CREIC301: Engineering Nathematics

Lecture Notes 3: Integration in the Complex Plan

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

جَــامعة الـَمَـنارة
 Chapter 2
 Integration in the Complex Plan

\author{

1. Contour Integrals
 2. Cauchy-Goursat Theorem
 3. Independence of the Path
 4. Cauchy's Integral Formulas
}

1. Contour Integrals

A Definition

Suppose C is a curve parameterized by $x=x(t), y=y(t), a \leq t \leq b$, and A and B are the points $(x(a), y(a))$ and $(x(b), y(b))$, respectively. We say that:
(i) C is a smooth curve if x^{\prime} and y^{\prime} are continuous on the closed interval $[a, b]$ and not simultaneously zero on the open interval (a, b).
(ii) C is piecewise smooth if it consists of a finite number of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$ joined end to end; that is, $C=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$.
(iii) C is a closed curve if $A=B$.
(iv) C is a simple closed curve if $A=B$ and the curve does not cross itself.
(v) If C is not a closed curve, then the positive direction on C is the direction corresponding to increasing values of t.

Smooth curve

Piecewise smooth curve Closed but not simple

Simple closed curve

A Definition

- Integral of a complex function $f(z)$ that is defined along a curve C in the complex plane. Let C be defined by the parametric equations $x=x(t), y=y(t)$, $a \leq t \leq b$, where t is a real parameter.
- By using $x(t)$ and $y(t)$ as real and imaginary parts, we can also describe a curve C in the complex plane by means of a complex-valued function of a real variable $t: z(t)=x(t)+i y(t), a \leq t \leq b$.
- For example, $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$, describes a unit circle centered at the origin. This circle can also be described by $z(t)=\cos t+i \sin t$, or even more compactly by $z(t)=e^{i t}, 0 \leq t \leq 2 \pi$.
- In complex variables, a piecewise-smooth curve C is also called a contour or path.
- An integral of $f(z)$ on C is denoted by $\int_{C} f(z) d z$ or $\oint_{C} f(z) d z$ if the contour C is closed; it is referred to as a contour integral or simply as a complex integral.

1. Let $f(z)=u(x, y)+i v(x, y)$ be defined at all points on a smooth curve C defined by $x=x(t), y=y(t), a \leq t \leq b$.
2. Divide C into n subarcs according to the partition $a=t_{0}<t_{1}<\ldots<t_{n}=b$ of [$a, b]$. The corresponding points on the curve C are:

$$
z_{0}=x_{0}+i y_{0}=x\left(t_{0}\right)+i y\left(t_{0}\right), z_{1}=x_{1}+i y_{1}=x\left(t_{1}\right)+i y\left(t_{1}\right), \ldots, z_{n}=x_{n}+i y_{n}=x\left(t_{n}\right)+
$$

$$
i y\left(t_{n}\right) . \text { Let } \Delta z_{k}=z_{k}-z_{k-1}, k=1,2, \ldots, n
$$

3. Let $\|P\|$ be the norm of the partition, i.e., the maximum value of $\left|\Delta z_{k}\right|$.
4. Choose a sample point $z_{k}^{*}=x_{k}^{*}+i y_{k}^{*}$ on each subarc.
5. Form the sum:

$$
\sum_{k=1}^{n} f\left(z_{k}^{*}\right) \Delta z_{k}
$$

- Definition: Let f be defined at points of a smooth curve C defined by $x=x(t)$, $y=y(t), a \leq t \leq b$. The contour integral of f along C is

$$
\int_{C} f(z) d z=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(z_{k}^{*}\right) \Delta z_{k}
$$

The limit exists if f is continuous at all points on C and C is either smooth or piecewise smooth.

- Theorem 1 (Evaluation of a Contour Integral): If f is continuous on a smooth curve C given by $z(t)=x(t)+i y(t), a \leq t \leq b$, then

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

- Example 1: Evaluating a Contour Integral Evaluate $\int_{C} \bar{z} d z$, where C is given by $x(t)=3 t, y(t)=t^{2},-1 \leq t \leq 4$

$$
\begin{aligned}
\int_{C} \bar{z} d z & =\int_{-1}^{4}\left(3 t-i t^{2}\right)(3+2 i t) d t \\
& =\int_{-1}^{4}\left(2 t^{3}+9 t\right) d t+i \int_{-1}^{4} 3 t^{2} d t=195+65 i
\end{aligned}
$$

- Example 2: Evaluating a Contour Integral

Evaluate $\oint_{C} \frac{1}{z} d z$, where C is the circle $x(t)=\cos t, y(t)=\sin t, 0 \leq t \leq 2 \pi$

$$
\oint_{C} \frac{1}{z} d z=\int_{0}^{2 \pi}\left(e^{-i t}\right) i e^{i t} d t=i \int_{0}^{2 \pi} d t=2 \pi i
$$

Properties

- Theorem 2 (Properties of Contour Integrals): Suppose f and g are continuous in a domain D and C, C_{1} and C_{2} are smooth curves lying entirely in D. Then
(i) $\int_{C} k f(z) d z=k \int_{C} f(z) d z, k$ a constant
(ii) $\int_{C}[f(z)+g(z)] d z=\int_{C} f(z) d z+\int_{C} g(z) d z$
(iii) $\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z, C=C_{1} \cup C_{2}$
(iv) $\int_{-C} f(z) d z=-\int_{C} f(z) d z$
where $-C$ denotes the curve having the opposite orientation of C
- Note: Theorem 2 also hold when C is a piecewise-smooth curve in D.
- Example 3: Evaluating a Contour Integral

Evaluate $\int_{C}\left(x^{2}+i y^{2}\right) d z$, where C is the contour shown below
$\int_{C}\left(x^{2}+i y^{2}\right) d z=\int_{C_{1}}\left(x^{2}+i y^{2}\right) d z+\int_{C_{2}}\left(x^{2}+i y^{2}\right) d z$
The curve C_{1} is defined by $x(t)=y(t)=t, 0 \leq t \leq 1$ The curve C_{2} is defined by $x(t)=1, y(t)=t, 1 \leq t \leq 2$

$$
\begin{aligned}
& \int_{C_{1}}\left(x^{2}+i y^{2}\right) d z=\int_{0}^{1}\left(t^{2}+i t^{2}\right)(1+i) d t=(1+i)^{2} \int_{0}^{1} t^{2} d t=\frac{2}{3} i \\
& \int_{C_{2}}\left(x^{2}+i y^{2}\right) d z=\int_{1}^{2}\left(1+i t^{2}\right) i d t=-\frac{7}{3}+i \\
& \int_{C}\left(x^{2}+i y^{2}\right) d z=\frac{2}{3} i-\frac{7}{3}+i=-\frac{7}{3}+\frac{5}{3} i
\end{aligned}
$$

- Theorem 3 (A Bounding Theorem): If f is continuous on a smooth curve C and if $|f(z)|<M$ for all z on C, then $\left|\int_{C} f(z) d z\right| \leq M L$, where L is the length of C.
- Example 4: A Bound for a Contour Integral

Find an upper bound for the absolute value of $\oint_{C} \frac{e^{z}}{z+1} d z$, where C is the circle $|z|=4$.

The length s of the circle of radius 4 is $8 \pi .|z+1| \geq|z|-1=4-1=3$,

$$
\left|\frac{e^{z}}{z+1}\right| \leq \frac{\left|e^{z}\right|}{|z|-1}=\frac{\left|e^{z}\right|}{3}=\frac{e^{x}}{3} \leq \frac{e^{4}}{3} \Rightarrow\left|\frac{e^{z}}{z+1}\right| \leq \frac{e^{4}}{3} \Rightarrow\left|\oint_{C} \frac{e^{z}}{z+1} d z\right| \leq \frac{8 \pi e^{4}}{3}
$$

2. Cauchy-Goursat Theorem

Simply and Multiply Connected Domains

- A domain D is said to be simply connected if every simple closed contour C lying entirely in D can be shrunk to a point without leaving D.
- In other words, in a simply connected domain, every simple closed contour C lying entirely within it encloses only points of the domain D.
- A simply connected domain has no "holes" in it.
- The entire complex plane is an example of a simply connected domain.
- A domain that is not simply connected is called a multiply connected domain; that is, a multiply connected domain has "holes" in it.
- We call a domain with one "hole" doubly connected, a domain with two "holes" triply connected, and so on.

Simply connected domain

Multiply connected domain

Cauchy's Theorem

Suppose that a function f is analytic in a simply connected domain D and that f is continuous in D. Then for every simple closed contour C in $D, \quad \oint_{C} f(z) d z=0$

- Theorem 4 (Cauchy-Goursat Theorem): Suppose a function f is analytic in a simply connected domain D. Then for every simple closed contour C in D,

$$
\oint_{C} f(z) d z=0
$$

- Example 5: The functions z^{n} with n a positive integer, $\sin z, \cos z, e^{z}, \sinh z$, and $\cosh z$ are analytic (they are entire functions), so for any closed contour C in the complex plane,

$$
\oint_{C} z^{n} d z=\oint_{C} \sin z d z=\oint_{C} \cos z d z=\oint_{C} e^{z} d z=\oint_{C} \sinh z d z=\oint_{C} \cosh z d z=0
$$

- Example 6: Applying the Cauchy-Goursat Theorem

Evaluate $\oint_{C} \frac{1}{z^{2}} d z$, where C is the ellipse $(x-2)^{2}+\frac{(y-5)^{2}}{4}=1$
The rational function $f(z)=1 / z^{2}$ is analytic everywhere except at $z=0$. But $z=0$ is not a point interior to or on the contour C. Thus,

$$
\oint_{C} \frac{1}{z^{2}} d z=0
$$

Cauchy-Goursat Theorem for Multiply Connected Domains

suppose D is a doubly connected domain and C and C_{1} are simple closed contours such that C_{1} surrounds the "hole" in the domain and is interior to C. Suppose, also, that f is analytic on each contour and at each point interior to C but exterior to C_{1}.

When we introduce the cut $A B$ the region bounded by the curves is simply connected.

The integral from A to B has the opposite value of the integral from B to A, so

$$
\oint_{C} f(z) d z+\int_{A B} f(z) d z+\int_{-A B} f(z) d z+\oint_{C_{1}} f(z) d z=0 \Rightarrow \oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z
$$

This result is sometimes called the principle of deformation of contours.

- Example 7: Applying Deformation of Contours

Evaluate $\oint_{C} \frac{1}{z-i} d z$, where C is the outer contour shown
We choose the more convenient circular contour C_{1}. By taking $r=1$, we are guaranteed that C_{1} lies within C. C_{1} is the circle $|z-i|=1$, which can be parameterized by $x=\cos t, y=1+\sin t$, or by $z=i+e^{i t}, 0 \leq t \leq 2 \pi$.

$$
\oint_{C} \frac{1}{z-i} d z=\oint_{C_{1}} \frac{1}{z-i} d z=\int_{0}^{2 \pi} \frac{i e^{i t}}{e^{i t}} d t=2 \pi i
$$

- If z_{0} is any constant complex number interior to any simple closed contour C, then

$$
\oint_{C} \frac{d z}{\left(z-z_{0}\right)^{n}}= \begin{cases}2 \pi i, & n=1 \\ 0, & n \text { an integer } \neq 1\end{cases}
$$

- Example 8: Applying Deformation of Contours

Evaluate $\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z$, where C is the circle $|z-2|=2$
Since the denominator factors as $z^{2}+2 z-3=(z-1)(z+3)$, the integrand fails to be analytic at $z=1$ and $z=-3$. Only $z=1$ lies within the contour C, which is a circle centered at $z=2$ of radius $r=2$.

$$
\begin{gathered}
\frac{5 z+7}{z^{2}+2 z-3}=\frac{3}{z-1}+\frac{2}{z+3} \Rightarrow \oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z=3 \oint_{C} \frac{d z}{z-1}+2 \oint_{C} \frac{d z}{z+3} \\
\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z=3(2 \pi i)+2(0)=6 \pi i
\end{gathered}
$$

- Theorem 5 (Cauchy-Goursat Theorem for Multiply Connected Domains): Suppose C, C_{1}, \ldots, C_{n} are simple closed curves with a positive orientation such that $C_{1}, C_{2}, \ldots, C_{n}$ are interior to C but the regions interior to each $C_{k}, k=$ $1,2, \ldots, n$, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the $C_{k}, k=1,2, \ldots, n$, then

$$
\oint_{C} f(z) d z=\sum_{k=1}^{n} \oint_{C_{k}} f(z) d z
$$

For example: triply connected domain D,

$$
\oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z+\oint_{C_{2}} f(z) d z
$$

- Note: Cauchy-Goursat theorem is valid for any closed contour C in a simply connected domain D.
- Example 9: Applying Cauchy-Goursat Theorem for triply Connected domain Evaluate $\oint_{C} \frac{d z}{z^{2}+1}$, where C is the circle $|z|=3$ $z^{2}+1=(z-i)(z+i)$, the integrand fails to be analytic at $z=i$ and $z=-i$. Both of these points lie within the contour C.

$$
\begin{aligned}
& \text { Both of these points lie within the contour } C \text {. } \\
& \frac{1}{z^{2}+1}=\frac{1 / 2 i}{z-i}-\frac{1 / 2 i}{z+i} \Rightarrow \oint_{C} \frac{d z}{z^{2}+1}=\frac{1}{2 i} \oint_{C}\left[\frac{1}{z-i}-\frac{1}{z+i}\right] d z \\
& \oint_{C} \frac{d z}{z^{2}+1}=\frac{1}{2 i} \oint_{C_{1}}\left[\frac{1}{z-i}-\frac{1}{z+i}\right] d z+\frac{1}{2 i} \oint_{C_{2}}\left[\frac{1}{z-i}-\frac{1}{z+i}\right] d z \\
& \oint_{C} \frac{d z}{z^{2}+1}=\frac{1}{2 i}[(2 \pi i)-(0)]+\frac{1}{2 i}[(0)-(2 \pi i)]=\pi-\pi=0
\end{aligned}
$$

3. Independence of the Path

- Definition: Let z_{0} and z_{1} be points in a domain D. A contour integral $\int_{C} f(z) d z$ is said to be independent of the path if its value is the same for all contours C in D with an initial point z_{0} and a terminal point z_{1}.
Suppose, that C and C_{1} are two contours in a simply connected domain D, both with initial point z_{0} and terminal point $z 1$. Note that C and $-C_{1}$ form a closed contour. Thus, if f is analytic in D, it follows from the Cauchy-Goursat theorem that

$$
\oint_{C} f(z) d z+\oint_{-C_{1}} f(z) d z=0 \Rightarrow \oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z
$$

- Theorem 6 (Analyticity Implies Path Independence): If f is an analytic function in a simply connected domain D, then $\int_{C} f(z) d z$ is independent of the path C.
- Example 10: Choosing a Different Path

Evaluate $\int_{C} 2 z d z$, where C is the contour with initial point $z=-1$ and terminal point $z=1+i$ shown below

The function $f(z)=2 z$ is entire, we can replace the path C C_{1} joining $z=-1$ and $z=-1+i$. In particular, by choosing

C_{1} to be the straight line segment $x=-1, y=t, 0 \leq t \leq 1$. $z=-1+i t$

$$
\int_{C} 2 z d z=\int_{0}^{1} 2(-1+i t) i d t=-2 i \int_{0}^{1} d t-2 \int_{0}^{1} t d t=-1-2 i
$$

- Definition: Suppose f is continuous in a domain D. If there exists a function F such that $F^{\prime}(z)=f(z)$ for each z in D, then F is called an antiderivative of f. For example, the function $F(z)=-\cos z$ is an antiderivative of $f(z)=\sin z$.

Antiderivative, or indefinite integral, of a function $f(z)$ is written

$$
\int f(z) d z=F(z)+C
$$

where $F^{\prime}(z)=f(z)$ and C is some complex constant.

- Theorem 7 (Fundamental Theorem for Contour Integrals): Suppose f is continuous in a domain D and F is an antiderivative of f in D. Then for any contour C in D with initial point z_{0} and terminal point z_{1},

$$
\int_{C} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

- Example 11: Using an Antiderivative

$$
\left.\int_{C} 2 z d z=\int_{-1}^{-1+i} 2 z d z=z^{2}\right]_{-1}^{-1+i}=-1-2 i
$$

- Example 12: Using an Antiderivative Evaluate $\int_{C} \cos z d z$, where C is any contour with initial point $z=0$ and terminal point $z=2+i$.

$$
\left.\int_{C} \cos z d z=\int_{0}^{2+i} \cos z d z=\sin z\right]_{0}^{2+i}=\sin (2+i)
$$

- If a continuous function f has an antiderivative F in D, then $\int_{C} f(z) d z$ is independent of the path.
- If f is continuous and $\int_{C} f(z) d z$ is independent of the path in a domain D, then f has an antiderivative everywhere in D.
- Theorem 8 (Existence of an Antiderivative): If f is analytic in a simply connected domain D, then f has an antiderivative in D; that is, there exists a function F such that $F^{\prime}(z)=f(z)$ for all z in D.
- Note: under some circumstances $\log z$ is an antiderivative of $1 / z$. For example, suppose D is the entire complex plane without the origin. The function $1 / z$ is analytic in this multiply connected domain.
- If C is any simple closed contour containing origin, $\oint_{C}(1 / z) d z=2 \pi i \neq 0$. In this case, $\log z$ is not an antiderivative of $1 / z$ in D, since $\log z$ is not analytic in D.
- Example 13: Using the Logarithmic Function

Evaluate $\int_{C} \frac{d z}{z}$, where C is the contour shown below
Suppose that D is the simply connected domain defined by $x=$ $\operatorname{Re}(z)>0, y=\operatorname{Im}(z)>0$. In this case, $\log z$ is an antiderivative of $1 / z$, since both these functions are analytic in D.

$$
\left.\int_{C} \frac{d z}{z}=\int_{3}^{2 i} \frac{1}{z} d z=\log z\right]_{3}^{2 i}=\log 2 i-\log 2=\operatorname{Ln} 2+\frac{\pi}{2} i-\operatorname{Ln} 3=\operatorname{Ln} \frac{2}{3}+\frac{\pi}{2} i
$$

4. Cauchy's Integral Formulas

- The value of an analytic function f at any point z_{0} in a simply connected domain can be represented by a contour integral.
- An analytic function f in a simply connected domain possesses derivatives of all orders.
- Theorem 9 (Cauchy's Integral Formula): Let f be analytic in a simply connected domain D, and let C be a simple closed contour lying entirely within D. If z_{0} is any point within C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z
$$

- Example 14: Using Cauchy's Integral Formula Evaluate $\oint_{C} \frac{z^{2}-4 z+4}{z+i} d z$, where C is the circle $|z|=2$

$$
f(z)=z^{2}-4 z+4 \text { and } z_{0}=-i \text { as a point within the circle } C . f \text { is analytic at all }
$$ points within and on the contour C.

$$
\oint_{C} \frac{z^{2}-4 z+4}{z+i} d z=2 \pi i f(-i)=2 \pi i(3+4 i)=2 \pi(-4+3 i)
$$

- Example 15: Using Cauchy's Integral Formula

Evaluate $\oint_{C} \frac{z}{z^{2}+9} d z$, where C is the circle $|z-2 i|=4$

$$
\frac{z}{z^{2}+9}=\frac{z /(z+3 i)}{z-3 i} \quad z_{0}=3 i \text { is the only point within the circle } C
$$

$f(z)=z(z-3 i)$. This function is analytic at all points within and on the contour C.

$$
\oint_{C} \frac{z}{z^{2}+9} d z=2 \pi i f(3 i)=2 \pi i \frac{3 i}{6 i}=\pi i
$$

- Theorem 10 (Cauchy's Integral Formula for Derivatives): Let f be analytic in a simply connected domain D, and let C be a simple closed contour lying entirely within D. If z_{0} is any point within C, then

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

- Example 16: Using Cauchy's Integral Formula for Derivatives

Evaluate $\oint_{C} \frac{z+1}{z^{4}+4 z^{3}} d z$, where C is the circle $|z|=1$

The integrand is not analytic at $z=0$ and $z=-4$, but only $z=0$ lies within the closed contour.

$$
\frac{z+1}{z^{4}+4 z^{3}}=\frac{(z+1) /(z+4)}{z^{3}} \Rightarrow \oint_{C} \frac{z+1}{z^{4}+4 z^{3}} d z=\frac{2 \pi i}{2!} f^{\prime \prime}(0)=\frac{3 \pi}{32} i
$$

- Example 17: Using Cauchy's Integral Formula for Derivatives

Evaluate $\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z$, where C is the contour shown below
C is not a simple closed contour, we can think of it as the union of two simple closed contours C_{1} and C_{2}

$$
\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z=\oint_{C_{1}} \frac{z^{3}+3}{z(z-i)^{2}} d z+\oint_{C_{2}} \frac{z^{3}+3}{z(z-i)^{2}} d z
$$

$$
\begin{aligned}
& \oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z=-\oint_{C_{1}} \frac{\frac{z^{3}+3}{(z-i)^{2}}}{z} d z+\oint_{C_{2}} \frac{\frac{z^{3}+3}{z}}{(z-i)^{2}} d z=-I_{1}+I_{2} \\
& I_{1}=\oint_{C_{1}} \frac{\frac{z^{3}+3}{(z-i)^{2}}}{z} d z=2 \pi i f(0)=-6 \pi i \\
& I_{2}=\oint_{C_{2}} \frac{\frac{z^{3}+3}{z}}{(z-i)^{2}} d z=\frac{2 \pi i}{1!} f^{\prime}(i)=2 \pi i(3+2 i)=2 \pi(-2+3 i) \\
& \oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z=-I_{1}+I_{2}=6 \pi i+2 \pi(-2+3 i)=4 \pi(-1+3 i)
\end{aligned}
$$

