
11/12/2023

1

-نيسانو-28 سورية 6766 1

Unit 2
Process Synchronization

Main Topics
Review

Semaphores

Classic Problems of Synchronization

11/12/2023

2

Objectives
To be familiar with several classical process-synchronization

problems

Semaphore
Synchronization tool that provides more
sophisticated ways (than Mutex locks)
for process to synchronize their
activities.

Semaphore S – integer variable can only
be accessed via two indivisible (atomic)
operations.

11/12/2023

3

Semaphore as General Synchronization Tool

11/12/2023 5

wait (S)
{

while S <= 0
; // no-op

 S--;
}

Synchronization tool that does not require busy
waiting

Semaphore S – integer variable that can be accessed
only by two standard operations modify S: wait()
and signal()
 Originally called P() and V()

Less complicated
Can only be accessed via two indivisible (atomic)

operations

signal (S)
{
 S++;}

11/12/2023 6

1

Queue
Value of

semaphore
S

A B

0

wait (S)

0

signal (S)

signal (S)

1

Semaphore S;
//S initialized to 1
wait (S);
 {Critical

Section}
signal (S);

wait (S)
{

while S <= 0
; // no-op

 S--;
}

signal (S)
{
 S++;}

11/12/2023

4

11/12/2023 7

Semaphore Implementation

Must guarantee that no two processes can execute the wait() and signal() on

the same semaphore at the same time

Thus, the implementation becomes the critical section problem where the wait and

signal code are placed in the critical section

Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections and therefore this is

not a good solution

11/12/2023

5

Semaphore with no Busy waiting
wait(S)
{
 value--;
 if (value < 0)
 {
 /*add this process
 to waiting queue*/
 block();}
}
Signal (S)
{
 value++;
 if (value <= 0)
 {
 /*remove a process P
 from the waiting queue*/
 wakeup(P);}
}

While a process is in its critical section, any other
process that tries to enter its critical section must
loop continuously in the entry code(busy waiting).

Rather than busy waiting, the process can block
itself.

The block() operation places a process into a
waiting queue associated with the semaphore, and
the state of the process is switched to the waiting
state.

Then, control is transferred to the CPU scheduler,
which selects another process to execute.

A process should be restarted when some other
process executes a signal() operation.

The process is restarted by a wakeup()
operation

The process is then placed in the ready queue.

Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an event that can be
caused by only one of the waiting processes
Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

Starvation – indefinite blocking
 A process may never be removed from the semaphore queue in which it is suspended

Priority Inversion – Scheduling problem when lower-priority process holds a lock
needed by higher-priority process
 Solved via priority-inheritance protocol

11/12/2023

6

Interchanging the order in which the wait() and signal():
signal(mutex);
...
critical section
...
wait(mutex);

Suppose that a program replaces signal(mutex) with wait(mutex).

wait(mutex);
...
critical section ...
wait(mutex);

Suppose that a process omits the

wait(mutex), or the signal(mutex), or both.

11/12/2023 11

In this situation, several processes may be executing
in their critical sections simultaneously, violating the
mutual-exclusion requirement.

In this case, the process will permanently block on
the second call to wait(), as the semaphore is now
unavailable.

In this case, either mutual exclusion is violated or
the process will permanently block.

Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization schemes

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

11/12/2023

7

Bounded-Buffer Problem
“Problem Statement”

We have a buffer of fixed size.

A producer can produce an item and can place in the buffer.

A consumer can pick items and can consume them.

We need to ensure that when a producer is placing an item in the buffer,
then at the same time consumer should not consume any item.

In this problem, buffer is the critical section.

Producer Cosumer

Buffer of n Slots

Bounded-Buffer Problem

n buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value n

11/12/2023

8

Some of the issues that might arise in the Producer-
Consumer

The producer should generate data only if the buffer is not full.
When the buffer is filled, the producer should not be able to add
any more data to it.

When the buffer is not empty, the consumer can consume the
data. The consumer should not be able to take any data from the
buffer if it is empty.

The buffer should not be used by both the producer and the
consumer at the same time.

11/12/2023 15

Bounded Buffer Problem (Cont.)
The structure of the producer and consumer processes

while (true) {
. . .
/* produce an item in next produced */
. . .
wait(empty);
wait(mutex);
. . .
/* add next produced to the buffer */
. . .
signal(mutex);
signal(full);
}

while (true) {
wait(full);
wait(mutex);
. . .
/* remove an item from buffer to next
consumed */
. . .
signal(mutex);
signal(empty);
. . .
/* consume the item in next consumed */
. . .
}

11/12/2023

9

Readers-Writers Problem

A data set is shared among a number of concurrent processes
Readers – only read the data set; they do not perform any updates
Writers – can both read and write

Problem – allow multiple readers to read at the same time
Only one single writer can access the shared data at the same time

Several variations of how readers and writers are considered – all involve some form of
priorities

Shared Data
Data set
Semaphore rw_mutex initialized to 1
Semaphore mutex initialized to 1
Integer read_count initialized to 0

11/12/2023 18

11/12/2023

10

Readers-Writers Problem (Cont.)
The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...
/* reading is performed */

...

wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

The reader requests entry to the critical section
If permitted,

 it increments the number of readers within the
critical section. If this reader is the first to enter,
the wrt semaphore is locked, preventing writers
from entering if any other reader is present

 it then signals mutex, indicating that any new
reader may enter while others are currently
reading

 it leaves the critical section after reading. When
departing, it checks to see whether there are any
more readers within and if there are, it signals
the semaphore "wrt," indicating that the writer
can now enter the critical region

If it is not permitted, it will continue to wait

do {

/* The reader requests entry to the critical section*/

wait(mutex);

/* Now,the number of readers has incremented by 1*/

readCount++;

/* there is minimum one reader in the critical section,
this ensures that no writer can enter if there is even
one reader, hence readers are given preference here*/

if (readCount==1)

wait(wrt);

/* other readers can enter while the current reader is
inside the critical section*/

11/12/2023 20

signal(mutex);

/* current reader performs reading*/

wait(mutex); /* a reader wants to
exit*/

readCount--;

/* i.e., no reader is left in the critical
section*/

if (readCount == 0)

signal(wrt); /* writers can enter
now*/

signal(mutex); /* reader exits*/

} while(true);

11/12/2023

11

Readers-Writers Problem-Writer process

do {

/* the writer requests entry to the critical section*/

wait(wrt);

/* performs the write*/

/* exits the critical section*/

signal(wrt);

} while(true);

Readers-Writers Problem Variations

First variation – no reader kept waiting unless writer has
permission to use shared object

Second variation – once writer is ready, it performs the write
ASAP

Both may have starvation leading to even more variations

Problem is solved on some systems by kernel providing reader-
writer locks

11/12/2023

12

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat from
bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 What is the problem with this algorithm?

11/12/2023

13

Dining-Philosophers Problem Algorithm (Cont.)

Deadlock handling

 Allow at most 4 philosophers to be sitting simultaneously at
the table.

 Allow a philosopher to pick up the forks only if both are
available (picking must be done in a critical section.

 Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then the right
chopstick. Even-numbered philosopher picks up first the right
chopstick and then the left chopstick.

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

Deadlock and starvation are possible.

11/12/2023

14

A high-level abstraction that
provides a convenient and
effective mechanism for process
synchronization
Abstract data type, internal

variables only accessible by
code within the procedure
Only one process may be active

within the monitor at a time
But not powerful enough to

model some synchronization
schemes

11/12/2023 27

Monitors

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

11/12/2023

15

Problem with using monitors
If consumer finds no

other process in the
monitor, it will enter.

If there are no item in
the buffer, the
consumer will enter the
monitor and get stuck
there, preventing the
producer to enter the
monitor.

11/12/2023 29

put_Item

get_Item

Bu
ff

er
 P

C

Monitor

Shared Data

Conditional Variables

11/12/2023 30

put_Item

get_ItemBu
ff

er

Monitor

Shared Data

Cond.

Conditional variables
provides
synchronization inside
monitors.
 Three operations can

be performed:
wait()
signal()
broadcast()

11/12/2023

16

Condition Variables

condition x, y;

Two operations are allowed on a condition variable:

x.wait() – a process that invokes the operation is suspended until
x.signal()

x.signal() – resumes one of processes (if any) that invoked
x.wait()

If no x.wait() on the variable, then it has no effect on the variable

Condition Variables Choices

If process P invokes x.signal(), and process Q is suspended in x.wait(), what should happen
next?

Both Q and P cannot execute in paralel. If Q is resumed, then P must wait

Options include

Signal and wait – P waits until Q either leaves the monitor or it waits for another condition

Signal and continue – Q waits until P either leaves the monitor or it waits for another
condition

Both have pros and cons – language implementer can decide

Monitors implemented in Concurrent Pascal compromise

P executing signal immediately leaves the monitor, Q is resumed

 Implemented in other languages including Mesa, C#, Java

