
Interfacing Arduino with Liquid Crystal Displays

3محاضرة

1تطبيقات ميكاترونيك

https://manara.edu.sy/

عيس ى الغنام .فادي متوج د. د

كلية الهندسة
روبوت والأنظمة الذكية قسم هندسة ال

2023-2024

https://manara.edu.sy/

https://manara.edu.sy/

• One of the best things about designing embedded systems is the fact that they can
operate independently of a computer.

• Until now, we have been tethered to the computer if we want to display any kind of
information more complicated than an illuminated LED.

• By adding a liquid crystal display (LCD) to our Arduino, we can more easily display
complex information (sensor values, timing information, settings, progress bars, etc.)
directly on our Arduino project without having to interface with the serial monitor
through the computer.

https://manara.edu.sy/

https://manara.edu.sy/

• We will use a parallel LCD screen. These are extremely common and come in all kinds
of shapes and sizes.

• The most common is a 16x2 character display with a single row of 16 pins (14 if it
does not have a backlight).

• 16-pin LCD display that can show a total of 32 characters (16 columns and 2 rows).

Setting Up the LCD

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Parallel LCD Pins

https://manara.edu.sy/

https://manara.edu.sy/

• The contrast adjustment pin changes how dark the display is. It connects to the center pin of a
potentiometer.

• The register selection pin sets the LCD to command or character mode, so it knows how to interpret
the next set of data that is transmitted via the data lines. Based on the state of this pin, data sent to the
LCD is either interpreted as a command (for example, move the cursor) or characters (for example, the
letter a).

• The RW pin is always tied to ground in this implementation, meaning that we are only writing to the
display and never reading from it.

• The EN pin is used to tell the LCD when data is ready.
• Data pins 4–7 are used for actually transmitting data, and data pins 0–3 are left unconnected.
• We can illuminate the backlight by connecting the anode pin to 5V and the cathode pin to ground if we

are using an LCD with a built-in resistor for the backlight. If we are not, we must put a current-limiting
resistor in-line with the anode or cathode pin.

https://manara.edu.sy/

https://manara.edu.sy/

• we can connect the communication pins of the LCD to any I/O pins on the
Arduino.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Using the LiquidCrystal Library to Write to the LCD

• The Arduino IDE includes the LiquidCrystal library, a set of functions that
makes it very easy to interface with the parallel LCD that we are using.

• The LiquidCrystal library has an impressive amount of functionality,
including blinking the cursor, automatically scrolling text, creating custom
characters, and changing the direction of text printing.

https://manara.edu.sy/

https://manara.edu.sy/

Adding Text to the Display

• In this first example, we add some text and an incrementing number to the display.
• This exercise demonstrates how to initialize the display, how to write text, and how to move the cursor.
• First, we include the LiquidCrystal library: #include <LiquidCrystal.h>
• Then, we initialize an LCD object, as follows: LiquidCrystal lcd (2,3,4,5,6,7);
• The arguments for the LCD initialization represent the Arduino pins connected to RS, EN, D4, D5, D6, and D7, in that

order.
• In the setup, we call the library’s begin() function to set up the LCD display with the character size. The arguments for

this command represent the number of columns and the number of rows, respectively: lcd.begin(16, 2);
• After doing that, we can call the library’s print() and setCursor() commands to print text to a given location on the

display. For example, if we want to print Hello world on the second line, we write these commands:
lcd.setCursor(0,1);
lcd.print("Hello world");

• The positions on the screen are indexed starting with (0,0) in the top-left position. The first argument of
setCursor()specifies which column number, and the second specifies which row number. By default, the starting
location is (0,0). So, if we call print() without first changing the cursor location, the text starts in the top-left corner.

https://manara.edu.sy/

https://manara.edu.sy/

Displaying Text with an Incrementing Number

• We can now write a simple program that displays some text on the first row
and that prints a counter that increments once every second on the second
row.

//Include the library :
#include <LiquidCrystal.h>
//Start the time at 0
int time = 0;
//Initialize the library with the numbers of the interface pins
LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

https://manara.edu.sy/

https://manara.edu.sy/

void setup()
{
//Set up the LCD's number of columns and rows:
lcd.begin(16, 2);

//Print a message to the LCD.
lcd.print(" Mechatronic Eng ");
}

void loop()
{
//Move cursor to second line, first position
lcd.setCursor(0,1);
//Print Current Time
lcd.print(time);
//Wait 1 second
delay(1000);
//Increment the time
time++;
}

https://manara.edu.sy/

https://manara.edu.sy/

Creating Special Characters and Animations

• What if we want to display information that cannot be expressed using normal text?
Maybe we want to add a Greek letter, a degree sign, or some progress bars.

• The LiquidCrystal library supports the definition of custom characters that can be written
to the display.

• In the next example, we use this capability to make an animated progress bar that scrolls
across the display.

• If we take a close look at our LCD, we will see that each character block is actually made
up of a 5x8 grid of pixels.

• To create a custom character, we simply have to define the value of each of these pixels
and send that information to the display.

• To try this out, we make a series of characters that will fill the second row of the display
with an animated progress bar.

https://manara.edu.sy/

https://manara.edu.sy/

//LCD with Progress Bar

//Include the library code:
#include <LiquidCrystal.h>

//Initialize the library with the numbers of the interface pins
LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

//Create the progress bar characters
byte p20[8] = {
B10000,
B10000,
B10000,
B10000,
B10000,
B10000,
B10000,
B10000, };

https://manara.edu.sy/

https://manara.edu.sy/

byte p40[8] = {
B11000,
B11000,
B11000,
B11000,
B11000,
B11000,
B11000,
B11000,
};
byte p60[8] = {
B11100,
B11100,
B11100,
B11100,
B11100,
B11100,
B11100,
B11100, };

byte p80[8] = {
B11110,
B11110,
B11110,
B11110,
B11110,
B11110,
B11110,
B11110,
};
byte p100[8] = {
B11111,
B11111,
B11111,
B11111,
B11111,
B11111,
B11111,
B11111, };

https://manara.edu.sy/

https://manara.edu.sy/

void setup()
{
//Set up the LCDs number of columns and rows:
lcd.begin(16, 2);

// Print a message to the LCD.
lcd.print(" Mechatronic Eng ");

//Make progress characters
lcd.createChar(0, p20);
lcd.createChar(1, p40);
lcd.createChar(2, p60);
lcd.createChar(3, p80);
lcd.createChar(4, p100);
}

https://manara.edu.sy/

https://manara.edu.sy/

void loop()
{
//Move cursor to second line
lcd.setCursor(0,1);

//Clear the line each time it reaches the end
//with 16 " " (spaces)
lcd.print(" ");

//Iterate through each character on the second line
for (int i = 0; i<16; i++)
{
//Iterate through each progress value for each character
for (int j=0; j<5; j++)
{
lcd.setCursor(i, 1); //Move the cursor to this location
lcd.write(j); //Update progress bar
delay(100); //Wait

}
}

}

https://manara.edu.sy/

https://manara.edu.sy/

• At the top of our sketch, we create a byte array with 1s representing pixels that will be turned on and
with 0s representing pixels that will be turned off.

• The byte array p20 is filling 20 percent of one character block (the p stands for percent).
• In the setup() function, we call the createChar()function to assign our byte array to a custom character ID.
• Custom character IDs start at 0 and go up to 7, so we can have a total of eight custom characters.
• To map the 20% character byte array to custom character 0, we type the following within our

setup()function: lcd.createChar(0, p20);
• When we are ready to write a custom character to the display, we place the cursor in the right location

and use the library’s write()function with the ID number: lcd.write((byte)0);

• In the preceding line, (byte) casts, or changes, the 0 to a byte value. This is necessary only when writing
character ID 0 directly (without a variable that is defined to 0), to prevent the Arduino compiler from
throwing an error.

• We can write other character IDs without it, like this: lcd.write(1);

https://manara.edu.sy/

https://manara.edu.sy/

• At the beginning of each pass through the loop, the 16-character-long string of spaces
is written to the display, clearing the progress bar before it starts again.

• The outer for()loop iterates through all 16 positions. At each character position, the
inner for()loop keeps the cursor there and writes an incrementing progress bar
custom character to that location.

• The byte cast is not required here because the ID 0 is defined by the j variable in the
for() loop.

https://manara.edu.sy/

https://manara.edu.sy/

Building a Personal Thermostat

• To make this display more useful, we add the temperature sensor ,a fan, and a speaker.

• The display shows the temperature and the current fan state.

• When it gets too hot, the speaker makes a noise to alert us, and the fan turns on. When it
gets sufficiently cool again, the fan turns off.

• Using two pushbuttons, we add the ability to increment or decrement the desired
temperature.

https://manara.edu.sy/

https://manara.edu.sy/

//Keep yourself cool! This is a thermostat.

//This assumes temperatures are always two digits

//Include the LCD library and initialize:

#include <LiquidCrystal.h>

LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

https://manara.edu.sy/

https://manara.edu.sy/

//Custom degree character
byte degree[8] = {
B00110,
B01001,
B01001,
B00110,
B00000,
B00000,
B00000,
B00000,
};

https://manara.edu.sy/

https://manara.edu.sy/

//Custom "fan on" indicator
byte fan_on[8] = {
B00100,
B10101,
B01110,
B11111,
B01110,
B10101,
B00100,
B00000,
};

https://manara.edu.sy/

https://manara.edu.sy/

//Custom "fan off" indicator
byte fan_off[8] = {
B00100,
B00100,
B00100,
B11111,
B00100,
B00100,
B00100,
B00000,
};

https://manara.edu.sy/

https://manara.edu.sy/

//Pin Connections

const int DOWN_BUTTON =9;

const int UP_BUTTON =10;

const int FAN =11;

int set_temp = 23; //The Default desired temperature

https://manara.edu.sy/

https://manara.edu.sy/

void setup()

{

pinMode(FAN, OUTPUT);

//Set up the LCD's number of columns and rows

lcd.begin(16, 2);

//Make custom characters

lcd.createChar(0, degree);

lcd.createChar(1, fan_off);

lcd.createChar(2, fan_on);

https://manara.edu.sy/

https://manara.edu.sy/

//Print a static message to the LCD
lcd.setCursor(0,0);
lcd.print("Current:");
lcd.setCursor(10,0);
lcd.write((byte)0);
lcd.setCursor(11,0);
lcd.print("C");
lcd.setCursor(0,1);
lcd.print("Set:");
lcd.setCursor(10,1);
lcd.write((byte)0);
lcd.setCursor(11,1);
lcd.print("C");
lcd.setCursor(15,1);
lcd.write(1);
}

https://manara.edu.sy/

https://manara.edu.sy/

void loop()

{

//Get the Temperature

…………………..

lcd.setCursor(8,0); //Move the cursor

lcd.print(c); //Print this new value

https://manara.edu.sy/

https://manara.edu.sy/

//Turn down the set temp
if (digitalRead(DOWN_BUTTON)== LOW)
{
set_temp--;
}
//Turn up the set temp
else if (digitalRead(UP_BUTTON)== LOW)
{
set_temp++;
}
//Print the set temp
lcd.setCursor(8,1);
lcd.print(set_temp);

Adjusting the Set Point
with a Button

https://manara.edu.sy/

https://manara.edu.sy/

//It's too hot!

if (c >= set_temp)

{

//So that the speaker will beep...

……………………..

//Turn the fan on and update display

digitalWrite(FAN, HIGH);

lcd.setCursor(15,1);

lcd.write(2); }

https://manara.edu.sy/

https://manara.edu.sy/

//It't not to hot!
else
{
//Make sure the speaker is off
…………………………….
//Update the fan state, and LCD display
digitalWrite(FAN, LOW);
lcd.setCursor(15,1);
lcd.write(1);
}
}

https://manara.edu.sy/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

