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Chapter 2
Integration in the Complex Plan

1. Contour Integrals
2. Cauchy-Goursat Theorem

3. Independence of the Path
4. Cauchy's Integral Formulas
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1. Contour Integrals
A Definition
Suppose C'is a curve parameterized by = = 2(t), y= y(t), a<t< b, and A and B
are the points (z(a), y(a)) and (z(b), y(b)), respectively. We say that:
(i) C'is a smooth curve if x"and y“are continuous on the closed interval [a, 0]
and not simultaneously zero on the open interval (a, b).
(ii) C is piecewise smooth if it consists of a finite number of smooth curves
Cy, Gy, ..., C Joined end to end; thatis, C=C; U C,U ..U C..
(i) C'is a closed curve if A = B.
(iv) C'is a simple closed curve if A = B and the curve does not cross itself.
(v) If C'is not a closed curve, then the positive direction on C'is the direction
corresponding to increasing values of .
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A Definition

» |ntegral of a complex function f(z) that is defined along a curve C in the
complex plane. Let C' be defined by the parametric equations = = (%), v = y(1),
a < t< b, where tis a real parameter.

= By using 2(¢) and y(t) as real and imaginary parts, we can also describe a
curve C'in the complex plane by means of a complex-valued function of a real
variable ¢ z(t) = a(¢) + iy(t), a < t < b.
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= Forexample, z=cost, y=sint 0 < t < 27, describes a unit circle centered at
the origin. This circle can also be described by 2(¢) = cost + isint, or even more
compactly by z(t) = e?, 0 < t< 2
= |In complex variables, a piecewise-smooth curve C'is also called a contour or
path.

= An integral of f{z) on C'is denoted by _[C f(2)dz or Cﬁc f(2)dz if the contour C'is
closed,; it is referred to as a contour integral or simply as a complex integral.
1. Let fiz) = w(z, v) + vz, y) be defined at all points on a smooth curve C
defined by z= 2(t), y= y(t), a <t < b.

2. Divide C'into n subarcs according to the partition a = {; < t; < ... <t = b of
[a, D]. The corresponding points on the curve (' are:
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Zo = xo + 1Yo = f(to) + iy(tp), 29 = 24 + Z?h = 1(ty) + iy(ly), ...y 2, = 2, + iy, = 2A(1,) +
3. Let ||P|| be the norm of the partition, i.e., the maximum value of |Az].

4. Choose a sample point z, = z, + iy, on each subarc.
5. Form the sum:

D f(z)Az -
k=1 :

= Definition: Let f be defined at points of a smooth curve C defined by = = (?),
y=14(t), a < t< b. The contour integral of falong C'is

j f(2)dz = Iim Zf(zk)Azk

[Pl—07%
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The limit exists if fis continuous at all points on C and C is either smooth or
plecewise smooth.

» Theorem 1 (Evaluation of a Contour Integral): If fis continuous on a smooth
curve C'given by 2(?) = 2(t) + wy(?), a < t< b, then

J, £z = [ FG@pz bt

» Example 1: Evaluating a Contour Integral
Evaluate Iczdz, where Cis given by (¢) = 3¢, y(t) =, -1 <t<4

[ 7dx = [ (3t - it*)(3 + 2it)d

o/ 3 (4 L9 ,
= [ @t° +9t)dt + 4| 3t%dt =195 + 65
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= Example 2: Evaluating a Contour Integral

1 : : :
Evaluate gf;c—dz, where (C'is the circle a(t) =cos t, y(t) =sint, 0 < t< 27
Z

1 B 27 ST Iy 27 B )
C;dz-jo (e ")ie dt—zjo dt = 2mi

Properties

» Theorem 2 (Properties of Contour Integrals): Suppose fand g are continuous
In @ domain D and C, C; and C, are smooth curves lying entirely in D. Then

(4) .'C kf(2)dz = k jc f(2)dz, k a constant
(i0) | [f(2) + g(2)dz = | f(2)dz+ | g(2)dz
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(iii) [ f()dz = | fz)dz + f(z)dz, C = C, UC,
(iv) | f()dz == f()d

where — (' denotes the curve having the opposite orientation of C

= Note: Theorem 2 also hold when C'is a piecewise-smooth curve in D.

» Example 3: Evaluating a Contour Integral

Evaluate JC (z° + iy°)dz, where C'is the contour shown below | | +2i
2 ) _ 2 . 92 2 )
jc(x +1y”)dz = jcl (x° +1y”)dz + IOQ (x” +1y”)dz

The curve (] is defined by x(t) = y(?) =1, 0 <t < 1 o

The curve G, is defined by () =1, y(f) =1, 1<t <2
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jq(a: +iy?)dz = [ (1 +it*)1+i)dt = (1+1) jotdt_gz
[ - 2 7
‘. (:1:2 + zy2)dz = L (1+ zt2)zdt — _§+ i
2 7 7 5
r +1 dz =—1——4+1=——+ —71
.( y?) 3¢ 3 T+3

» Theorem 3 (A Bounding Theorem): If fis continuous on a smooth curve C'and
if |f(2)] < M forall zon C, then UC f(z)dz‘ < ML, where L is the length of C.

= Example 4: A Bound for a Contour Integral

Z

F|nd an upper bound for the absolute value of c_f}
2| =

dz, where C'is the circle
z+1
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The length s of the circle of radius 4 is 8xn. |z+ 1| > |- 1=4-1=3,
z @Z ez 7 4 z 4 2z 4
€ < _ :ege € Se—:><j}6dz£8ﬂ6
z+1 s]-1 3 33 |z+1] 3 Cz+1 3

2. Cauchy-Goursat Theorem
Simply and Multiply Connected Domains

= A domain D is said to be simply connected if every simple closed contour C
lying entirely in D can be shrunk to a point without leaving D.

* |n other words, in a simply connected domain, every simple closed contour C
lying entirely within it encloses only points of the domain D.

= A simply connected domain has no “holes” in it.
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* The entire complex plane is an example of a simply connected domain.

= A domain that is not simply connected is called a multiply connected domain;
that is, a multiply connected domain has “holes” in it.

= We call a domain with one “hole” doubly connected, a domain with two
“holes” triply connected, and so on.

. U 0

Simply connected domain Multiply connected domain

p O
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Cauchy’s Theorem
Suppose that a function fis analytic in a simply connected domain D and that fis

continuous in D. Then for every simple closed contour C'in D, cﬁo f(z)dz =0

» Theorem 4 (Cauchy-Goursat Theorem): Suppose a function fis analytic in a
simply connected domain D. Then for every simple closed contour C'in D,

950 f(2)dz =0

» Example 5: The functions 2" with n a positive integer, sin z, cos z, €% sinh z, and
cosh z are analytic (they are entire functions), so for any closed contour C'in
the complex plane,

(JC;C 2"dz = 4}0 sin zdz = C_f;C cos zdz = Cj;c e“dz = 4}0 sinh zdz = 950 cosh zdz = 0
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= Example 6: Applying the Cauchy-Goursat Theorem
2
Evaluate ggcédz where C'is the ellipse (z —2)° + (y _45) =1
Z

The rational function f(z) = 1/2? is analytic everywhere except at z = 0. But
z=0is not a point interior to or on the contour C. Thus,

1
4}0—2d2 =0

Z

Cauchy-Goursat Theorem for Multiply Connected Domains

suppose D is a doubly connected domain and C and (; are simple closed
contours such that C; surrounds the “hole” in the domain and is interior to C.
Suppose, also, that fis analytic on each contour and at each point interior to C
but exterior to (.
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When we introduce the cut AB the region bounded by the curves is simply
connected.
-9
D
D

The integral from A to B has the opposite value of the integral from Bto A, so

b f@dz+ [ J@rde+ [ | J)dz+ §, [z = 0= § f()de = § f(2)dz

This result is sometimes called the principle of deformation of contours.
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= Example 7: Applying Deformation of Contours ) y
—2+4 4i
1 :
Evaluate 3150 -dz, where ('Is the outer contour shown . S
Z—1 T :
We choose the more convenient circular contour C;. By ‘1 ¢
. . “iy - . A
taking » = 1, we are guaranteed that C; lies within C. C; C)
Is the circle |z — 7| = 1, which can be parameterized by = | X
r=cost,y=1+sint,orby z=i+ ¢4 0<t<2nx
1 1 27 et . 2-2i
41)0 .dz:g;c ‘dz:_[o TdtZQﬂ'Z

zZ—1 ) e

= If 2, IS any constant complex number interior to any simple closed contour C,

then (J(} dz |27, n=1
C 0, n an integer # 1

(z—2y)"
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= Example 8: Applying Deformation of Contours

Evaluate gf;c 25Z aal dz, where C'is the circle |z —2| =2

2" +2z2—3
Since the denominator factors as 22 + 22 — 3 = (2 — 1)(z + 3), the integrand
fails to be analytic at z=1 and z= -3. Only z= 1 lies within the contour C,
which is a circle centered at z = 2 of radius r = 2.

bz + 7 _ 3 N 2 A e+ 7 g, -3 dz i dz

2 4+922-3 z-1 2+3 Cy2 49,3 Cy—1 Cy+3

bz + 7
dz = 3(271) + 2(0) = 6771
4}0224-22—3 (2z1) + 2(0)
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= Theorem 5 (Cauchy-Goursat Theorem for Multiply Connected Domains):
Suppose C, (i, ..., C are simple closed curves with a positive orientation
such that C;, C,, ..., C, are interior to C but the regions interior to each C,, k=
1, 2, ..., n, have no points in common. If fis analytic on each contour and at

each point interior to C but exterior to all the C,, k=1, 2, ..., n, then
bo Sz = 3, [z

For example: triply connected domain D,

‘f’c f(2)dz = 9(’01 f(2)dz + 9502 f(2)dz CC) G 0

» Note: Cauchy-Goursat theorem is valid for any closed
contour C'in a simply connected domain D.
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= Example 9: Applying Cauchy—Goursa'tmTheorem for triply Connected domain

dz

——, Where Clis the circle [2| = 3
27 +1

Evaluate Sf’c

2+ 1= (z-19(z+ 1), the integrand fails to be analytic at z = 7 and z = —i.

Both of these points lie within the contour C.

1 1/2¢ 1/21 dz 1 1 1
22 +1 z—1 z+1 Cortl 207Clz—1 241

1 1 1 1
b= b | T e b | T
Czo4l1 2190 z2—1 241 2090, 2 —1 241

d 1 | | |
= = [@m) - O]+ L[ - @rd] =7 -7 =0
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3. Independence of the Path
= Definition: Let 2, and z, be points in a domain D. A contour integraljc f(2)dz is
said to be independent of the path if its value is the same for all contours C'in
D with an initial point z; and a terminal point z,.
Suppose, that ¢’ and C; are two contours in a simply connected
domain D, both with initial point z, and terminal point z1. Note

that C and —-(C; form a closed contour. Thus, if fis analytic in D,
it follows from the Cauchy-Goursat theorem that

§.10d v fdz =0 § fadz = frdz 3

» Theorem 6 (Analyticity Implies Path Independence): If fis an analytic function
In a simply connected domain D, then _[C f(2)dz is independent of the path C.
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» Example 10: Choosing a Different Path

Evaluate _[C 2zdz, where C'is the contour with initial point

The function f(z) = 2z is entire, we can replace the path C
(4 joining z=-1and z= -1 + ¢ In particular, by choosing
C; to be the straight line segment z=-1, y=¢0<t<1. 2=-1+ 14t

[ 22dz = [ 2(~ 1+ ityidt = ~2i[ dt -2 tdt = ~1-2i

z= -1 and terminal point z= 1 + 7 shown below - j x
C

= Definition: Suppose fis continuous in a domain D. If there exists a function F
such that F’(z) = f(z) for each zin D, then F'is called an antiderivative of f.

For example, the function F(z) = —cos zis an antiderivative of f(z) = sin z.
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Antiderivative, or indefinite integra_ll;' of a function f(z2) is written
j f(2)dz = F(2) + C
where F’(2) = f(z) and C'is some complex constant.

= Theorem 7 (Fundamental Theorem for Contour Integrals): Suppose f is
continuous in @ domain D and F'is an antiderivative of fin D. Then for any
contour C'in D with initial point z; and terminal point z;,

Jo f(@)dz = F(z) - F(z))

= Example 11: Using an Antiderivative

-1+

jo 2zdz = J.:11+i2zdz = 22] = —-1-2¢

-1
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» Example 12: Using an Antiderivative
Evaluate IO cos zdz, where C'is any contour with initial point z = 0 and terminal

point z=2 + .

241

. 2+1 . .
.‘.0 cos zdz = j CoS zdz = sin z]o " =sin (2 +17)

0

= |[f a continuous function f has an antiderivative F in D, then jcf(z)dz IS
independent of the path.

» |f fis continuous and jc f(2)dz is independent of the path in a domain D, then f
has an antiderivative everywhere in D.

» Theorem 8 (Existence of an Antiderivative): If f is analytic in a simply
connected domain D, then f has an antiderivative in D, that is, there exists a

function F'such that F’(2) = f(z) for all zin D.
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= Note: under some circumstances Log z is an antiderivative of 1/z. For example,
suppose D is the entire complex plane without the origin. The function 1/z is

analytic in this multiply connected domain.

» |[f C'is any simple closed contour containing origin, 950 (1/2)dz = 2zi # 0. In this
case, Log z is not an antiderivative of 1/zin D, since Log z is not analytic in D.

» Example 13: Using the Logarithmic Function
Evaluate jc@ where C'is the contour shown below
Z

y

Suppose that D is the simply connected domain defined by z = * C
Re(z) > 0, y = Im(2) > 0. In this case, Log z is an antiderivative ’\

of 1/, since both these functions are analytic in D. S
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¢z 3 2 2 3 2

4. Cauchy’s Integral Formulas

» The value of an analytic function fat any point z, in a simply connected domain
can be represented by a contour integral.

= An analytic function fin a simply connected domain possesses derivatives of
all orders.

» Theorem 9 (Cauchy’s Integral Formula): Let fbe analytic in a simply connected
domain D, and let C be a simple closed contour lying entirely within D. If z; is

any point within C, then f(2)
J(z0) = 27T CJSC

& = %

dz
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» Example 14: Using Cauchy’s Integrai“FormuIa

2
Evaluate 430 © 4'3,* 1 &z, where Ciis the circle || = 2
Z+1

flz) = 22 —4z+ 4 and z, = —i as a point within the circle C. fis analytic at all
points within and on the contour C.

2 —_
4} ° 4z-+ : dz =2mif(—1) = 2703 + 40) = 27 ( — 4 + 317)
¢ z+41 )
» Example 15: Using Cauchy’s Integral Formula
Evaluate cﬁ 2Z dz, where C'is the circle |z — 21| =4

Cz22+9 I

: S Nzt ?,’7’) 29 = 31 IS the only point within the circle C. \\

2249 2 — 31 3ig
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flz) = #(z — 32). This function is analytic at all points within and on the
contour C. Y
dz = 2mif(31) =2m1— = m1
C‘fjc 249 J(51) = 67

= Theorem 10 (Cauchy’s Integral Formula for Derivatives): Let f be analytic in a

simply connected domain D, and let C'be a simple closed contour lying entirely
within D. If zy is any point within C, then

271 Y C (2 — z,)""

» Example 16: Using Cauchy’s Integral Formula for Derivatives
2+ 1
Evaluate cﬁ

- dz, where C'is the circle |2| = 1
2t +47°
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The integrand is not analytic at z = 0 and 2= -4, but only z= 0 lies within the
closed contour.

z+1 2+ 1D/(z+4 z+1 27T .,
4 3:( ):g ), 1 :—f()——Z
25+ 4z 2 C 2t + 475

» Example 17: Using Cauchy’s Integral Formula for Derivatives

3
+3 . y
Evaluate gff f ) dz, where C'is the contour shown below
\NZ — 1

C'is not a simple closed contour, we can think of it as the
union of two simple closed contours C; and C,

CJSC 2%+ 3 dz:{[) 2> +3 dz+(f; z+3

2(z — 1)’ G z(z — Cr 2(2 —
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2" +3 2°+3
2
$ — +32dz:_<_f, 2l N P & —dz =1, +1I,
C2(z—1) Gz C (2 —1)

I, = (_]501 (z _zi)2 dz = 2mif(0) = —671

25+ 3
271
_ o e T . N\ — . .
12_9502 P dz = =5 [1(3) = 2i(3 + 20) = 27( = 2+ 31)
3
315 © +32dz:—11+12:67m'+27z(—2+3i):47z(—1+3i)
Cz2(z—1)
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