Problem sels 3.4: Vector spaces

CEDC102: Linear Algebra and Matrix Theory

Manara University
2023-2024

Problem 1. Give examples of matrices A for which the number of solutions to $A x=b$ is
(a) 0 or 1 , depending on b.
(b) ∞, regardless of b
(c) 0 or ∞, depending on b
(d) 1, regardless of b.

Problem 2. Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
1 & 2 & 5 & -3 \\
1 & 2 & 7 & -7
\end{array}\right]
$$

- Find the $\operatorname{rank}(A)$
- Find the basis of $N(A)$.
- Give a permutation matrix P such that doing Gaussian elimination on $A P$ (which re-orders the \qquad of A) leads to the first two columns being the pivot columns
- How do the nullspace $N(A P)$ and column space $C(A P)$ relate to the null and column spaces of A, respectively?
- How we can get basis for $\mathrm{N}(\mathrm{AP})$ from the basis of $N(A)$?

Problem 3 Consider the equation $A B x=b$, given by:

$$
\underbrace{\left(\begin{array}{ccc}
2 & 1 & 2 \\
& -1 & 2 \\
& & 1
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{cccc}
-1 & 1 & 2 & 1 \\
3 & -2 & -5 & -1 \\
0 & 1 & 1 & 2
\end{array}\right)}_{B} x=\underbrace{\left(\begin{array}{c}
17 \\
19 \\
7
\end{array}\right)}_{b}
$$

1. Give bases for the nullspaces $N(A), N(B)$, and $N(A B)$. (Without doing the multiblication)
2. Give the complete solution x to $A B x=b$, and show how you can do this without ever multiplying A and B together to explicitly form the matrix $A B$.

Problem 4

1. Compute the reduced row echelon form of the matrix:

$$
\left[\begin{array}{cccc}
0 & -1 & 2 & 1 \\
1 & 2 & -3 & 0 \\
1 & 3 & -5 & -1
\end{array}\right]
$$

2. Use the result of part (1) to find the full set of solutions to the equation

$$
A\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=0
$$

Problem 5 justify your answer

1) If X is an invertible square matrix, what can you say about $C(X)$ and $N(X)$?
2) If $Y=\left[\frac{A}{B}\right]$ is a block matrix, what is $N(Y)$ in terms of $N(A)$ and $N(B)$?
3) If $Z=[A] B]$ is a block matrix, what is $C(Z)$ in terms of $C(A)$ and $C(B)$?

Problem 6

Consider a matrix A such that the general solution to the equation:

$$
A\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \quad \text { is } \quad\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\lambda\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+\mu\left[\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right]
$$

for arbitrary numbers λ and μ.

1. How many rows and columns does A have?
2. Based on the information in the equation above, what is the second column of A ?
3. Find the entire matrix A.

Problem 7

Find a basis for the vector space spanned by the vectors:

$$
\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
-3 \\
6 \\
-3 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
-2 \\
3 \\
-5 \\
2
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-5 \\
-8 \\
6
\end{array}\right] \quad \text { and }\left[\begin{array}{c}
2 \\
-1 \\
9 \\
-4
\end{array}\right] \text { and }\left[\begin{array}{c}
0 \\
3 \\
8 \\
-5
\end{array}\right]
$$

Explain your method.

Problem 8

1. Suppose that A is a 3×3 matrix. What relation is there between the nullspace of A and the nullspace of A^{2} ? How about the nullspace of A^{3} ?
2. The set of polynomials of degree at most four in the variable x is a vector space. What is the nullspace of $\frac{d^{2}}{d x^{2}}$? What is the nullspace of $\left(\frac{d^{2}}{d x^{2}}\right)^{2}$?

Problem 9 TRUE or FALSE?

(a) Every upper-triangular matrix is in reduced row echelon form?
(b) Every lower-triangular matrix is in reduced row echelon form?
(c) Every permutation matrix is in reduced row echelon form?
(d) The following matrix is in reduced row echelon form?

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(e) The reduced row echelon form of A is unique?
(f) The full solution set of $A x=b$, where A is $m \times n$ and $b \in \mathbb{R}^{m}$, is always a vector subspace of \mathbb{R}^{n} ?
(g) The difference $a=x_{1}-x_{2}$, between any two solutions x_{1} and x_{2} to $A x=b$, is a vector that belongs to the null space $N(A)$?

