scalar multiplication:  $c(u_1, u_2) = (cu_1, 0)$  Verify that V is not a vector space.



#### Sol:

 $1(1, 1) = (1, 0) \neq (1, 1)$ 

 $\Rightarrow$  the set (together with the two given operations) is not a vector space

- Ex 2: Set of all real polynomials of degree *n* Is Not a vector space. Why?
- Complex Vector Spaces  $C^n$ :

A vector space in which scalars are allowed to be complex numbers is called a complex vector space

Vectors in  $C^n$ : If *n* is a positive integer, then a complex *n*-tuple is a sequence of *n* complex numbers  $\mathbf{v} = (v_1, v_2, ..., v_n)$ . The set of all complex *n*-tuples is called complex *n*-space and is denoted by  $C^n$ .



- Ex (C<sup>3</sup>): u = (1, -i+1, -2), v = (i, 3, 2i), u + v = (1 + i, -i + 4, -2 + 2i)
- Note: The complex vector space  $C^n$  is a generalization of the real vector space  $R^n$
- Vector Conjugate

 $\mathbf{v} = (v_1, v_2, ..., v_n) \implies \mathbf{v} = (v_1, v_2, ..., v_n)$ 

• Ex: 
$$u = (3+i, -2i, 5) \implies \overline{u} = (3-i, 2i, 5)$$

Properties of vector conjugate

 $\boldsymbol{u}, \boldsymbol{v} \in C^n$ 

(1) 
$$\overrightarrow{u} = u$$
 (2)  $\overrightarrow{cu} = \overrightarrow{cu}$ ,  $c \in C$   
(3)  $\overrightarrow{u \pm v} = \overrightarrow{u} \pm \overrightarrow{v}$ 



#### **Subspaces of Vector Spaces**

- Subspace:
  - (V, +, .) : a vector space
  - $\begin{array}{l} W \neq \emptyset \\ W \subseteq V \end{array} : a nonempty subset$
  - (W, +, .): a vector space (under the operations of addition and scalar multiplication defined in V)
  - $\Rightarrow$  W is a subspace of V
- Trivial subspace: Every vector space V has at least two subspaces
  - (1) Zero vector space  $\{0\}$  is a subspace of V.
  - (2) V is a subspace of V.



• Theorem: (Test for a subspace)

If W is a <u>nonempty subset</u> of a vector space V, then W is a subspace of V if and only if the following conditions hold:

(1) If u and v are in W, then u + v is in W.

(2) If  $\boldsymbol{u}$  is in W and c is any scalar, then  $c\boldsymbol{u}$  is in W.

Notes:

- (1) If *u* and *v* are in *W*, *c* and *d* are any scalars, then *cu* + *dv* is in *W*.
   ⇒ W is a subspace of V
- (2) If W is a subspace of a vector space V, then W contains the zero vector  $\mathbf{0}$  of V



• **Ex** : Subspace of  $\mathbb{R}^2$ 





- (1)  $\{0\}$  0 = (0, 0, 0)
- (2) Lines through the origin
- (3) Planes through the origin
- $(4) \quad R^3$



- Ex : (The set of first-quadrant vectors is not a subspace of  $\mathbb{R}^2$ )
  - Show that  $W = \{(x_1, x_2): x_1 \ge 0 \text{ and } x_2 \ge 0\}$ , with the standard operations, is not a subspace of  $\mathbb{R}^2$ .

Sol:

- Let  $u = (1, 1) \in W$
- $(-1)\boldsymbol{u} = (-1)(1, 1) = (-1, -1) \in W$  (not closed under scalar multiplication)
- $\Rightarrow$  W is not a subspace of  $\mathbb{R}^2$
- Ex 5: (Determining subspaces of  $\mathbb{R}^3$ )

Which of the following subsets is a subspace of  $R^3$ ?

(a)  $W = \{ (x_1, x_2, 1) \mid x_1, x_2 \in R \}$  No  $(0 = (0, 0, 0) \notin W)$ 

(b)  $W = \{ (x_1, x_1 + x_3, x_3) \mid x_1, x_3 \in R \}$  Yes



# • Ex : (A subspace of $M_{2\times 2}$ )

Let *W* be the set of all  $2 \times 2$  symmetric matrices. Show that *W* is a subspace of the vector space  $M_{2\times 2}$ , with the standard operations of matrix addition and scalar multiplication

• Ex : (The set of singular matrices is not a subspace of  $M_{2\times 2}$ )

Let *W* be the set of singular matrices of order 2. Show that *W* is not a subspace of  $M_{2\times 2}$  with the standard operations

• Ex : (Determining subspaces of  $\mathbb{R}^2$ )

Which of the following two subsets is a subspace of  $\mathbb{R}^2$ ?

(a) The set of points on the line given by x + 2y = 0. Yes

(b) The set of points on the line given by x + 2y = 1. No



## • Ex : (Subspaces of Functions)

Let  $W_5$  be the vector space of all functions defined on [0, 1]

 $W_1$  = set of all polynomial defined on [0, 1]  $W_2$  = set of all functions differentiable on [0, 1]  $W_3$  = set of all functions continuous on [0, 1]  $W_4$  = set of all functions integrable on [0, 1]

Show that  $W_1 \subset W_2 \subset W_3 \subset W_4 \subset W_5$  and that  $W_i$  is a subspace of  $W_j$  for  $i \le j$ 

• Ex 10:  $P_n$  is a subspace of  $P_{\infty}$ 





• Theorem (The intersection of two subspaces is a subspace)

If V and W are both subspaces of a vector space U, then the intersection of V and W (denoted by  $V \cap W$ ) is also a subspace of U.

• Note:

The union of F and G (denoted by  $F \cup G$ ) is not necessarily a subspace of V

• Ex 12: Let  $V = R^2$ 

 $F = \{ (x, y) \in R^2 | x = 0 \}, G = \{ (x, y) \in R^2 | y = 0 \}$   $F \cap G = \{ \mathbf{0} \}$  $(0, 1) (\in F) + (1, 0) (\in G) = (1, 1) \notin F \cup G$ 





- Theorem : (The sum of two subspaces is a subspace)
- If F and G are both subspaces of a vector space V, then the sum of F and G (denoted by F + G), consisting of all the elements u + v | u ∈ F, v ∈ G. It is also a subspace of V.
  Ex 13: Let V = R<sup>2</sup>

$$F = \{(x, y) \in \mathbb{R}^2 | x = 0\}, G = \{(x, y) \in \mathbb{R}^2 | y = 0\} \qquad F + G = \mathbb{R}^2$$

• Ex 14: Let  $V = R^3$ 

 $F = \{(x, y, z) \in \mathbb{R}^3 | y = z = 0\}$  and  $G = \{(x, y, z) \in \mathbb{R}^3 | x = z = 0\}$ 

 $F + G = \{ (x, y, z) \in \mathbb{R}^3 | z = 0 \}$ 



# The Column Space of A

The most important subspaces are tied directly to a matrix A.

To solve Ax = b.

If A is <u>not invertible</u>, the system is solvable for <u>some</u> b and not solvable for other b.

We want to describe the good right sides b-the vectors that can be written as A times some vector x

Those b's form the "column space" of A

Remember: Ax is a combination of the columns of A.



Start with the columns of A and take <u>all their linear combinations</u>. This produces the <u>column space of A</u>.

It is a <u>vector subspace space</u> of  $\mathbb{R}^m$  made up of column vectors

**DEFINITION** The column space consists of <u>all linear combinations</u> of the columns . The combinations are all possible vectors Ax. They fill the column space C(A).

Note: The system Ax = b is solvable if and only if b is in the column space of A.





The column space C(A) is a plane containing the two columns. Ax = b is solvable when b is on that plane. Then b is a combination of the columns.



**Spanning Sets and Linear Independence** 

Linear combination:

A vector v in a vector space V is called a linear combination of the vectors  $u_1, u_2, ..., u_k$  in V if v can be written in the form

 $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k \quad c_1, c_2, \dots, c_k$  scalars

• Ex 1: (Finding a linear combination)

$$v_1 = (1, 2, 3), \quad v_2 = (0, 1, 2), \quad v_3 = (-1, 0, 1)$$

Prove (a) W = (1, 1, 1) is a linear combination of  $V_1, V_2, V_3$ (b) W = (1, -2, 2) is not a linear combination of  $V_1, V_2, V_3$ 



Sol: (*i*) 
$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$
  
(1, 1, 1)  $= c_1(1, 2, 3) + c_2(0, 1, 2) + c_3(-1, 0, 1)$   
 $= (c_1 - c_3, 2c_1 + c_2, 2c_2 + c_3)$   
 $c_1 - c_3 = 1$   
 $\Rightarrow 2c_1 + c_2 = 1$   
 $3c_1 + 2c_2 + c_3 = 1$   
 $\Rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 2 & 1 & 0 & | & 1 \\ 3 & 2 & 1 & | & 1 \end{bmatrix}$  Gauss-Jordan Elimination  $\begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$   
 $\Rightarrow c_1 = 1 + t, c_2 = -1 - 2t, c_3 = t$  (this system has infinitely many solutions  $t = 1 \Rightarrow \mathbf{w} = 2\mathbf{v}_1 - 3\mathbf{v}_2 + \mathbf{v}_3$ 



(b) 
$$\mathbf{w} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + c_3 \mathbf{v_3}$$
  

$$\Rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 2 & 1 & 0 & | & -2 \\ 3 & 2 & 1 & | & 2 \end{bmatrix} \xrightarrow{\text{Gauss-Jordan Elimination}} \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & | & -4 \\ 0 & 0 & 0 & | & 7 \end{bmatrix}$$

 $\Rightarrow$  this system has no solution (0  $\neq$  7)

 $\Rightarrow \mathbf{W} \neq \mathbf{C}_1 \mathbf{V}_1 + \mathbf{C}_2 \mathbf{V}_2 + \mathbf{C}_3 \mathbf{V}_3$ 

• The span of a set: span (S)

If  $S = \{v_1, v_2, ..., v_k\}$  is a set of vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S,

$$\operatorname{span}(S) = \left\{ c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid \forall c_i \in K \right\}$$

(the set of all linear combinations of the vectors in  $\mathcal{S}$ )



## • A spanning set of a vector space:

If every vector in a given vector space can be written as a linear combination of vectors in a given set *S*, then *S* is called a spanning set of the vector space.

• Notes:

 $\operatorname{span}(S) = V$ 

- $\Rightarrow S \text{ spans (generates) } V \text{ or } V \text{ is spanned (generated) by } S$ S is spanning set of V
- Notes:

(1) span( $\emptyset$ ) = {0} (2)  $S \subseteq$  span(S) (3)  $S_1, S_2 \subseteq V$  $S_1 \subseteq S_2 \Rightarrow$  span( $S_1$ )  $\subseteq$  span( $S_2$ )



- Ex 2: (Examples of Spanning Sets) The set S = (1, 0, 0) + (0, 1, 0) + (0, 0, 1) spans  $R^3$ The set  $S = \{1, x, x^2\}$  spans  $P_2$
- Ex 3: (A spanning set for  $\mathbb{R}^3$ )

The set  $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$  spans  $R^3$  because any vector  $u = (u_1, u_2, u_3)$  in  $R^3$  can be written as

 $\boldsymbol{u} = u_1(1, 0, 0) + u_2(0, 1, 0) + u_3(0, 0, 1) = (u_1, u_2, u_3)$ 

• Ex 4: (A spanning set for  $\mathbb{R}^3$ )

Show that the set  $S_1 = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$  spans  $\mathbb{R}^3$ 

Sol: We must determine whether an arbitrary vector  $\boldsymbol{u} = (u_1, u_2, u_3)$  in  $\mathbb{R}^3$  can be as a linear combination of  $v_1$ ,  $v_2$  and  $v_3$ .

$$u \in R^{3} \Rightarrow u = c_{1}v_{1} + c_{2}v_{2} + c_{3}v_{3} \Rightarrow 2c_{1} + c_{2} = u_{2}$$

$$3c_{1} + 2c_{2} + c_{3} = u_{3}$$

$$|A| = \begin{vmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{vmatrix} \neq 0$$

 $\Rightarrow A\mathbf{x} = \mathbf{b}$  has exactly one solution for every  $\mathbf{u} \Rightarrow \text{spans}(S_1) = R^3$ 

• Ex 5: (A Set Does Not Span  $\mathbb{R}^3$ )

From Example 1: the set  $S_2 = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$  does not span  $\mathbb{R}^8$  because W = (1, -2, 2) is in  $\mathbb{R}^8$  and cannot be expressed as a linear combination of the vectors in  $S_2$ .



 $S_1 = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$ The vectors in  $S_1$  do not lie in a common plane  $S_2 = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ The vectors in  $S_2$  lie in a common plane





span{ $v_1, v_2$ } is the plane through the origin determined by  $v_1$  and  $v_2$