QRIDC301: Engineering Nathematics

Lecture Notes l: Functions of a Complex Variable: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

Chapter 1

Functions of a Complex Variable

1. Complex Numbers
2. Powers and Roots
3. Sets in the Complex Plane
4. Functions of a Complex Variable
5. Cauchy-Riemann Equations
6. Exponential and Logarithmic Functions
7. Trigonometric and Hyperbolic Functions
8. Inverse Trigonometric and Hynerbolic Functions

1. Complex Numbers

- Definition: A number of the form $z=x+i y$, where x and y are real numbers and $i=\sqrt{-1}$ (imaginary unit), is called a complex number. x is called the real part of z and is written as $\operatorname{Re}(z)$ and y is called the imaginary part and is written as $\operatorname{Im}(z)$.
For example, if $z=4+9 i$, then $\operatorname{Re}(z)=4$ and $\operatorname{Im}(z)=9$
A real constant multiple of the imaginary unit is called a pure imaginary number
- Definition: Complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are equal, $z_{1}=z_{2}$, if $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.
A complex number $x+i y=0$ if $x=0$ and $y=0$.

Arithmetic Operations

- If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$

Addition: $\quad z_{1}+z_{2}=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$
Subtraction: $\quad z_{1}-z_{2}=\left(x_{1}+i y_{1}\right)-\left(x_{2}+i y_{2}\right)=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)$
Multiplication: $z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=x_{1} x_{2}-y_{1} y_{2}+i\left(y_{1} x_{2}+x_{1} y_{2}\right)$
Division:

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}
$$

Commutative laws: $\left\{\begin{array}{c}z_{1}+z_{2}=z_{2}+z_{1} \\ z_{1} z_{2}=z_{2} z_{1}\end{array}\right.$
Associative laws: $\left\{\begin{aligned} z_{1}+\left(z_{2}+z_{3}\right) & =\left(z_{1}+z_{2}\right)+z_{3} \\ z_{1}\left(z_{2} z_{3}\right) & =\left(z_{1} z_{2}\right) z_{3}\end{aligned}\right.$

Distributive law: $\quad z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$

- If $z=x+i y$ is a complex number, then the complex number $\bar{z}=x-i y$ is called the complex conjugate or, simply, the conjugate of z.

$$
\begin{aligned}
\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}, & \overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}} \\
\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}, & \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}
\end{aligned}
$$

For example, if $z=4+9 i$, then $\bar{z}=4-9 i$

$$
\begin{aligned}
& z+\bar{z}=(x+i y)+(x-i y)=2 x=2 R e(z) \\
& z-\bar{z}=(x+i y)-(x-i y)=2 i y=2 \operatorname{Im}(z) \\
& z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2}
\end{aligned} \quad \Rightarrow \operatorname{Re}(z)=\frac{z+\bar{z}}{2}, \quad \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}
$$

Geometric Interpretation

A complex number $z=x+i y$ can be viewed as a vector whose initial point is the origin and whose terminal point is (x, y). The coordinate plane is called the complex plane or simply the z-plane. The horizontal or x-axis is called the real axis and the
 vertical or y-axis is called the imaginary axis.

- Definition: The modulus or absolute value of $z=x+i y$, denoted by $|z|$, is the real number

$$
|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \bar{z}}
$$

For example, if $z=2-3 i$, then $|z|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{13}$

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \text { the triangle inequality }
$$

$$
\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|
$$

2. Powers and Roots

Polar Form

- A nonzero complex number $z=x+i y$ can be written as $z=(r \cos \theta)+i(r \sin \theta)$ or $z=r(\cos \theta+i \sin \theta) \quad$ polar form $r=|z| \quad \theta=\arg z=\tan ^{-1}(y / x)$
θ measured in radians is called an argument of $z(\arg z)$.

- If θ_{0} is an argument of z, then the angles $\theta_{0} \pm 2 \pi k$, are also arguments.
- The argument of a complex number in the interval $-\pi<\theta \leq \pi$ is called the principal argument of z and is denoted by $\operatorname{Arg} z$.
For example, if $z=1-\sqrt{3} i$, then $z=2\left[\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right]$
- If $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$

$$
\begin{gathered}
z_{1} z_{2}= \\
\frac{z_{1}}{z_{2}} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
r_{2}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] \\
\left|\frac{z_{1}}{z_{2}}\right|=\left|z_{1}\right|\left|z_{2}\right| \\
\\
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} \mid \\
\\
\arg \left(\frac{z_{2}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}
\end{gathered}
$$

- Note: It is not true, in general, that $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}$ and $\operatorname{Arg}\left(z_{1} / z_{2}\right)=$ $\operatorname{Arg} z_{1}-\operatorname{Arg} z_{2}$ (although it may be true for some complex numbers).
For example, if $z_{1}=-1$ and $z_{2}=5 i$, then

$$
\operatorname{Arg}\left(z_{1}\right)=\pi, \operatorname{Arg}\left(z_{2}\right)=\pi / 2, \operatorname{Arg}\left(z_{1} z_{2}\right)=-\pi / 2, \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=3 \pi / 2 \neq \operatorname{Arg}\left(z_{1} z_{2}\right)
$$

If $z_{1}=-1$ and $z_{2}=-5 i$, then

$$
\operatorname{Arg}\left(z_{1}\right)=\pi, \operatorname{Arg}\left(z_{2}\right)=-\pi / 2, \operatorname{Arg}\left(z_{1} / z_{2}\right)=-\pi / 2, \operatorname{Arg} z_{1}-\operatorname{Arg} z_{2}=3 \pi / 2 \neq \operatorname{Arg}\left(z_{1} / z_{2}\right)
$$

Integer Powers of z

$$
z^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

For example, if $z=1-\sqrt{3} i$, then $z^{3}=2^{3}[\cos (-\pi)+i \sin (-\pi)]=-8$

DeMoivre's Formula

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

Roots
A number w is said to be an $n^{\text {th }}$ root of a nonzero complex number z if $w^{n}=z$. $z=r(\cos \theta+i \sin \theta) \Rightarrow$

$$
w_{k}=r^{1 / n}\left[\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right]
$$

where $k=0,1,2, \ldots, n-1$
For example, the three cube roots of $z=i$ are:

$$
w_{k}=1^{1 / 3}\left[\cos \left(\frac{\pi / 2+2 \pi k}{3}\right)+i \sin \left(\frac{\pi / 2+2 \pi k}{3}\right)\right], k=0,1,2
$$

3. Sets in the Complex Plane

- Suppose $z_{0}=x_{0}+i y_{0} \cdot\left|z-z_{0}\right|=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}$ is the distance between the points $z=x+i y$ and $z_{0}=x_{0}+i y_{0}$, the points $z=x+i y$ that satisfy the equation $\left|z-z_{0}\right|=\rho, \rho>0$, lie on a circle of radius ρ centered at the point z_{0}.
- The points z satisfying the inequality $\left|z-z_{0}\right|<\rho, \rho>0$, lie within, but not on, a circle of radius ρ centered at the point z_{0}. This set is called a neighborhood of z_{0} or an open disk.

- A point z_{0} is said to be an interior point of a set S of the complex plane if there exists some neighborhood of z_{0} that lies entirely within S. If every point z of a set S is an interior point, then S is said to be an open set.

حَــامعة
الْمَـنارة
For example, the inequality $\operatorname{Re}(z)>1$ is an open set.

- The set S of points in the complex plane defined by $\operatorname{Re}(z) \geq 1$ is not an open set.

Open set magnified view of a point near $x=1$

Set S is not open

Four examples of open sets

جَــامعة الـَمــنارة mnensmown

- The set of numbers satisfying $\rho_{1}<\left|z-z_{0}\right|<\rho_{2}$ is called an open annulus.
- If every neighborhood of a point z_{0} contain ns at least one point that is in a set S and at least one point that is not in S, then z_{0} is said to be a boundary point of S.
- The boundary of a set S is the set of all boundary points of S.
- For the set of points defined by $\operatorname{Re}(z) \geq 1$, the points on the line $x=1$ are boundary points.
- The points on the circle $|z-i|=2$ are boundary points for the disk $|z-i| \leq 2$.
- If any pair of points z_{1} and z_{2} in an open set S can be connected by a polygonal line that lies entirely in the set, then the open set S is said to be connected.
- An open connected set is called a domain.
- The set of numbers satisfying $\operatorname{Re}(z) \neq 4$ is an open set but is not connected.
- A region is a domain in the complex plane with all, some, or none of its boundary points.
- Since an open connected set does not contain any boundary points, it is automatically a region.
- A region containing all its boundary points is said to be closed.
 The disk defined by $|z-i| \leq 2$ is an example of a closed region and is referred to as a closed disk.
- A region may be neither open nor closed; the annular region defined by $1 \leq|z-5|<3$ contains only some of its boundary points and so is neither open nor closed.
- Note: Do not confuse the concept of "domain" defined here as open connected set with the concept of the "domain of a function."

4. Functions of a Complex Variable

- Definition: A complex function is a function f whose domain and range are subsets of the set C of complex numbers.
- The image w of a complex number $z=x+i y$ will be some complex number $w=u+i v$; that is, $w=u(x, y)+i v(x, y)=f(z)$, where u, v are real functions of x and y.
- If to each value of z, there corresponds one and only one value of w, then w is said to be a singlevalued function of z otherwise a multi-valued function.

For example, $w=1 / z$ is a single-valued function and $w=\sqrt{z}$ is a multi-valued function of z. The former is defined at all points of the z-plane except at $z=0$ and the latter assumes two values for each value of z except at $z=0$.
Some examples of functions of a complex variable are:

$$
\begin{aligned}
& f(z)=z^{2}-4 z=\left(x^{2}-y^{2}-4 x\right)+i(2 x y-4 y), \quad z \in C \\
& f(z)=\frac{z}{z^{2}+1}, \quad z \in C \backslash\{i,-i\} \quad f(z)=z+\operatorname{Re}(z), \quad z \in C
\end{aligned}
$$

- Note: we cannot draw a graph of a complex function $w=f(z)$. We, say that a curve C in the z-plane is mapped into the corresponding curve C^{\prime} in the w-plane by the function $w=f(z)$ which defines a mapping or transformation of the z-plane into the w-plane.
- Example 1: Image of a Vertical Line Find the image of the line $\operatorname{Re}(z)=1$ under the mapping $f(z)=z^{2}$

$$
\begin{aligned}
& f(z)=z^{2} \Rightarrow u(x, y)=x^{2}-y^{2} \text { and } v(x, y)=2 x y \\
& \operatorname{Re}(z)=x=1 \Rightarrow u(x, y)=1-y^{2} \text { and } v(x, y)=2 y \\
& \Rightarrow u=1-v^{2} / 4
\end{aligned}
$$

(a) z-plane

(b) w-plane

Principal Square Root Function $z^{1 / 2}$

The square root of a nonzero complex number $z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$ is given by:

$$
\sqrt{r}\left[\cos \left(\frac{\theta+2 \pi k}{2}\right)+i \sin \left(\frac{\theta+2 \pi k}{2}\right)\right]=\sqrt{r} e^{i(\theta+2 k \pi) / 2}, k=0,1
$$

By setting $\theta=\operatorname{Arg}(z)$ and $k=0 \quad z^{1 / 2}=\sqrt{|z|} e^{i \operatorname{Arg}(z) / 2} \quad$ principal square root function

- Example 2: Values of $z^{1 / 2}$ for $z=-2 i$

$$
\begin{aligned}
& (-2 i)^{1 / 2}=\sqrt{2} e^{i(-\pi / 2+2 k \pi) / 2}, k=0,1 \\
& (-2 i)^{1 / 2}=\left\{\begin{array}{l}
\sqrt{2} e^{i(-\pi / 4)}=1-i \quad \text { principal square root } \\
\sqrt{2} e^{i(3 \pi / 4)}=-1+i
\end{array}\right.
\end{aligned}
$$

Limits and Continuity

- Definition: Suppose the function f is defined in some neighborhood of z_{0}, except possibly at z_{0} itself. Then f is said to possess a limit at z_{0}, written

$$
\lim _{z \rightarrow z_{0}} f(z)=L
$$

if, for each $\varepsilon>0$, there exists a $\delta>0$ such that $|f(z)-L|<\varepsilon$ whenever $0<\left|z-z_{0}\right|<\delta$.

(a) δ-neighborhood

(b) ε-neighborhood

- Complex and real limits have many common properties, but there is at least one very important difference. For real functions, $\lim f(x)=L$ if and only if:

$$
x \rightarrow x_{0}
$$

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=L \quad \text { two directions }
$$

- For limits of complex functions, z is allowed to approach z_{0} from any direction in the complex plane, that is, along any path through z_{0}.
- In order that $\lim _{z \rightarrow z} f(z)$ exists and equals L, we require that $f(z)$ approach the same complex number L along every possible path through z_{0}.
Criterion for the Nonexistence of a Limit
- If f approaches two complex numbers $L_{1} \neq L_{2}$ for two different paths or paths through z_{0}, then $\lim _{z \rightarrow z_{0}} f(z)$ does not exist.
- Example 3: A Limit That Does Not Exist

Show that $\lim _{z \rightarrow 0} \frac{z}{\bar{z}}$ does not exist
z approach 0 along the real axis $\lim _{z \rightarrow 0} \frac{z}{\bar{z}}=\lim _{x \rightarrow 0} \frac{x+0 i}{x-0 i}=1$
z approach 0 along the imaginary axis $\lim _{z \rightarrow 0} \frac{z}{\bar{z}}=\lim _{y \rightarrow 0} \frac{0+i y}{0-i y}=-1$

- Theorem 1: Suppose that $f(z)=u(x, y)+i v(x, y), z_{0}=x_{0}+i y_{0}$, and $L=u_{0}+i v_{0}$. Then $\lim _{z \rightarrow z_{0}} f(z)=L$ if and only if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}
$$

- Example 4: Using Theorem 1 to Compute a Limit

Use Theorem 1 to compute $\lim _{z \rightarrow 1+i}\left(z^{2}+i\right)$

$$
\begin{aligned}
& f(z)=z^{2}+i=x^{2}-y^{2}+(2 x y+1) i \\
& u_{0}=\lim _{(x, y) \rightarrow(1,1)}\left(x^{2}-y^{2}\right)=1^{2}-1^{2}=0 \quad \text { and } \\
& v_{0}=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(2 x y+1)=3 \\
& \lim _{z \rightarrow 1+i}\left(z^{2}+i\right)=L=u_{0}+i v_{0}=3 i
\end{aligned}
$$

- Theorem 2: Suppose $\lim _{z \rightarrow z_{0}} f(z)=L_{1}$ and $\lim _{z \rightarrow z_{0}} g(z)=L_{2}$. Then

$$
\lim _{z \rightarrow z_{0}}[f(z)+g(z)]=L_{1}+L_{2} \quad \lim _{z \rightarrow z_{0}}[f(z) g(z)]=L_{1} L_{2} \quad \lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{L_{1}}{L_{2}}, L_{2} \neq 0
$$

- Definition: A function f is continuous at a point z_{0} if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

- As a consequence, if two functions f and g are continuous at a point z_{0}, then their sum and product are continuous at z_{0}. The quotient of the two functions is continuous at z_{0} provided $g\left(z_{0}\right) \neq 0$.
A polynomial of degree n

$$
f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} z, a_{n} \neq 0, a_{i} \in C, i=0,1, \cdots, n
$$

is continuous everywhere.
A rational function $f(z)=\frac{g(z)}{h(z)}$, where g and h are polynomial functions, is continuous except at those points at which $h(z)$ is zero.

- Example 5: Discontinuity of Principal Square Root Function Show that the principal square root function $f(z)=z^{1 / 2}$ is discontinuous at $z_{0}=-1$
z approaching -1 along the second quadrant. That is, $z=e^{i \theta}, \pi / 2<\theta<\pi$, with θ approaching π

$$
\lim _{z \rightarrow-1} z^{1 / 2}=\lim _{z \rightarrow-1} \sqrt{|z|} e^{i \operatorname{Arg}(z) / 2}=\lim _{\theta \rightarrow \pi} e^{i \theta / 2}=\lim _{\theta \rightarrow \pi}\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)=i
$$

z approaching -1 along the third quadrant. That is,

$$
z=e^{i \theta},-\pi<\theta<-\pi / 2, \text { with } \theta \text { approaching }-\pi
$$

$$
\lim _{z \rightarrow-1} z^{1 / 2}=\lim _{z \rightarrow-1} \sqrt{|z|} e^{i \operatorname{Arg}(z) / 2}=\lim _{\theta \rightarrow-\pi} e^{i \theta / 2}=\lim _{\theta \rightarrow-\pi}\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)=-i
$$

$\lim _{z \rightarrow-1} z^{1 / 2}$ does not exist. Therefore, the principal square root function $f(z)=z^{1 / 2}$ is discontinuous at $z_{0}=-1$

Derivative

- Definition: Suppose the complex function f is defined in a neighborhood of a point z_{0}. The derivative of f at z_{0} is

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

provided this limit exists.

- If the limit exists, the function f is said to be differentiable at z_{0}.
- As in real variables, If f is differentiable at z_{0}, then f is continuous at z_{0}. Moreover, the rules of differentiation are the same as in the calculus of real variables.
- If f and g are differentiable at a point z, and c is a complex constant, then:

Constant Rules: $\frac{d}{d z} c=0, \quad \frac{d}{d z} c f(z)=c f^{\prime}(z)$
Sum Rule: $\quad \frac{d}{d z}[f(z)+g(z)]=f^{\prime}(z)+g^{\prime}(z)$
Product Rule: $\frac{d}{d z}[f(z) g(z)]=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)$
Quotient Rule: $\quad \frac{d}{d z}\left[\frac{f(z)}{g(z)}\right]=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{[g(z)]^{2}}$
Chain Rule: $\quad \frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z)$
Power Rule: $\quad \frac{d}{d z} z^{n}=n z^{n-1}, n$ an integer

- Note: In order for a complex function f to be differentiable at a point z_{0},

$$
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

must approach the same complex number from any direction.

- Example 6: A Function That Is Nowhere Differentiable.

Show that the function $f(z)=x+4 i y$ is nowhere differentiable

$$
\begin{aligned}
\Delta z=\Delta x+i \Delta y \Rightarrow & f(z+\Delta z)-f(z)=(x+\Delta x)+4 i(y+\Delta y)-x-4 i y=\Delta x+4 i \Delta y \\
& \lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta x+4 i \Delta y}{\Delta x+i \Delta y}
\end{aligned}
$$

$\Delta z \rightarrow 0$ along a line parallel to the x-axis, then $\Delta y=0$ and the limit is 1 .
$\Delta z \rightarrow 0$ along a line parallel to the y-axis, then $\Delta x=0$ and the limit is 4 .

Analytic Functions

- Definition: A complex function $w=f(z)$ is said to be analytic (holomorphic) at a point z_{0} if f is differentiable at z_{0} and at every point in some neighborhood of z_{0}. A function f is analytic in a domain D if it is analytic at every point in D. $f(z)=|z|^{2}$ is differentiable at $z=0$ but is differentiable nowhere else. Hence, $f(z)=|z|^{2}$ is nowhere analytic.
In contrast, the simple polynomial $f(z)=z^{2}$ is differentiable at every point z in the complex plane. Hence, $f(z)=z^{2}$ is analytic everywhere.
- A function that is analytic at every point z is said to be an entire function. Polynomial functions are differentiable at every point z and so are entire functions.

5. Cauchy-Riemann Equations

A Necessary Condition for Analyticity

- Theorem 3 (Cauchy-Riemann Equations): Suppose $f(z)=u(x, y)+i v(x, y)$ is differentiable at a point $z=x+i y$. Then at z the first-order partial derivatives of u and v exist and satisfy the Cauchy Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

This result is a necessary condition for analyticity
For example he polynomial $f(z)=z^{2}+z$ is analytic for all z

$$
f(z)=x^{2}-y^{2}+x+i(2 x y+y)
$$

جَـامعة

$$
\frac{\partial u}{\partial x}=2 x+1=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-2 y=-\frac{\partial v}{\partial x}
$$

Cauchy-Riemann equations are satisfied

- Example 7: Using the Cauchy-Riemann Equations

Show that the function $f(z)=2 x^{2}+y+i\left(y^{2}-x\right)$ is not analytic at any point.

$$
\begin{array}{lll}
\frac{\partial u}{\partial x}=4 x & \text { and } \quad \frac{\partial v}{\partial y}=2 y \\
\frac{\partial u}{}=1 & \text { and } \quad \frac{\partial v}{y}=-1 & \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{array}
$$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { is satisfied only on the line } y=2 x
$$

However, for any point z on the line, there is no neighborhood or open disk about z in which f is differentiable. We conclude that f is nowhere analytic.

Criterion for Analyticity

- Theorem 4: (Criterion for Analyticity) Suppose the real-valued functions $u(x, y)$ and $v(x, y)$ are continuous and have continuous first-order partial derivatives in a domain D. If u and v satisfy the Cauchy-Riemann equations at all points of D, then the complex function $f(z)=u(x, y)+i v(x, y)$ is analytic in D.
The function $f(z)=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$
is analytic in any domain not containing the point $z=0$.
- Note: If the real-valued functions $u(x, y)$ and $v(x, y)$ are continuous and have continuous first order partial derivatives in a neighborhood of z, and if u and v satisfy the Cauchy-Riemann equations at the point z, then the complex function $f(z)=u(x, y)+i v(x, y)$ is differentiable at z and $f^{\prime}(z)$ is given by:

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

Polar Coordinates

$$
f(z)=u(r, \theta)+i v(r, \theta)
$$

- In polar coordinates the Cauchy-Riemann equations become

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

The polar version of $f^{\prime}(z)$ at a point z is

$$
f^{\prime}(z)=e^{-i \theta}\left(\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right)=\frac{1}{r} e^{-i \theta}\left(\frac{\partial v}{\partial \theta}-i \frac{\partial u}{\partial \theta}\right)
$$

Harmonic Functions

- Definition: A real-valued function $\phi(x, y)$ that has continuous second-order partial derivatives in a domain D and satisfies Laplace's equation ($\partial^{2} \phi / \partial^{2} x+$ $\partial^{2} \phi / \partial^{2} y=0$) is said to be harmonic in D.
- Theorem 5 (Harmonic Functions): Suppose $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D. then the functions $u(x, y)$ and $v(x, y)$ are harmonic functions.
Harmonic Conjugate Functions If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then u and v are harmonic in D. Now suppose $u(x, y)$ is a given function that is harmonic in D. It is then sometimes possible to find another function $v(x, y)$ that is harmonic in D so that $u(x, y)+i v(x, y)$ is an analytic function in D. The function v is called a harmonic conjugate function of u.
- Example 8: Harmonic Function/Harmonic Conjugate Function

Verify that the function $u(x, y)=x^{3}-3 x y^{2}-5 y$ is harmonic in the entire complex plane. Find the harmonic conjugate function of u.

$$
\begin{gathered}
\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}, \quad \frac{\partial^{2} u}{\partial x^{2}}=6 x, \quad \frac{\partial u}{\partial y}=-6 x y-5, \quad \frac{\partial^{2} u}{\partial y^{2}}=-6 x \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=6 x-6 x=0 \\
\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=6 x y+5 \\
v(x, y)=3 x^{2} y-y^{3}+h(x) \Rightarrow \frac{\partial v}{\partial x}=6 x y+h^{\prime}(x) \Rightarrow h^{\prime}(x)=5 \Rightarrow h(x)=5 x+C \\
f(z)=x^{3}-3 x y^{2}-5 y+i\left(3 x^{2} y-y^{3}+5 x+C\right)
\end{gathered}
$$

