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Nonlinear Systems Analysis 

• The objective of this part is to present various tools available for 
analyzing nonlinear control systems. The study of these nonlinear 
analysis techniques is important for a number of reasons.  

• First, theoretical analysis is usually the least expensive way of 
exploring a system's characteristics. 

• Second, simulation, though very important in nonlinear control, has 
to be guided by theory. Blind simulation of nonlinear systems is likely 
to produce few results or misleading results. This is especially true 
given the great richness of behavior that nonlinear systems can 
exhibit, depending on initial conditions and inputs.  



Nonlinear Systems Analysis 

• Third, the design of nonlinear controllers is always based on analysis 
techniques. Since design methods are usually based on analysis 
methods, it is almost impossible to master the design methods 
without first studying the analysis tools. Furthermore, analysis tools 
also allow us to assess control designs after they have been made, 
and, in case of inadequate performance, they may also suggest 
directions of modifying the control designs.  



Nonlinear Systems Analysis 

• It should not come as a surprise that no universal technique has been 
devised for the analysis of all nonlinear control systems. In linear 
control, one can analyze a system in the time domain or in the 
frequency domain. However, for nonlinear control systems, none of 
these standard approaches can be used, since direct solution of 
nonlinear differential equations is generally impossible, and 
frequency domain transformations do not apply 



Nonlinear Systems Analysis 
(Phase plane ) 

• Phase plane analysis is a graphical method of studying second-order 
nonlinear systems. Its basic idea is to solve a second order differential 
equation graphically, instead of seeking an analytical solution. The 
result is a family of system motion trajectories on a two-dimensional 
plane, called the phase plane, which allow us to visually observe the 
motion patterns of the system. 

•  While phase plane analysis has a number of important advantages, it 
has the fundamental disadvantage of being applicable only to systems 
which can be well approximated by a second-order dynamics. 
Because of its graphical nature, it is frequently used to provide 
intuitive insights about nonlinear effects. 



Nonlinear Systems Analysis 
(Lyapunov  theory) 

• Basic Lyapunov theory comprises two methods introduced by 
Lyapunov, the indirect method and the direct method.  

• The indirect method, or linearization method, states that the stability 
properties of a nonlinear system in the close vicinity of an equilibrium 
point are essentially the same as those of its linearized approximation. 
The method serves as the theoretical justification for using linear 
control for physical systems, which are always inherently nonlinear.  



Nonlinear Systems Analysis 
(Lyapunov  theory) 

• The direct method is a powerful tool for nonlinear system analysis, and 
therefore the so-called Lyapunov analysis often actually refers to the 
direct method. The direct method is a generalization of the energy 
concepts associated with a mechanical system: the motion of a 
mechanical system is stable if its total mechanical energy decreases all 
the time. In using the direct method to analyze the stability of a 
nonlinear system, the idea is to construct a scalar energy-like function 
(a Lyapunov function) for the system, and to see whether it decreases. 
The power of this method comes from its generality: it is applicable to 
all kinds of control systems, be they time-varying or time-invariant, 
finite dimensional or infinite dimensional. Conversely, the limitation of 
the method lies in the fact that it is often difficult to find a Lyapunov 
function for a given system. 



Nonlinear Systems Analysis 
(Lyapunov  theory) 

• Although Lyapunov's direct method is originally a method of stability 
analysis, it can be used for other problems in nonlinear control. One 
important application is the design of nonlinear controllers. The idea is 
to somehow formulate a scalar positive function of the system states, 
and then choose a control law to make this function decrease. A 
nonlinear control system thus designed will be guaranteed to be 
stable. Such a design approach has been used to solve many complex 
design problems, e.g., in robotics and adaptive control. The direct 
method can also be used to estimate the performance of a control 
system and study its robustness.  



Nonlinear Systems Analysis 
(Describing functions) 

• The describing function method is an approximate technique for 
studying nonlinear systems. The basic idea of the method is to 
approximate the nonlinear components in nonlinear control systems 
by linear "equivalents", and then use frequency domain techniques to 
analyze the resulting systems. Unlike the phase plane method, it is not 
restricted to second-order systems. Unlike Lyapunov methods, whose 
applicability to a specific system hinges on the success of a trial-and-
error search for a Lyapunov function, its application is straightforward 
for nonlinear systems satisfying some easy-to-check conditions. 



Nonlinear Systems Analysis 
(Describing functions) 

• The method is mainly used to predict limit cycles in nonlinear systems. 
Other applications include the prediction of subharmonic generation 
and the determination of system response to sinusoidal excitation. The 
method has a number of advantages. 

• First, it can deal with low order and high order systems with the same 
straightforward procedure. 

•  Second, because of its similarity to frequency-domain analysis of 
linear systems, it is conceptually simple and physically appealing, 
allowing users to exercise their physical and engineering insights about 
the control system. 

•  Third, it can deal with the "hard nonlinearities" frequently found in 
control systems without any difficulty.  



Nonlinear Systems Analysis 
(Describing functions) 

• As a result, it is an important tool for practical problems of nonlinear 
control analysis and design. The disadvantages of the method are 
linked to its approximate nature, and include the possibility of 
inaccurate predictions (false predictions may be made if certain 
conditions are not satisfied) and restrictions on the systems to which it 
applies (for example, it has difficulties in dealing with systems with 
multiple nonlinearities). 

 



Phase Plane Analysis 

• Phase plane analysis is a graphical method for studying second-order 
systems, which was introduced well before the turn of the century by 
mathematicians such as Henri Poincare. The basic idea of the method 
is to generate, in the state space of a second order dynamic system (a 
two-dimensional plane called the phase plane), motion trajectories 
corresponding to various initial conditions, and then to examine the 
qualitative features of the trajectories. In such a way, information 
concerning stability and other motion patterns of the system can be 
obtained. 

 



Phase Plane Analysis 
• Phase plane analysis has a number of useful properties. 

•  First, as a graphical method, it allows us to visualize what goes on in a 
nonlinear system starting from various initial conditions, without having to 
solve the nonlinear equations analytically.  

• Second, it is not restricted to small or smooth nonlinearities, but applies 
equally well to strong nonlinearities and to "hard" nonlinearities.  

• Finally, some practical control systems can indeed be adequately 
approximated as second-order systems, and the phase plane method can be 
used easily for their analysis.  

• Conversely, of course, the fundamental disadvantage of the method is that 
it is restricted to second-order (or first order) systems, because the graphical 
study of higher-order systems is computationally and geometrically 
complex. 



• Phase Portraits 

• The phase plane method is concerned with the graphical study of 
second-order autonomous systems described by 

ẋ1=f1(x1, x2)                                           (1a) 

ẋ2=f2(x1, x2)                                           (1b) 

• where x1 and x2 are the states of the system, and  f1, and f2  are 
nonlinear functions of the states. Geometrically, the state space of this 
system is a plane having x1 and x2 as coordinates. We will call this 
plane the phase plane. 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 
Phase Portraits 

• Given a set of initial conditions x(0) = x0, Equation (ẋ1=f1(x1, x2), 
ẋ2=f2(x1, x2) ) defines a solution x(t).  With time t varied from zero to 
infinity, the solution x(t) can be represented geometrically as a curve 
in the phase plane. Such a curve is called a phase plane trajectory. A 
family of phase plane trajectories corresponding to various initial 
conditions is called a phase portrait of a system.  

• To illustrate the concept of phase portrait, let us consider the following 
simple system. 

 



• Example 1: Phase portrait of a mass-spring system 

• The governing equation of the mass-spring system in Figure (a) is the 
familiar linear second order differential equation 

  ẍ + x = 0                                                                    (2) 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Example 1: Phase portrait of a mass-spring system 

• Assume that the mass is initially at rest, at length xo . Then the solution 
of the equation is 

x(t) = xo cos t 

 ẋ (t) = - xo sin t 

• Eliminating time t from the above equations, we obtain the equation 
of the trajectories  

x2+ ẋ2= xo
2 

• This represents a circle in the phase plane. Corresponding to different 
initial conditions, circles of different radii can be obtained. Plotting 
these circles on the phase plane, we obtain a phase portrait for the 
mass-spring system (Figure b). 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Example 1: Phase portrait of a mass-spring system 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Phase portrait 

• The power of the phase portrait lies in the fact that once the phase 
portrait of a system is obtained, the nature of the system response 
corresponding to various initial conditions is directly displayed on the 
phase plane. In the above example, we easily see that the system 
trajectories neither converge to the origin nor diverge to infinity. They 
simply circle around the origin, indicating the marginal nature of the 
system's stability. 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Phase portrait 

• A major class of second-order systems can be described by differential equations of 
the form 

ẍ +f(x, ẋ) = 0                                (3) 

•  In state space form, this dynamics can be represented as 

                                                             ẋ1 =x2 

                                                             ẋ2 =- f(x1, x2) 

•  with x1 = x and x2 = ẋ . Most second-order systems in practice, such as mass-damper 
spring systems in mechanics, or resistor-coil-capacitor systems in electrical 
engineering, can be represented in or transformed into this form. For these systems, 
the states are x and its derivative ẋ. Traditionally, the phase plane method is 
developed for the dynamics (3), and the phase plane is defined as the plane having x 
and ẋ as coordinates. But it causes no difficulty to extend the method to more general 
dynamics of the form (ẋ1=f1(x1, x2), ẋ2=f2(x1, x2)), with the (x1, x2) plane as the phase 
plane. 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Singular Points 

• An important concept in phase plane analysis is that of a singular point. A 
singular point is an equilibrium point in the phase plane. Since an equilibrium 
point is defined as a point where the system states can stay forever, this implies 
that ẋ = 0, and using (ẋ1=f1(x1, x2), ẋ2=f2(x1, x2) ). 

f1(x1, x2)= 0                                     f2(x1, x2)= 0          (4) 

• The values of the equilibrium states can be solved from (4). 

• For a linear system, there is usually only one singular point (although in some 
cases there can be a continuous set of singular points, as in the system  ẍ + ẋ = 0, 
for which all points on the real axis are singular points). However, a nonlinear 
system often has more than one isolated singular point, as the following 
example shows. 

 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Singular Points 

• Example.2: A nonlinear second-order system 

• Consider the system 

ẍ + 0.6 ẋ + 3 x + x2 = 0 

• whose phase portrait is plotted in Figure 2. The system has two singular points, 
one at (0, 0) and the other at (-3, 0). The motion patterns of the system 
trajectories in the vicinity of the two singular points have different  natures. The 
trajectories move towards the point   x = 0 while moving away from the point     
x = - 3. 

 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Singular Points 

• Example.2: A nonlinear second-order system 

 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Singular Points 

• One may wonder why an equilibrium point of a second-order system is called a 
singular point. To answer this, let us examine the slope of the phase trajectories. 
From (ẋ1=f1(x1, x2), ẋ2=f2(x1, x2) ), the slope of the phase trajectory passing 
through a point (x1,x2) is determined by. 

𝒅𝒙𝟐
𝒅𝒙𝟏

=
𝒇𝟐(𝒙𝟏,𝒙𝟐)
𝒇𝟏(𝒙𝟏,𝒙𝟐

 

• With the functions 𝒇𝟏 and 𝒇𝟐 assumed to be single valued, there is usually a 
definite value for this slope at any given point in phase plane. This implies that 
the phase trajectories will not intersect. 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Singular Points 

• At singular points, however, the value of the slope is 0/0, i.e., the slope is 
indeterminate. Many trajectories may intersect at such points, as seen from 
Figure. This indeterminacy of the slope accounts for the adjective "singular". 

• Singular points are very important features in the phase plane. Examination of 
the singular points can reveal a great deal of information about the properties 
of a system. 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Singular Points 

• In fact, the stability of linear systems is uniquely characterized by the nature of 
their singular points. For nonlinear systems, besides singular points, there may 
be more complex features, such as limit cycles.  

• Note that, although the phase plane method is developed primarily for second 
order systems, it can also be applied to the analysis of first-order systems of the 
form 

ẋ +f(x) = 0 

• The idea is still to plot ẋ with respect to x in the phase plane. The difference now 
is that the phase portrait is composed of a single trajectory. 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Singular Points 

• Example 3: A first-order system 

• Consider the system 

ẋ = -4 x + x3 

• There are three singular points, defined by - 4x + x3 = 0, namely, x = 0, -2 , and 2. 
The phase portrait of the system consists of a single trajectory, and is shown in 
Figure. The arrows in the figure denote the direction of motion, and whether 
they point toward the left or the right at a particular point is determined by the 
sign of ẋ at that point. It is seen from the phase portrait of this system that the 
equilibrium point x = 0 is stable, while the other two are unstable. 
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• Singular Points 

• Example 3: A first-order system 
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• Symmetry in Phase Plane Portraits 

• A phase portrait may have a priori known symmetry properties, which can 
simplify its generation and study. If a phase portrait is symmetric with respect to 
the x1 or the x2 axis, one only needs in practice to study half of it. If a phase 
portrait is symmetric with respect to both the x1 and x2 axes, only one quarter of 
it has to be explicitly considered. 

• Before generating a phase portrait itself, we can determine its symmetry 
properties by examining the system equations. Let us consider the second-order 
dynamics (ẍ +f(x, ẋ) = 0 ). The slope of trajectories in the phase plane is of the 
form 

𝒅𝒙𝟐
𝒅𝒙𝟏

= − 𝒇(𝒙𝟏,𝒙𝟐)𝒙𝟐
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• Singular Points 

• Since symmetry of the phase portraits also implies symmetry of the slopes 
(equal in absolute value but opposite in sign), we can identify the following 
situations: 

• Symmetry about the x1 axis: The condition is 

f(x1, x2) = f(x1,- x2) 

• This implies that the function f should be even in x2.  The mass-spring system in 
Example 1 satisfies this condition. Its phase portrait is seen to be symmetric 
about x1 axis. 

 

 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Symmetry about the x2 axis: Similarly 

f(x1, x2) = -f(-x1, x2) 

• implies symmetry with respect to the x2 axis. The mass-spring system also 
satisfies this condition. 

• Symmetry about the origin: When 

f(x1, x2) =- f(-x1,- x2) 

• the phase portrait of the system is symmetric about the origin. 

 

 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Constructing Phase Portraits 

• Today, phase portraits are routinely computer-generated. In fact, it is 
largely the advent of the computer in the early 1960's, and the 
associated ease of quickly generating phase portraits, which spurred 
many advances in the study of complex nonlinear dynamic behaviors 
such as chaos. However, of course (as e.g., in the case of root locus for 
linear systems), it is still practically useful to learn how to roughly 
sketch phase portraits or quickly verify the plausibility of computer 
outputs. 

 

 

Phase Plane Analysis 
Concepts of Phase Plane Analysis 

 



• Constructing Phase Portraits 

• There are a number of methods for constructing phase plane trajectories for 
linear or nonlinear systems, such as the so-called analytical method, the method 
of isoclines, the delta method, Lienard's method, and Pell's method. We shall 
discuss two of them in this section, namely, the analytical method and the 
method of isoclines. These methods are chosen primarily because of their 
relative simplicity. The analytical method involves the analytical solution of the 
differential equations describing the systems. It is useful for some special 
nonlinear systems, particularly piece-wise linear systems, whose phase portraits 
can be constructed by piecing together the phase portraits of the related linear 
systems. The method of isoclines is a graphical method which can conveniently 
be applied to construct phase portraits for systems which cannot be solved 
analytically, which represent by far the most common case. 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• There are two techniques for generating phase plane portraits analytically. Both 
techniques lead to a functional relation between the two phase variables x1 and 
x2 in the form   

g(x1, x2,c) = 0                                                                       (6) 

• where the constant c represents the effects of initial conditions (and, possibly, 
of external input signals). Plotting this relation in the phase plane for different 
initial conditions yields a phase portrait. 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• The first technique involves solving equations (ẋ1=f1(x1, x2), ẋ2=f2(x1, x2) ) for x1 and x2 
as functions of time t, i.e., 

X1(t)=g1(t)                          X2(t)=g2(t) 

• and then eliminating time t from these equations, leading to a functional relation in 
the form of (g(x1, x2,c) = 0 ). This technique was already illustrated in Example 1. 

• The second technique, on the other hand, involves directly eliminating the time 
variable, by noting that 

𝒅𝒙𝟐
𝒅𝒙𝟏

= 𝒇𝟐(𝒙𝟏,𝒙𝟐)
𝒇𝟏(𝒙𝟏,𝒙𝟐

 

• and then solving this equation for a functional relation between x1 and x2. Let us use 
this technique to solve the mass-spring equation again. 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• Example 4: Mass-spring system 

• By noting that ẍ = (dẋ/dx)(dx/dt), we can rewrite (ẍ + x = 0 ) as 

𝒙 
𝒅𝒙 

𝒅𝒙
+ 𝒙 = 𝟎 

• Integration of this equation yields 

𝒙 𝟐 + 𝒙𝟐 = 𝒙𝟎
𝟐 

• One sees that the second technique is more straightforward in generating the 
equations for the phase plane trajectories. 

• Most nonlinear systems cannot be easily solved by either of the above two 
techniques. However, for piece-wise linear systems, an important class of nonlinear 
systems, this method can be conveniently used, as the following example shows. 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• Example 5: A satellite control system 

• Figure 4 shows the control system for a simple satellite model. The satellite, 
depicted in Figure 5(a), is simply a rotational unit inertia controlled by a pair of 
thrusters, which can provide either a positive constant torque U (positive firing) 
or a negative torque (negative firing). The purpose of the control system is to 
maintain the satellite antenna at a zero angle by appropriately firing the 
thrusters. The mathematical model of the satellite is 

Ӫ=u 

• where u is the torque provided by the thrusters and Ө ͘is the satellite angle. 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• Example 5: A satellite control system                      (4) 

•        

•         (5a) 

 

•                                     
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• Example 5: A satellite control system 

• Let us examine on the phase plane the behavior of the control system when the 
thrusters are fired according to the control law 

 𝒖 𝒕 =  
−𝒖,  𝒊𝒇  𝜽 > 𝟎
𝒖,  𝒊𝒇  𝜽 < 𝟎

                                                         (7) 

• which means that the thrusters push in the counterclockwise direction if Ө is 
positive, and vice versa. 

• As the first step of the phase portrait generation, let us consider the phase 
portrait when the thrusters provide a positive torque U. The dynamics of the 
system is 

Ӫ=U 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• Example 5: A satellite control system 

• which implies that 𝜽𝒅 ͘𝜽 = 𝑼𝒅𝜽. Therefore, the phase trajectories are a family of 
parabolas defined by 

Ө2͘=2 UӨ+c1 

• where c1 is a constant. The corresponding phase portrait of the system is shown 
in Figure 5(b). 

•  When the thrusters provide a negative torque -U, the phase trajectories are 
similarly found to be 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• Example 5: A satellite control system 

 

 

 

 

 

•                                                                                                           (5) 

Ө2͘=-2Ux+c1 

• with the corresponding phase portrait shown in Figure 5(c) 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD                                                                (6) 

• Example 5: A satellite control system 
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• Constructing Phase Portraits 

• ANALYTICAL METHOD 

• Example 5: A satellite control system 

• The complete phase portrait of the closed-loop control system can be obtained 
simply by connecting the trajectories on the left half of the phase plane in 5(b) 
with those on the right half of the phase plane in 5(c), as shown in Figure 6. The 
vertical axis represents a switching line, because the control input and thus the 
phase trajectories are switched on that line. It is interesting to see that, starting 
from a nonzero initial angle, the satellite will oscillate in periodic motions under 
the action of the jets. One concludes from this phase portrait that the system is 
marginally stable, similarly to the mass-spring system in Example 1. Convergence 
of the system to the zero angle can be obtained by adding rate feedback . 
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