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Applications of Definite Integrals
¥
Volumes Using Cross-Sections
P.| Cross-section S(x)
s with arca A(x)
DEFINITION The volume of a solid of integrable cross-sectional area A(x) S 1
from x = a to x = b is the integral of A from a to b, /i
b 7
V= f A(x) dx. 2 1

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.
3. Find the limits of integration.

4. Integrate A(x) to find the volume.
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Volumes Using Cross-Sections
EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two
planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the
first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

A(x) = (height){width) = (x) gﬂ)

= 2xV9 — x°
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Solids of Revolution: The Disk Method m

Volume by Disks for Rotation About the x-Axis

b b
V=/ A(x) dx =/ [ R(x)]* dv.

EXAMPLE 6 Find the volume of the solid generated by revolving the region bounded
by y = /X and the lines y = 1,x = 4 about the line y = 1.
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Solids of Revolution: The Disk Method ojliall

Volume by Disks for Rotation About the y-Axis

i | i
v =f A(y) dy =f w[R)]? dy.

EXAMPLE 7 Find the volume of the solid generated by revolving the region between
the y-axis and the curve x = 2/y, 1 = y = 4, about the y-axis.

4
V=/ [ R(y)]* dy
|

4 2
JROE
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Solids of Revolution: The Washer Method 6)liaJl

(x, R(x))

of

3 ¥y =R()
S y = rix)
b X

Volume by Washers for Rotation About the x-Axis

b ]
Vv =f A(x) dx =/ 7([RX]? — [r(x)]?) dx.

https://manara.edu.sy/
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EXAMPLE 9 The region bounded by the curve ¥y = x* + 1 andtheline y = —x + 3
15 revolved about the x-axis to generate a solid. Find the volume of the solid.

Limiis ol ntegration

Interval 4 ! QJ@"“ X

integration

v=f 7 ([RX)]* — [rx)]?) dx

Washer cross-section

Outer radius: R(x) = —x + 3

f ™ (_'I + 3)_ { . + 1}1} dx p— ﬁ Inner radius: i{x) =x- + 1
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Exercises 9l

@ find the volume of the solid generated by revolving the shaded region about the given axis.

y = sin x cos x

About the x-axis 3

x /. ’
. _ ° i 16 .
@ Find the volumes of the solids generated by revolving the shaded regions about the x-axis

y=1/cosx 1 _

R y=1___

\
. 1’ -2r
_m 0 L
2

2

@ Find the volumes of the solids generated by revolving the regions bounded by the lines

and curves about the x-axis. Yy =secx, y=tanx, x =0, x=1

T
@ By integration, find the volume of the solid generated by revolving the triangular region
with vertices (0, 0), (b, 0), (0, i) about a. the r-axis.

:m _F'Thzﬁ
3 3

b. the y-axis.

https://manara.edu.sy/



Y

deol ~

Volumes Using Cylindrical Shells &)Uiall

Shell Formula for Revolution About a Vertical Line
The volume of the solid generated by revolving the region between the x-axis
and the graph of a continuous function y = f(x) = 0, L = a = x = b, abouta

vertical line x = L is

vV

b
=f Eﬂ‘( sh-i:ll )( sh.::l] )dx‘
H radius/ \ height

Vertical axis
of revolution

1

b
V = lim EﬂVk = f 27r(shell radius)(shell height) dx

1—00 k_l.

b
= [ 2m(x — L)f(x) dx

il

Vertical axis
of revolution

Rectangle
height = f(c;)
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EXAMPLE 2 The region bounded by the curve y = Vx, the x-axis, and the line
x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Shell radius  y = Vx

y
)' A
@T@ Shell radius /r

L/

y=Vx
! Shell 2
T // height "
fx) =
l - /6 :'
> X \
0 x 4 3
Interval of integration /
(a) (b)

b shell shell N
V= L 2W(r:ln:liu:a) (height) de = /ﬂ ET‘F{I]( VE] dx

4,2)

'\/x = Shell height
. X

Interval of
integration
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EXAMPLE 3 The region bounded by the curve y = Vx, the x-axis, and the line

x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the
shell method.

y
+ Shc}hcight
24 P 2
\;‘
y | P -
A 4 — }'2 ”g‘"‘.';t .
~ Shell height 1€ ™
0 e |
2r x= 4,2) ' s . \1
I ,g { oy A y
TE0} | 4%
2 2 . Pl \‘ ' / X
= Y Shell radius ~C . Shell
5 ! . @ > X T— = radius
(a) (b)
b 2 472
shell shell ¥
V= [ 2a 7. . dy = [ 27(y)4 —y)d = P ——| = 8.
_[; ' (radlus.)(hmght) > f{; TN y)d 2| 2) 4 1, &
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Exercises

[

® use the shell method to find the volumes of the solids “gvgﬁé;ated by revolving the shaded region about the indicated axis.

2

The y-axis
y

_y=v.xz+l

0

V3

djligJl
The y-axis
A y= Ox
S 2 +9
0 3

X

use the shell method to find the volumes of the solids generated by revolving
the shaded regions about the indicated axes.

a. The x-axis

¢. Theline y = 8/5

b
5

4x
5

27

b. The line y
d. The line y

2m

1
~2/5

367
y
-.1_ xX= 12()?2—}?3)
' > X
0~ 1
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Arc Length 8)liaJl

DEFINITION  If f' is continuous on [a, ], then the length (arc length) of
the curve y = fix) from the point A = (a, fla)) to the point B = (b, f(H)) is
the value of the integral

b & dvy?
L=f V1 4[] de =f W1+ (E) d. (3)

a

L= 3 VAR + (Fledn? = 2V + [fc)]* Axg
|

k=1 k=1
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EAAMPLE 2 Find the length of the graph of

-3

-

I
+ -, l =x=4.
X

flxy =

|=.'-|

T

X
4

4 4:4:2 1

=/1 VIF [F@T dv =/; (5 + L)

(2 L (ea_ 1y _(L_ \_72_
12 xf, \12 4 12 T12 T

fiix) =

)=
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Dealing with Discontinuities in dy/dx

Even if the derivative dy/dx does not exist at some point on a curve,

Formula for the Lengthof x = g(y),c =y = d

to B = (g(d), d) is

o dx 2 il
L=f \/1 +(£) dy=f V1 + [g' ()] dy.

If g' is continuous on | ¢, d ], the length of the curve x = g(y) from A = (g(c), ¢)

)

https://manara.edu.sy/
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EXAMPLE 3  Find the length of the curve y = (x/2)*? fromx = 0 to x = 2.

d —1/3 1/3
d_i = %(%) (%) = %(%) Is not defined at X =0

dx _ 5( 3\ 12 = 2,172
x = 2_}’3"“'2 E——) dy = 2(2)}’ = 3y

e [ @

= %(mx/ﬁ — 1) =~ 2.27.
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Exercises 8Ll
Find the lengths of the curves
x=(u%/6) +1/Q2y) from y=2toy=23 ;%
y=@/3)+2+x+1/dx+4), 0=x=2 53

The graph of the equation x%? + y?/> =1 is one of a family of curves called astroids (not

“asteroids’) because of their starlike appearance (see the accompanying figure) '

Find the length of this particular astroid by finding the length of 6

half the first-quadrant portion, y = (1 — x%3)3/2,

X3 +y21'r5= I

\/E/ 4<yx< 1, and multip-lying by 3.

https://manara.edu.sy/

17



[Py

Areas of Surfaces of Revolution i

DEFINITION If the function f(x) = 0 is continuously differentiable on [a, &],
the area of the surface generated by revolving the graph of y = f(x) about the

X-AXi5 18
b dy \? b
5 = / 2y, (1 + (E) dx = / 2o f(x)V1 + (' () dx. (3)

Segment length:

L=V({Ax) + (Ay)’

Ay
A
1= flag - s

i &

[
=
- F—-———-

ey
|

-'_"...1'1,

FOg—) + fx)

Frustum surface area = 247 -

5 “V(Ax) + (Ay)’

- - = 7(fOg—1) + fO)V(Ax)? + (Ay)>

oy S a(faoy) + f@) V(A2 + (Ay)?
= k=1
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Areas of Surfaces of Revolution "J“-*’J'

EXAMPLE 1 Find the area of the surface generated by revolving the curve y = 2V,
1 = x = 2, about the x-axis (Figure 6.34).

Iy
=/ Eﬂ'y\/l-l-

dy
- =

-

‘v'{{ - Cﬁ) VE 1 )

5=[_zw-zw’$*‘:£ I.:fx=4w/_xfx+ [ = H%{zx@— 2V2).
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Areas of Surfaces of Revolution &t si

Surface Area for Revolution About the y-Axis
If x = g(y) = 0 is continuously differentiable on [ ¢, d], the area of the surface
generated by revolving the graph of x = g(y) about the y-axis is

d 2 d
=/ zm;\/l + (j—i’) dy =/ Ewgﬁf}"v”l + (g'(y))* dy. (4)

EXAMPLE 2 The line segment x = 1 — 3,0 = y = 1, is revolved about the y-axis
to generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base
area).

y

dx

dy =l

c =0, d=1, x=1-—y

\/1+() VITEE =2

l
f wa\/l + ey =f 27(l — WV2dy = xV2.
]
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Exercises S5

0 Find the areas of the surfaces generated by relmlving the curves In
Exercises 13—23 about the indicated axes. If you have a grapher, you

may want to graph these curves to see what they look like.

0 13 y=x/9, 0=x=2; xuaxis JOR

. 20. x=V2y—1, 5/8=y=1; y-axis

Z(16v2-55)

https://manara.edu.sy/
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Exercises

32. The surface of an astroid Find the area of the surface gen-
erated by revolving about the x-axis the portion of the astroid

¥4 J'Zﬁ = | shown 1n the accompanying figure.

127
5
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Parametrizations of Plane Curves

DEFINITION If x and v are given as functions

x=f, y=g

over an interval I of f-values, then the set of points (x, ¥) = (f(¢), g(f)) defined by
these equations is a parameitric curve. The equations are parametric equations

for the curve.

Position of particle

at time ¢ TN (), 2()

https://manara.edu.sy/
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EXAMPLE 2 Sketch the curve defined by the parametric equations

2

X =t y=1t+1, —0o0 <t < oo,

TABLE 11.2 Values of x = +* and
¥y =t + 1 for selected values of t.

f X ¥
-3 9 -2
-2 4 —1 0
0 0 1 Py "
1 1 2
2 4 3
3 9 4
—_— ) = 2
x=rr=—-1 =y

https://manara.edu.sy/ 2
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B — Circle

X =acost ,y =asint ;0<t<27 o) x°+y’=a’

ellipse
_ x 2 ' 2

X =acost ,y =bsint ; 0<t <27 ) 2+y2 _1
a- b

x =a(t—sint),y =a(l-cost); 0<t <27z Cycloids

y X :acosl(l—i)—\/y (2a-y)

- : (x. ¥)
)
il
X

i} 2aa

https://manara.edu.sy/
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Parametric Formula for dy/dx
If all three derivatives exist and dx/dr # 0, then
dy dy/dt :
dx — dxfdt ()

Parametric Formula for d*y/dx?
If the equations x = f(f), y = g(t) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0 and y' = dy/dx,
d>y  dy'fdt
d  dx/dt’

(2)

EXAMPLE 2 Find dy/dx> as afunctionof rif x =t — Fandy =t — 1.

@ _ dy' [dt _ (2 — 6t + 65) /(1 — 27 _2—6t+ 612
dxl  dv/dt 1 — 2 (1 — 26)°

https://manara.edu.sy/
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Length of a Parametrically Defined Curve

DEFINITION If a curve C is defined parametrically by x = f(f) and y = g(4),
a =t =5 where f' and g’ are continuous and not simultaneously zero on
[a, k], and C is traversed exactly once as f increases from t = a to t = b, then
the length of C is the definite integral

- / VIFOP + (g O] d

a:.t'y .
f \/ dr dr) d.

https://manara.edu.sy/
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EXAMPLE 5 Find the length of the astroid (Figure 11.15) y
x=cos’t, y=sin‘t, 0=¢t=2r.
dx* = [3 cos’{(—sin 1) |* = 9 cos*t sin’t | ]
el -1
dy’\* 2 2
— = T - 2 2
(a‘f) [ 3 sin“t{cos £) |- = 9 sin*t cos~t .
2 N2 :
d)" (D) _ 3 costsint.
elt ell
w2 3 w2 3
Length of first-quadrant portion = f 3costsintdt = — g cos 2t =5
0 0

The length of the astroid is four times this: 4(3/2) = 6.

https://manara.edu.sy/ 2
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Applications of Definite Integrals d)LioJl

Parametric Curves

Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = f(f),y = g(f),a = t = b, is traversed exactly once as ¢
increases from a to b, then the areas of the surfaces generated by revolving the

curve about the coordinate axes are as follows.

1. Revolution about the x-axis (y = 0):

b 2 2
_ dx dy
=, 2 \/ (@) + (@)«

2. Revolution about the y-axis (x = 0):

b 2 2
- de) (D
= [ame (%) + ()

(3)

(6)

https://manara.edu.sy/
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Areas of Surfaces of Revolution

EXAMPLE 9 The standard parametrization of the circle of radius 1 centered at the
point (0, 1) in the xy-plane is

X = COS I, y=1+sint, 0=t = 27

Use this parametrization to find the area of the surface swept out by revolving the circle
about the x-axis (Figure 11.19).

o -

= 27 {l + sin 1) dt
0

= 442,

https://manara.edu.sy/
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Exercises

® find an equation for the line tangent to the curve at the point defined by
the given value of z. Also, find the value of d?y/dx? at this point.

x=sec’t— 1, y=tant, t=—m/4 y=-1x-1 :
® Find the lengths of the curves
x=08, y=3/2, 0=t=\3 7

https://manara.edu.sy/

31



Y

Exercises doola

ot
Find the areas of the surfaces generated by revolving the curves in
Exercises 31-34 about the indicated axes.

34. x =In(sect + tanf) — sinf, y =cos 1, 0 = 1 = 7/3; x-aus

A cone frustum The line segment joining the points (0, 1) and (2, 2) is revolved about the x-axis
to generate a frustum of a cone. Find the surface area of the frustum using the parametrization

x=2t,y =1+ 1,0 =t = 1. Check your result with the geometry formula:

Area = m(r; + ry)(slant height).
33:'«.@
47. Cycloid

a. Find the length of one arch of the cycloid Rq
x=a(t —sinf), y=a(l — cosi).

b. Find the area of the surface generated by revolving one arch 641
of the cycloid in part (a) about the x-axis for a = 1.

https://manara.edu.sy/
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