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Chapter 1

Functions of a Complex Variable

1. Complex Numbers
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1. Complex Numbers

▪ Definition: A number of the form z = x + iy, where x and y are real numbers 

and              (imaginary unit), is called a complex number. 

x is called the real part of z and is written as Re(z) and y is called the imaginary 

part and is written as Im(z). 

i = −1

For example, if z = 4 + 9i, then Re(z) = 4 and Im(z) = 9

A real constant multiple of the imaginary unit is called a pure imaginary 

number

▪ Definition: Complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal, z1 = z2, if 

Re(z1) = Re(z2) and Im(z1) = Im(z2).

A complex number x + iy = 0 if x = 0 and y = 0.
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Arithmetic Operations

▪ If z1 = x1 + iy1 and z2 = x2 + iy2 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

z z x iy x iy x x i y y

z z x iy x iy x x i y y

z z x iy x iy x x y y i y x x y

z x iy x x y y y x x y
i

z x iy x y x y

+ = + + + = + + +

− = + − + = − + −

= + + = − + +

+ + −
= = +

+ + +

1 2 1 1 2 2 1 2 1 2

1 2 1 1 2 2 1 2 1 2

1 2 1 1 2 2 1 2 1 2 1 2 1 2

1 1 1 1 2 1 2 1 2 1 2
2 2 2 2

2 2 2 2 2 2 2

Addition:

Subtraction:

Multiplication:

Division:

( ) ( )

( ) ( )

z z z z
z z z z

z z z z z z
z z z z z z

+ = +
 =

+ + = + +
 =

1 2 2 1

1 2 2 1

1 2 3 1 2 3

1 2 3 1 2 3

Commutative laws:

Associative laws:
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( )z z z z z z z+ = +1 2 3 1 2 1 3Distributive law:

▪ If z = x + iy is a complex number, then the complex number                 is called 

the complex conjugate or, simply, the conjugate of z.

z x iy= −

,

,

z z z z z z z z

z z
z z z z

z z

+ = + − = −

 
= = 

 

1 2 1 2 1 2 1 2

1 1
1 2 1 2

2 2

( ) ( ) ( )

( ) ( ) ( )

z z x iy x iy x Re z

z z x iy x iy iy Im z

+ = + + − = =

− = + − − = =

2 2

2 2
( ) , ( )

z z z z
Re z Im z

i

+ −
 = =

2 2

( )( )zz x iy x iy x y= + − = +2 2

For example, if z = 4 + 9i, then z i= −4 9

https://manara.edu.sy/


https://manara.edu.sy/Functions of a Complex Variable 6/362023-2024

Geometric Interpretation

A complex number z = x + iy can be viewed as a vector whose 

initial point is the origin and whose terminal point is (x, y). The 

coordinate plane is called the complex plane or simply the 

z-plane. The horizontal or x-axis is called the real axis and the 

vertical or y-axis is called the imaginary axis.

▪ Definition: The modulus or absolute value of z = x + iy, denoted by |z|, is the 

real number
z x y zz= + =2 2

z z z z+  +1 2 1 2 the triangle inequality 1 2 1 2z z z z+  −

For example, if z = 2 − 3i, then ( )z = + − =2 22 3 13
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2. Powers and Roots

Polar Form

▪ A nonzero complex number z = x + iy can be written as 

z = (r cos q) + i(r sin q) or (cos sin )z r iq q= + polar form

r = |z| arg tan ( / )z y xq −= = 1

q measured in radians is called an argument of z (arg z).

▪ If q0 is an argument of z, then the angles q0 ± 2pk, are also arguments.

▪ The argument of a complex number in the interval −p < q  p is called the 

principal argument of z and is denoted by Arg z.

For example, if                  , thenz i= −1 3 cos sinz i
p p    

= − + −    
    

2
3 3
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▪ If and (cos sin )z r iq q= +1 1 1 1 (cos sin )z r iq q= +2 2 2 2

[cos( ) sin( )]

[cos( ) sin( )]

z z r r i

z r
i

z r

q q q q

q q q q

= + + +

= − + −

1 2 1 2 1 2 1 2

1 1
1 2 1 2

2 2

arg( ) arg arg 

arg arg arg 

z z z z

zz

z z

z z z z

z
z z

z

=

=

= +

 
= − 

 

1 2 1 2

11

2 2

1 2 1 2

1
1 2

2
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Integer Powers of z
(cos sin )n nz r n i nq q= +

For example, if                  , then ( ) ( )cos sinz ip p = − + − = − 
3 32 8z i= −1 3

▪ Note: It is not true, in general, that Arg(z1z2) = Arg z1 + Arg z2 and Arg(z1/z2) = 

Arg z1 − Arg z2 (although it may be true for some complex numbers).

For example, if z1 = −1 and z2 = 5i, then

Arg(z1) = p, Arg(z2) = p/2, Arg(z1z2) = −p/2, Arg z1 + Arg z2 = 3p/2  Arg(z1z2)

If z1 = −1 and z2 = −5i, then

Arg(z1) = p, Arg(z2) = −p/2, Arg(z1/z2) = −p/2, Arg z1 − Arg z2 = 3p/2  Arg(z1/z2)
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DeMoivre’s Formula

(cos sin ) cos sin ni n i nq q q q+ = +

Roots

A number w is said to be an nth root of a nonzero complex number z if wn = z.

(cos sin )z r iq q= + 

/ cos sinn
k

k k
w r i

n n

q p q p + +   
= +    

    

1 2 2

where k = 0, 1, 2, ..., n − 1

For example, the three cube roots of z = i are:

/ / /
cos sin , , , k

k k
w i k

p p p p + +   
= + =    

    

1 3 2 2 2 2
1 0 1 2

3 3

i+3 1
2 2i− +3 1

2 2

i−
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3. Sets in the Complex Plane

▪ Suppose z0 = x0 + iy0. ( ) ( )z z x x y y− = − + −2 2
0 0 0 is the distance between the

points z = x + iy and z0 = x0 + iy0, the points z = x + iy that satisfy the equation

z z − =0 ,  > 0, lie on a circle of radius  centered at the point z0.

▪ The points z satisfying the inequality               ,  > 0, lie within, 

but not on, a circle of radius  centered at the point z0. This set is 

called a neighborhood of z0 or an open disk. 

z z − <0

▪ A point z0 is said to be an interior point of a set S of the complex plane if there 

exists some neighborhood of z0 that lies entirely within S. If every point z of a 

set S is an interior point, then S is said to be an open set.
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▪ The set S of points in the complex plane defined by Re(z) ≥ 1 is not an open 

set.

Set S is not openOpen set magnified view of a point near x = 1

For example, the inequality Re(z) > 1 is an open set.
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Four examples of open sets
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▪ The set of numbers satisfying                            is called an open annulus.z z < − <1 0 2

▪ If every neighborhood of a point z0 contain ns at least one point that is in a set 

S and at least one point that is not in S, then z0 is said to be a boundary point 

of S. 

▪ The boundary of a set S is the set of all boundary points of S. 

▪ For the set of points defined by Re(z) ≥ 1, the points on the line x = 1 are 

boundary points. 

▪ The points on the circle |z − i| = 2 are boundary points for the disk |z − i|  2.

▪ If any pair of points z1 and z2 in an open set S can be connected by a polygonal 

line that lies entirely in the set, then the open set S is said to be connected. 

▪ An open connected set is called a domain.
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▪ The set of numbers satisfying Re(z)  4 is an open set but is not connected.

▪ A region is a domain in the complex plane with all, some, or 

none of its boundary points.

▪ Since an open connected set does not contain any boundary 

points, it is automatically a region.

▪ A region containing all its boundary points is said to be closed. 

The disk defined by |z − i|  2 is an example of a closed region 

and is referred to as a closed disk. 

▪ A region may be neither open nor closed; the annular region defined by 

1  |z − 5| < 3 contains only some of its boundary points and so is neither open 

nor closed.
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▪ Note: Do not confuse the concept of “domain” defined here as open connected 

set with the concept of the “domain of a function.”

4. Functions of a Complex Variable

▪ Definition: A complex function is a function f whose domain and range are 

subsets of the set C of complex numbers.

▪ The image w of a complex number z = x + iy will be some complex number 

w = u + iv; that is, w = u(x, y) + iv(x, y) = f(z), where u, v are real functions of x 

and y.

▪ If to each value of z, there corresponds one and 

only one value of w, then w is said to be a single-

valued function of z otherwise a multi-valued 

function. 
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For example, w = 1/z is a single-valued function and            is a multi-valued 

function of z. The former is defined at all points of the z-plane except at z = 0 

and the latter assumes two values for each value of z except at z = 0. 

w z=

( ) ( ) ( ),

( ) , \{ , }

f z z z x y x i xy y z C
z

f z z C i i
z

= − = − − + − 

=  −
+

2 2 2

2

4 4 2 4

1

▪ Note: we cannot draw a graph of a complex function w = f(z). We, say that a 

curve C in the z-plane is mapped into the corresponding curve C ' in the 

w-plane by the function w = f(z) which defines a mapping or transformation of 

the z-plane into the w-plane. 

Some examples of functions of a complex variable are:

( ) ( ),f z z Re z z C= + 
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▪ Example 1: Image of a Vertical Line

Find the image of the line Re(z) = 1 under the 

mapping f(z) = z2

( ) ( , )  and ( , )

( ) ( , )  and ( , )

/

f z z u x y x y v x y xy

Re z x u x y y v x y y

u v

=  = − =

= =  = − =

 = −

2 2 2

2

2

2

1 1 2

1 4

Principal Square Root Function z1/2

The square root of a nonzero complex number z = r(cosq + i sinq) = reiq is given 

by:
( )/cos sin , , 2 22 2

0 1
2 2

i kk k
r i re kq pq p q p + + +   

+ = =    
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Limits and Continuity

▪ Definition: Suppose the function f is defined in some neighborhood of z0, 

except possibly at z0 itself. Then f is said to possess a limit at z0, written

lim ( )
z z
f z L

→
=

0

By setting q = Arg(z) and k = 0
/ Arg( )/1 2 2i zz z e= principal square root function

▪ Example 2: Values of z1/2 for z = −2i

/ ( / )/( ) , , 1 2 2 2 22 2 0 1i ki e kp p− +− = =

( /4)

/

( /4)
( )1 2

3

2 1
2

2 1

i

i

e i
i

e i

p

p

− = −
− = 

= − +

principal square root

https://manara.edu.sy/


https://manara.edu.sy/Functions of a Complex Variable 20/362023-2024

if, for each e > 0, there exists a d > 0 such that |f(z) − L| < e whenever 

0 < |z − z0| < d.

▪ Complex and real limits have many common properties, but there is at least 

one very important difference. For real functions,                      if and only if:lim ( )
x x
f x L

→
=

0
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lim ( ) lim ( )
x x x x

f x f x L
+ −→ →

= =
0 0

two directions

▪ For limits of complex functions, z is allowed to approach 

z0 from any direction in the complex plane, that is, along 

any path through z0.

▪ In order that               exists and equals L, we require that 

f(z) approach the same complex number L along every 

possible path through z0.

lim ( )
z z
f z

→ 0

▪ If f approaches two complex numbers L1  L2 for two different paths or paths 

through z0, then               does not exist.

Criterion for the Nonexistence of a Limit

lim ( )
z z
f z

→ 0

https://manara.edu.sy/


https://manara.edu.sy/Functions of a Complex Variable 22/362023-2024

▪ Example 3: A Limit That Does Not Exist

Show that            does not existlim
z

z

z→0

lim lim
z x

z x i

z x i→ →

+
= =

−0 0

0
1

0
z approach 0 along the real axis

lim lim
z y

z iy

z iy→ →

+
= = −

−0 0

0
1

0
z approach 0 along the imaginary axis

▪ Theorem 1: Suppose that f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0, and L = u0 + iv0. 

Then                      if and only if lim ( )
z z
f z L

→
=

0

( , ) ( , ) ( , ) ( , )
lim ( , ) and lim ( , )

x y x y x y x y
u x y u v x y v

→ →
= =

0 0 0 0
0 0
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▪ Theorem 2: Suppose                       and                      . Then lim ( )
z z
f z L

→
=

0
1 lim ( )

z z
g z L

→
=

0
2

( )
lim [ ( ) ( )] lim [ ( ) ( )] lim ,

( )z z z z z z

Lf z
f z g z L L f z g z L L L

g z L→ → →
+ = + = = 

0 0 0

1
1 2 1 2 2

2

0

▪ Example 4: Using Theorem 1 to Compute a Limit

Use Theorem 1 to compute lim ( )
z i

z i
→ +

+2
1

( , ) ( , )

( , ) ( , )

( ) ( )

lim ( ) and

lim ( )

lim ( )

x y

x y x y

z i

f z z i x y xy i

u x y

v xy

z i L u iv i

→

→

→ +

= + = − + +

= − = − =

= + =

+ = = + =

0 0

2 2 2

2 2 2 2
0

1 1

0

2
0 0

1

2 1

1 1 0

2 1 3

3
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▪ Definition: A function f is continuous at a point z0 if

lim ( ) ( )
z z
f z f z

→
=

0
0

▪ As a consequence, if two functions f and g are continuous at a point z0, then 

their sum and product are continuous at z0. The quotient of the two functions is 

continuous at z0 provided g(z0)  0.

A polynomial of degree n

( ) , , , , , , n n
n n n if z a z a z a z a z a a C i n−

−= + + + +   =1
1 1 0 0 0 1

is continuous everywhere.

A rational function
( )

( )
( )

g z
f z

h z
= , where g and h are polynomial functions, is

continuous except at those points at which h(z) is zero.
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▪ Example 5: Discontinuity of Principal Square Root Function

Show that the principal square root function f(z) = z1/2 is discontinuous at z0 = −1

/ Arg( )/ /lim lim lim lim (cos sin )1 2 2 2

1 1 2 2
i z i

z z
z z e e iq

q p q p

q q

→− →− → →
= = = + =

z approaching −1 along the second quadrant. That is, 

z = eiq, p/2 < q < p, with q approaching p

z approaching −1 along the third quadrant. That is, 

z = eiq, −p < q < −p/2, with q approaching −p

/ Arg( )/ /lim lim lim lim (cos sin )1 2 2 2

1 1 2 2
i z i

z z
z z e e iq

q p q p

q q

→− →− →− →−
= = = + = −

does not exist. Therefore, the principal square root function f(z) = z1/2 

is discontinuous at z0 = −1

/lim 1 2

1z
z

→−
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Derivative

▪ Definition: Suppose the complex function f is defined in a neighborhood of a 

point z0. The derivative of f at z0 is

( ) ( )
( ) lim

z

f z z f z
f z

z →

+  −
 =



0 0
0

0

provided this limit exists.

▪ If the limit exists, the function f is said to be differentiable at z0.

▪ As in real variables, If f is differentiable at z0, then f is continuous at z0.

Moreover, the rules of differentiation are the same as in the calculus of real 

variables.

▪ If f and g are differentiable at a point z, and c is a complex constant, then:
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, ( ) ( )

[ ( ) ( )] ( ) ( )

[ ( ) ( )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) [ ( )]

( ( )) ( ( )) ( )

,  an integern n

d d
c cf z cf z

dz dz
d
f z g z f z g z

dz
d
f z g z f z g z f z g z

dz
d f z f z g z f z g z

dz g z g z

d
f g z f g z g z

dz
d
z nz n

dz
−

= =

 + = +

 = +

   −
= 

 

 =

=

2

1

0Constant Rules:

Sum Rule:

Product Rule:

Quotient Rule:

Chain Rule:

Power Rule:
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▪ Note: In order for a complex function f to be differentiable at a point z0,

( ) ( )
lim
z

f z z f z

z →

+  −



0 0

0

must approach the same complex number from any direction.

▪ Example 6: A Function That Is Nowhere Differentiable.

Show that the function f(z) = x + 4iy is nowhere differentiable

z = x + iy ( ) ( ) ( ) ( )f z z f z x x i y y x iy x i y +  − = +  + +  − − =  + 4 4 4

( ) ( )
lim lim
z z

f z z f z x i y

z x i y →  →

+  −  + 
=

  + 0 0

4

z → 0 along a line parallel to the x-axis, then y = 0 and the limit is 1.

z → 0 along a line parallel to the y-axis, then x = 0 and the limit is 4.
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Analytic Functions

▪ Definition: A complex function w = f(z) is said to be analytic (holomorphic) at a 

point z0 if f is differentiable at z0 and at every point in some neighborhood of z0.

A function f is analytic in a domain D if it is analytic at every point in D.

f(z) = |z|2 is differentiable at z = 0 but is differentiable nowhere else. Hence, 

f(z) = |z|2 is nowhere analytic. 

In contrast, the simple polynomial f(z) = z2 is differentiable at every point z in 

the complex plane. Hence, f(z) = z2 is analytic everywhere.

▪ A function that is analytic at every point z is said to be an entire function.

Polynomial functions are differentiable at every point z and so are entire 

functions.
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5. Cauchy–Riemann Equations

A Necessary Condition for Analyticity

▪ Theorem 3 (Cauchy–Riemann Equations): Suppose f(z) = u(x, y) + iv(x, y) is 

differentiable at a point z = x + iy. Then at z the first-order partial derivatives of 

u and v exist and satisfy the Cauchy Riemann equations: 

and
u v u v

x y y x

   
= = −

   

For example he polynomial f(z) = z2 + z is analytic for all z

f(z) = x2 − y2 + x + i(2xy + y)

This result is a necessary condition for analyticity
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▪ Example 7: Using the Cauchy–Riemann Equations

Show that the function f(z) = 2x2 + y + i(y2 − x) is not analytic at any point.

and

and

u v
x y

x y
u v

y x

 
= =

 

 
= = −

 

4 2

1 1

u v

x y

 
=

 

However, for any point z on the line, there is no neighborhood or open disk 

about z in which f is differentiable. We conclude that f is nowhere analytic.

u v

y x

 
= −

 

is satisfied only on the line y = 2x

and
u v u v

x y
x y y x

   
= + = = − = −

   
2 1 2 Cauchy–Riemann equations 

are satisfied
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Criterion for Analyticity

▪ Theorem 4: (Criterion for Analyticity) Suppose the real-valued functions u(x, y) 

and v(x, y) are continuous and have continuous first-order partial derivatives in 

a domain D. If u and v satisfy the Cauchy–Riemann equations at all points of D, 

then the complex function f(z) = u(x, y) + iv(x, y) is analytic in D. 

The function ( )
x y

f z i
x y x y

= −
+ +2 2 2 2

is analytic in any domain not containing the point z = 0.

▪ Note: If the real-valued functions u(x, y) and v(x, y) are continuous and have 

continuous first order partial derivatives in a neighborhood of z, and if u and v 

satisfy the Cauchy–Riemann equations at the point z, then the complex 

function f(z) = u(x, y) + iv(x, y) is differentiable at z and f’(z) is given by:
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( )
u v v u

f z i i
x x y y

   
 = + = −

   

Polar Coordinates

f(z) = u(r, q) + iv(r, q) 

▪ In polar coordinates the Cauchy-Riemann equations become

and
u v v u

r r r rq q

   
= = −

   

1 1

The polar version of f’(z) at a point z is

( ) i iu v v u
f z e i e i

r r r
q q

q q

− −      
 = + = −   

      

1
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Harmonic Functions

▪ Definition: A real-valued function f(x, y) that has continuous second-order 

partial derivatives in a domain D and satisfies Laplace’s equation (2f /2x +

2f /2y = 0) is said to be harmonic in D.

▪ Theorem 5 (Harmonic Functions): Suppose f(z) = u(x, y) + iv(x, y) is analytic in 

a domain D. then the functions u(x, y) and v(x, y) are harmonic functions.

Harmonic Conjugate Functions If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, 

then u and v are harmonic in D. Now suppose u(x, y) is a given function that is 

harmonic in D. It is then sometimes possible to find another function v(x, y) that 

is harmonic in D so that u(x, y) + iv(x, y) is an analytic function in D. The function 

v is called a harmonic conjugate function of u.
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u u
x x

x y

 
+ = − =

 

2 2

2 2
6 6 0

▪ Example 8: Harmonic Function/Harmonic Conjugate Function

Verify that the function u(x, y) = x3 − 3xy2 − 5y is harmonic in the entire 

complex plane. Find the harmonic conjugate function of u.

, , ,
2 2

2 2
2 2

3 3 6 6 5 6
u u u u

x y x xy x
x yx y

   
= − = = − − = −

  

,2 23 3 6 5
v u v u

x y xy
y x x y

   
= = − = − = +

   

( ) ( )3 2 2 33 5 3 5f z x xy y i x y y x C= − − + − + +

( , ) ( ) ( ) ( ) ( )2 33 6 5 5
v

v x y x y y h x xy h x h x h x x C
x


 = − +  = +  =  = +
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Entire

Analytic

Differentiable

Continuous
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