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Introduction 
 

• The subject of nonlinear control deals with the analysis and the design of 
nonlinear control systems, i.e., of control systems containing at least one 
nonlinear component. 

• In the analysis, a nonlinear closed-loop system is assumed to have been 
designed, and we wish to determine the characteristics of the system's 
behavior. 

•  In the design, we are given a nonlinear plant to be controlled and some 
specifications of closed-loop system behavior, and our task is to construct 
a controller so that the closed loop system meets the desired 
characteristics. 

•  In practice, of course, the issues of design and analysis are intertwined, 
because the design of a nonlinear control system usually involves an 
iterative process of analysis and design. 

 



Why Nonlinear Control ? 
 

• Linear control is a mature subject with a variety of powerful 
methods and a long history of successful industrial 
applications. Thus, it is natural for one to wonder why so 
many researchers and designers, from such broad areas as 
aircraft and spacecraft control, robotics, process control, and 
biomedical engineering, have recently showed an active 
interest in the development and applications of nonlinear 
control methodologies. Many reasons can be cited for this 
interest: 
 



Why Nonlinear Control ? 
 • Improvement of existing control systems 

• Linear control methods rely on the key assumption of small range operation 
for the linear model to be valid. When the required operation range is large, a 
linear controller is likely to perform very poorly or to be unstable, because 
the nonlinearities in the system cannot be properly compensated for. 

• Nonlinear controllers, on the other hand, may handle the nonlinearities in 
large range operation directly. This point is easily demonstrated in robot 
motion control problems.  

• When a linear controller is used to control robot motion, it neglects the 
nonlinear forces associated with the motion of the robot links. The 
controller's accuracy thus quickly degrades as the speed of motion increases, 
because many of the dynamic forces involved, such as centripetal forces, vary 
as the square of the speed. 

 



Why Nonlinear Control ? 
 

• Improvement of existing control systems 

• Therefore, in order to achieve a pre-specified accuracy in robot tasks 
such as pick-and-place, arc welding and laser cutting, the speed of robot 
motion, and thus productivity, has to be kept low. On the other hand, a 
conceptually simple nonlinear controller, commonly called computed 
torque controller, can fully compensate the nonlinear forces in the robot 
motion and lead to high accuracy control for a very large range of robot 
speeds and a large workspace. 

 



Why Nonlinear Control ? 
 

• Analysis of hard nonlinearities 

Another assumption of linear control is that the system model is indeed linearizable. 

 However, in control systems there are many nonlinearities whose discontinuous 
nature does not allow linear approximation. These so-called "hard nonlinearities" 
include friction, saturation, dead-zones, backlash, and hysteresis, and are often found 
in control engineering.  

Their effects cannot be derived from linear  methods, and nonlinear analysis 
techniques must be developed to predict a  system's performance in the presence of 
these inherent nonlinearities. Because such nonlinearities frequently cause 
undesirable behavior of the control systems, such as instabilities or limit cycles, their 
effects must be predicted and properly compensated for. 

 



Why Nonlinear Control ? 
 

• Dealing with model uncertainties 
In designing linear controllers, it is usually necessary to assume that the 
parameters of the system model are reasonably well known. However, many 
control problems involve uncertainties in the model parameters. This may be 
due to a slow time  variation of the parameters (e.g., of ambient air pressure 
during an aircraft flight), or to an abrupt change in parameters (e.g,, in the 
inertial parameters of a robot when a new object is grasped). A linear controller 
based on inaccurate or obsolete values of the model parameters may exhibit 
significant performance degradation or even instability. Nonlinearities can be 
intentionally introduced into the controller part of a control system so that 
model uncertainties can be tolerated. Two classes of nonlinear controllers for 
this purpose are robust controllers and adaptive controllers. 

 



Why Nonlinear Control ? 
 • Design Simplicity 

• Good nonlinear control designs may be simpler and more intuitive than their 
linear counterparts. This a priori paradoxical result comes from the fact that 
nonlinear controller designs are often deeply rooted in the physics of the 
plants. To take a very simple example, consider a swinging pendulum attached 
to a hinge, in the vertical plane. Starting from some arbitrary initial angle, the 
pendulum will oscillate and progressively stop along the vertical. Although the 
pendulum's behavior could be analyzed close to equilibrium by linearizing the 
system, physically its stability has very little to do with the eigenvalues of some 
linearized system matrix: 

it comes from the fact that the total mechanical energy of the system is 
progressively dissipated by various friction forces (e.g., at the hinge), so that the 
pendulum comes to rest at a position of minimal energy. 

 



Why Nonlinear Control ? 
 • Design Simplicity 

• There may be other related or unrelated reasons to use nonlinear control 
techniques, such as cost and performance optimality. In industrial settings, ad-
hoc extensions of linear techniques to control advanced machines with 
significant nonlinearities may result in unduly costly and lengthy development 
periods, where the control code comes with little stability or performance 
guarantees and is extremely hard to transport to similar but different 
applications.  

• Linear control may require high quality actuators and sensors to produce linear 
behavior in the specified operation range, while nonlinear control may permit 
the use of less expensive components with nonlinear characteristics. As for 
performance optimality, we can cite bang-bang type controllers, which can 
produce fast response, but are inherently nonlinear. 



Why Nonlinear Control ? 
 • Design Simplicity 

• modern technology, such as high-speed high-accuracy robots or high-
performance aircrafts, is demanding control systems with much more stringent 
design specifications. 

• Nonlinear control occupies an increasingly conspicuous position in control 
engineering, as reflected by the ever-increasing number of papers and reports 
on nonlinear control research and applications. 



Nonlinear System Behavior 
 

• Physical systems are inherently nonlinear. Thus, all control systems are 
nonlinear to a certain extent. Nonlinear control systems can be described by 
nonlinear differential equations. However, if the operating range of a control 
system is small, and if the involved nonlinearities are smooth, then the control 
system may be reasonably approximated by a linearized system, whose 
dynamics is described by a set of linear differential equations. 



Nonlinear System Behavior 
 • NONLINEARITIES 

• Nonlinearities can be classified as inherent (natural) and 
intentional (artificial). 

• Inherent nonlinearities are those which naturally come with 
the system's hardware and motion. Examples of inherent 
nonlinearities include centripetal forces in rotational motion, 
and Coulomb friction between contacting surfaces. Usually, 
such nonlinearities have undesirable effects, and control 
systems have to properly compensate for them.  



Nonlinear System Behavior 
 • NONLINEARITIES 

Intentional nonlinearities, on the other hand, are artificially introduced 
by the designer. Nonlinear control laws, such as adaptive control laws 
and bang-bang optimal control laws, are typical examples of intentional 
nonlinearities. 
Nonlinearities can also be classified in terms of their mathematical 
properties, as continuous and discontinuous. Because discontinuous 
nonlinearities cannot be locally approximated by linear functions, they 
are also called "hard" nonlinearities. 
• Hard nonlinearities (such as, e.g., backlash, hysteresis, or stiction) are 

commonly found in control systems, both in small range operation and 
large range operation. 

• Whether a system in small range operation should be regarded as 
nonlinear or linear depends on the magnitude of the hard 
nonlinearities and on the extent of their effects on the system 
performance. 



Nonlinear System Behavior 
 • LINEAR SYSTEMS 

• Linear control theory has been predominantly concerned with the 
study of linear time- invariant (LTI) control systems, of the form 

x = Ax 
with x being a vector of states and A being the system matrix. LTI 
systems have quite simple properties, such as a linear system has a 
unique equilibrium point if A is nonsingular; 
• the equilibrium point is stable if all eigenvalues of A have negative 
real parts, regardless of initial conditions; 
• the transient response of a linear system is composed of the 
natural modes of the system, and the general solution can be solved 
analytically; 
• in the presence of an external input u(t), i.e., with 
 

 
 



Nonlinear System Behavior 
 • LINEAR SYSTEMS 

x=Ax+Bu 

the system response has a number of interesting 
properties. First, it satisfies the principle of 
superposition. Second, the asymptotic stability of the 
system implies bounded-input bounded-output stability 
in the presence of u. Third, a sinusoidal input leads to a 
sinusoidal output of the same frequency. 
• NONLINEAR SYSTEMS 

 

 



Nonlinear System Behavior 
 • AN EXAMPLE OF NONLINEAR SYSTEM BEHAVIOR 

however, is much more complex. Due to the lack of linearity 
and of the associated superposition property, nonlinear 
systems respond to external inputs quite differently from 
linear systems, as the following example illustrates. 

 



Nonlinear System Behavior 
 • AN EXAMPLE OF NONLINEAR SYSTEM BEHAVIOR 

• Example : A simplified model of the motion of an underwater 
vehicle can be written 

vˊ + |v|v = u 
 where v is the vehicle velocity and u is the control input (the 
thrust provided by a propeller). The nonlinearity |v|v 
corresponds to a typical "square-law" drag. Assume that we 
apply a unit step input in thrust u, followed 5 seconds later 
by a negative unit step input. The system response is plotted 
in Figure. We see that the system settles much faster in 
response to the positive unit step than it does in response to 
the subsequent negative unit step. 

 



Nonlinear System Behavior 
 • Example : 

• Intuitively, this can be interpreted as reflecting the fact that 
the "apparent damping" coefficient |v| is larger at high 
speeds than at low speeds. Assume now that we repeat the 
same experiment but with larger steps, of amplitude 10. 
Predictably, the difference between the settling times in 
response to the positive and negative steps is even more 
marked. Furthermore, the settling speed vs in response to the 
first step is not 10 times that obtained in response to the first 
unit step in the first experiment, as it would be in a linear 
system. This can again be understood intuitively, by writing 
that 



Nonlinear System Behavior 
 • Example : 



Nonlinear System Behavior 
 • Example : 



Nonlinear System Behavior 
 • Example : 

u = 1    →    0 + |v s | v s = 1     →        v s = 1 

u = 10   →     0 + |v s | v s = 10   →     v s=√10≈3.2 

Carefully understanding and effectively controlling this 
nonlinear behavior is particularly important if the vehicle is to 
move in a large dynamic range and change speeds continually, 
as is typical of industrial remotely-operated underwater 
vehicles (R.O.V.'s). 

 

 



Nonlinear System Behavior 
 SOME COMMON NONLINEAR SYSTEM BEHAVIORS 

Let us now discuss some common nonlinear system 
properties, so as to familiarize ourselves with the complex 
behavior of nonlinear systems and provide a useful 
background for our study. 

 

 



Nonlinear System Behavior 
 SOME COMMON NONLINEAR SYSTEM BEHAVIORS 

Multiple Equilibrium Points 

 Nonlinear System Behavior Nonlinear systems frequently have 
more than one equilibrium point (an equilibrium point is a 
point where the system can stay forever without moving, as 
we shall formalize later). This can be seen by the following 
simple example. 

 

 



Nonlinear System Behavior 
 SOME COMMON NONLINEAR SYSTEM BEHAVIORS 

Multiple Equilibrium Points    Example 

A first-order system Consider the first order system 

xˊ=-x+ x2  

  with initial condition x(0) = x0. Its linearization is 

xˊ=-x 

The solution of this linear equation is x(t) = x0e-t. It is plotted in 
Figure for various initial conditions. The linearized system 
clearly has a unique equilibrium point at x =0. 

 



Nonlinear System Behavior 
 Multiple Equilibrium Points    Example 
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Equilibrium point 

• Equilibrium point doesn’t have to be unique. 
Ex: 

Ex: 
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Nonlinear System Behavior 
 • Limit Cycles 

Nonlinear systems can display oscillations of fixed amplitude 
and fixed period without external excitation. These oscillations 
are called limit cycles, or self-excited oscillations. This 
important phenomenon can be simply illustrated by a famous 
oscillator dynamics, first studied in the 1920's by the Dutch 
electrical engineer Balthasar Van der Pol. 



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 

The second-order nonlinear differential equation  

mẍ + 2c(x2 -l) ẋ + kx = 0  

where m, c and k are positive constants, is the famous Van der 
Pol equation. It can be regarded as describing a mass-spring-
damper system with a position-dependent damping coefficient 
2c(x2 - 1) (or, equivalently, an RLC electrical circuit with a 
nonlinear resistor).  



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 

• For large values of x, the damping coefficient is positive and 
the damper removes energy from the system. This implies 
that the system motion has a convergent tendency. However, 
for small values of x, the damping coefficient is negative and 
the damper adds energy into the system. This suggests that 
the system motion has a divergent tendency.  



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 

• Therefore, because the nonlinear damping varies with x, the 
system motion can neither grow unboundedly nor decay to 
zero. Instead, it displays a sustained oscillation independent 
of initial conditions, as illustrated in Figure. This so-called 
limit cycle is sustained by periodically releasing energy into 
and absorbing energy from the environment, through the 
damping term. This is in contrast with the case of a 
conservative mass spring system, which does not exchange 
energy with its environment during its vibration.  



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 



Nonlinear System Behavior 
 • Limit Cycles 

• Of course, sustained oscillations can also be found in linear systems, 
in the case of marginally stable linear systems (such as a mass-
spring system without damping) or in the response to sinusoidal 
inputs. However, limit cycles in nonlinear systems are different from 
linear oscillations in a number of fundamental aspects. First, the 
amplitude of the self-sustained excitation is independent of the 
initial condition, as seen in Figure, while the oscillation of a 
marginally stable linear system has its amplitude determined by its 
initial conditions. Second, marginally stable linear systems are very 
sensitive to changes in system parameters (with a slight change 
capable of leading either to stable convergence or to instability), 
while limit cycles are not easily affected by parameter changes. 

 



Nonlinear System Behavior 
 • Limit Cycles 

 



Nonlinear System Behavior 
 • Limit Cycles 

• Limit cycles represent an important phenomenon in nonlinear 
systems. They can be found in many areas of engineering and 
nature. Aircraft wing fluttering, a limit cycle caused by the 
interaction of aerodynamic forces and structural vibrations, is 
frequently encountered and is sometimes dangerous. The hopping 
motion of a legged robot is another instance of a limit cycle. Limit 
cycles also occur in electrical circuits, e.g., in laboratory electronic 
oscillators. As one can see from these examples, limit cycles can be 
undesirable in some cases, but desirable in other cases. An 
engineer has to know how to eliminate them when they are 
undesirable, and conversely how to generate or amplify them 
when they are desirable. To do this, however, requires an 
understanding of the properties of limit cycles and a familiarity 
with the tools for manipulating them. 
 



Nonlinear System Behavior 
 • Bifurcations 

• As the parameters of nonlinear dynamic systems are 
changed, the stability of the equilibrium point can change (as 
it does in linear systems) and so can the number of 
equilibrium points. Values of these parameters at which the 
qualitative nature of the system's motion changes are known 
as critical or bifurcation values. The phenomenon of 
bifurcation, i.e., quantitative change of parameters leading to 
qualitative change of system properties, is the topic of 
bifurcation theory.  

 



Nonlinear System Behavior 
 • Bifurcations 

• For instance, the smoke rising from an incense stick 
(smokestacks and cigarettes are old-fashioned) first 
accelerates upwards (because it is lighter than the ambient 
air), but beyond some critical velocity breaks into swirls. 
More prosaically, let us consider the system described by the 
so-called undamped Duffing equation 

ẍ + αx + x3 = 0 

(the damped Duffing equation is ẍ + cẋ + αx + βx3 = 0 , which 
may represent a mass-damper-spring system with a hardening 
spring).  



Nonlinear System Behavior 
 • Bifurcations 

• We can plot the equilibrium points as a function of the 
parameter α. As α varies from positive to negative, one 
equilibrium point splits into three points (xe = 0,√ α ,- √ α), as 
shown in Figure (a). This represents a qualitative change in 
the dynamics and thus α = 0 is a critical bifurcation value. 
This kind for bifurcation is known as a pitchfork, due to the 
shape of the equilibrium point plot in Figure (a). 



Nonlinear System Behavior 
 • Bifurcations 

 



Nonlinear System Behavior 
 • Bifurcations 

• Another kind of bifurcation involves the emergence of limit 
cycles as parameters are changed. In this case, a pair of 
complex conjugate eigenvalues P1= ϒ + jω,   P2= ϒ - jω cross 
from the left-half plane into the right-half plane, and the 
response of the unstable system diverges to a limit cycle. 
Figure (b) depicts the change of typical system state 
trajectories (states are x and ẋ) as the parameter a is varied. 
This type of bifurcation is called a Hopf bifurcation. 

 



Nonlinear System Behavior 
 • Bifurcations 

 



Nonlinear System Behavior 
 • Chaos 

• For stable linear systems, small differences in initial 
conditions can only cause small differences in output. 
Nonlinear systems, however, can display a phenomenon 
called chaos, by which we mean that the system output is 
extremely sensitive to initial conditions. The essential feature 
of chaos is the unpredictability of the system output. Even if 
we have an exact model of a nonlinear system and an 
extremely accurate computer, the system's response in the 
long-run still cannot be well predicted. 



Nonlinear System Behavior 
 • Chaos 

• Chaos must be distinguished from random motion. In random 
motion, the system model or input contain uncertainty and, 
as a result, the time variation of the output cannot be 
predicted exactly (only statistical measures are available). In 
chaotic motion, on the other hand, the involved problem is 
deterministic, and there is little uncertainty in system model, 
input, or initial conditions. 

 



Nonlinear System Behavior 
 • Chaos 

• As an example of chaotic behavior, let us consider the simple 
nonlinear system 

ẍ + 0.1ẋ + x5 = 6 sin t 

• which may represent a lightly-damped, sinusoidally forced 
mechanical structure undergoing large elastic deflections. 
Figure shows the responses of the system corresponding to 
two almost identical initial conditions, namely x(0) = 2, ẋ (0) = 
3 (thick line) and x(0) = 2.01, ẋ (0) = 3.01 (thin line). Due to 
the presence of the strong nonlinearity in x5 , the two 
responses are radically different after some time. 

 



Nonlinear System Behavior 
 • Chaos 

 



Nonlinear System Behavior 
 • Chaos 

• Chaotic phenomena can be observed in many physical 
systems. The most commonly seen physical problem is 
turbulence in fluid mechanics (such as the swirls of our 
incense stick). Atmospheric dynamics also display clear 
chaotic behavior, thus making long-term weather prediction 
impossible. Some mechanical and electrical systems known 
to exhibit chaotic vibrations include buckled elastic 
structures, mechanical systems with play or backlash, 
systems with aeroelastic dynamics, wheelrail dynamics in 
railway systems, and, of course, feedback control devices. 

 

 



Nonlinear System Behavior 
 • Chaos 

• Chaos occurs mostly in strongly nonlinear systems. This 
implies that, for a given system, if the initial condition or the 
external input cause the system to operate in a highly 
nonlinear region, it increases the possibility of generating 
chaos. Chaos cannot occur in linear systems. Corresponding 
to a sinusoidal input of arbitrary magnitude, the linear system 
response is always a sinusoid of the same frequency. By 
contrast, the output of a given nonlinear system may display 
sinusoidal, periodic, or chaotic behaviors, depending on the 
initial condition and the input magnitude. 

 



Nonlinear System Behavior 
 • Chaos 

• In the context of feedback control, it is of course of interest to 
know when a nonlinear system will get into a chaotic mode 
(so as to avoid it) and, in case it does, how to recover from it. 
Such problems are the object of active research. 

 



Nonlinear System Behavior 
 • Other behaviors 

• Other interesting types of behavior, such as jump resonance, 
subharmonic  generation, asynchronous quenching, and 
frequency-amplitude dependence of free vibrations, can also 
occur and become important in some system studies. 
However, the above description should provide ample 
evidence that nonlinear systems can have considerably richer 
and more complex behavior than linear systems. 

 



Analysis methods 

• 1. Linearisation Technique 

• 2. Phase Plane Method 

• 3. Describing Function Method 

• 4. Lyapunov Stability Analysis 



In Design NL.sys 

• 1. Linear 

• 2. Optimal 

• 3. Adaptive 

• 4. Robust 



• Linear   • Nonlinear 
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Friction force 

 



hysteresis 



Backlash  



Saturation –dead zone 

 



On-Off or Bang Bang 

 



Stiction 

• Stiction or high static friction is a common problem in spring-
diaphragm type control valves, which are widely used in the process 
industry 

https://www.sciencedirect.com/topics/engineering/stiction
https://www.sciencedirect.com/topics/engineering/stiction
https://www.sciencedirect.com/topics/engineering/static-friction
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Equilibrium point 

• Equilibrium point doesn’t have to be unique. 
Ex: 
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1. Phenomena of Nonlinear Dynamics 

• Linear vs. Nonlinear  

System 
Input Output 

u y
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Definitions :  Linear : when the superposition holds 
        Nonlinear : otherwise 
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Stability & Output of systems 

• Stability depends on the system’s parameter (linear) 
 

• Stability depends on the initial conditions, input signals as well as the system 
parameters (nonlinear). 
 

• Output of a linear system has the same frequency as the input although its 
amplitude and phase may differ. 
 

• Output of a nonlinear system usually contains additional frequency 
components and may, in fact, not contain the input frequency.  
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• Time invariant vs. Time varying 
• System (1) is time invariant  parameters are constant 

 

 

 

 

 

 

 

Time invariant vs. Time varying 
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•  System (2) is time invariant  no function has t as its argument. 

- Linear time varying system 

- Nonlinear time varying system 


