
➢ Driving Servo Motors
➢ USB and Serial Communication

5محاضرة

1تطبيقات ميكاترونيك

https://manara.edu.sy/

عيس ى الغنام .فادي متوج د. د

كلية الهندسة
روبوت والأنظمة الذكية قسم هندسة ال

2023-2024

https://manara.edu.sy/

https://manara.edu.sy/

Driving Servo Motors

https://manara.edu.sy/

https://manara.edu.sy/

Servo Motors

• DC motors serve as excellent drive motors, but they are not as ideal for precision
work because no feedback occurs. In other words, without using an external
encoder of some kind, we will never know the absolute position of a DC motor.

• Servo motors, or servos, in contrast, are unique in that we command them to rotate
to a particular angular position and they stay there until we tell them to move to a
new position.

• This is important when we need to move our system to a known position.

• Examples include actuating door locks, precisely controlling the opening of an
aperture……..

https://manara.edu.sy/

https://manara.edu.sy/

Understanding Servo Control

• Unlike their DC motor counterparts, servo motors have three pins: power (usually
red), ground (usually brown or black), and signal (usually white or orange).

https://manara.edu.sy/

https://manara.edu.sy/

• Servos can draw more current than Arduino may be able to provide.
• The power and ground lines of a servo should always be connected to a steady power

source.
• Servos are controlled using adjustable pulse widths on the signal line.

– Sending a 1ms 5V pulse turns the motor to 0 degrees
– sending a 2ms 5V pulse turns the motor to 180 degrees
– Sending a 1.5ms pulse turns the motor to 90 degrees.

• Once a pulse has been sent, the servo turns to that position and stays there until another
pulse instruction is received.

• However, if we want a servo to “hold” its position (resist being pushed on and try to
maintain the exact position), we just resend the command once every 20ms.

https://manara.edu.sy/

https://manara.edu.sy/

Servo motor timing diagram

https://manara.edu.sy/

https://manara.edu.sy/

• Servos can draw more current than Arduino may be able to provide.
However, most servos are designed to run at 5V, not 9V or 12V like a DC
motor.

• Even though the voltage is the same as that of an Arduino, we use a separate
power source that can supply more current.

• To do this ,we use a 9V battery and a linear regulator to generate a 5V supply
from our 9V battery.

https://manara.edu.sy/

https://manara.edu.sy/

The voltage regulator

• A linear regulator is an simple device that generally has three pins: input voltage, output voltage,
and ground.

• The ground pin is connected to both the ground of the input supply and to the ground of the
output

• In the case of linear-voltage regulators, the input voltage always must be higher than the output
voltage, and the output voltage is set at a fixed value depending on the regulator you use.

• The voltage drop between the input and the output is burned off as heat, and the regulator takes
care of ensuring that the output always remains the same, even as the voltage of the input drops
(in the case of a battery discharging over time).

• L4940V5 is a 5V voltage regulator that is capable of supplying up to 1.5 amps at 5V.

https://manara.edu.sy/

https://manara.edu.sy/

L4940V5 5V voltage regulator

https://manara.edu.sy/

https://manara.edu.sy/

Controlling a Servo

https://manara.edu.sy/

https://manara.edu.sy/

• The Arduino IDE includes a built-in library that makes controlling servos a breeze.

• A library is a collection of code that is useful, but not always needed in sketches.

• All we have to do is attach a servo “object” to a particular pin and give it an angle
to rotate to.

• The library takes care of the rest, even setting the pin as an output.

• The simplest way to test out the functionality of our servo is to map the
potentiometer directly to servo positions.
– Turning the potentiometer to 0 moves the servo to 0 degrees.

– Turning the potentiometer to 1023 moves the servo to 180 degrees

https://manara.edu.sy/

https://manara.edu.sy/

//Servo Potentiometer Control

#include <Servo.h>

const int SERVO=9; //Servo on Pin 9

const int POT=0; //POT on Analog Pin 0

Servo myServo;

int val = 0; //for storing the reading from the POT

void setup() {

myServo.attach(SERVO);

}

void loop() {

val = analogRead(POT); //Read Pot

val = map(val, 0, 1023, 0, 179); //scale it to servo range

myServo.write(val); //sets the servo

delay(15); //waits for the servo

}

https://manara.edu.sy/

https://manara.edu.sy/

USB and Serial Communication

https://manara.edu.sy/

https://manara.edu.sy/

• ATMega328P that we find on the Arduino Uno have one hardware serial port.
• It includes a transmit (TX) and receive (RX) pin that can be accessed on digital pins 0 and 1.
• Arduino is equipped with a bootloader that allows us to program it over this serial

interface.

• To facilitate this, those pins are “multiplexed” (meaning that they are connected to more
than one function); they connect, indirectly, to the transmit and receive lines of our USB
cable.

• However, serial and USB are not directly compatible, so a secondary integrated circuit (IC)
is used to facilitate the conversion between the two.

• This is the type of interface present on an Uno, where an intermediary IC facilitates USB-to-
serial communication.

https://manara.edu.sy/

https://manara.edu.sy/

Listening to the Arduino

• The most basic serial function that we can do with an Arduino is to print to
the computer’s serial terminal.

• To print data to the terminal, we only need to utilize three functions:

➢ Serial.begin(baud_rate)

➢ Serial.print("Message")

➢ Serial.println("Message")

https://manara.edu.sy/

https://manara.edu.sy/

Serial Printing Test with a Potentiometer

• To experiment with this functionality, we wire up a simple circuit with a potentiometer
connected to pin A0 on the Arduino.

• We will read the value of the potentiometer and print it as both a raw value and a
percentage value.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

//Simple Serial Printing Test with a Potentiometer

const int POT=0; //Pot on analog pin 0

void setup() {

Serial.begin(9600); //Start serial port with baud = 9600

}

void loop() {

int val = analogRead(POT); //Read potentiometer

int per = map(val, 0, 1023, 0, 100); //Convert to percentage

Serial.print("Analog Reading: ");

Serial.print(val); //Print raw analog value

Serial.print(" Percentage: ");

Serial.print(per); //Print percentage analog value

Serial.println("%"); //Print % sign and newline

delay(1000); //Wait 1 second, then repeat

}

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• Serial.begin()must be called once at the start of the program in setup() to
prepare the serial port for communication.

• After we have done this, we can use Serial.print() and Serial.println()
functions to write data to the serial port.

• The only difference between the two is that Serial.println() adds a carriage
return at the end of the line (so that the next thing printed will appear on the
following line).

https://manara.edu.sy/

https://manara.edu.sy/

Using Special Characters

• We can transmit a variety of “special characters” over serial, which allow us to change the
formatting of the serial data we are printing.

• We indicate these special characters with a slash escape character (\) followed by a command
character.

• There are a variety of these special characters, but the two of greatest interest are the tab and
newline characters.

• To insert a tab character, we add a \t to the string.
• To insert a newline character, we add a \n to the string.
• This is particularly useful if we want a newline to be inserted at the beginning of a string,

instead of at the end as the Serial.println() function does.
• If, for some reason, we actually want to print \n or \t in the string, we can do so by printing \\n

or \\t , respectively.

https://manara.edu.sy/

https://manara.edu.sy/

Tabular serial printing test with a
potentiometer

//Tabular serial printing test with a potentiometer

const int POT=0; //Pot on analog pin 0

void setup()

{

Serial.begin(9600); //Start Serial Port with Baud = 9600

}

void loop()

{

Serial.println("\nAnalog Pin\tRaw Value\tPercentage");

Serial.println("--");

for (int i = 0; i < 10; i++)

{

int val = analogRead(POT); //Read potentiometer

int per = map(val, 0, 1023, 0, 100); //Convert to percentage

Serial.print("A0\t\t");

Serial.print(val);

Serial.print("\t\t");

Serial.print(per); //Print percentage analog value

Serial.println("%"); //Print % sign and newline

delay(1000); //Wait 1 second, then repeat

}

}

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Serial Data Type Options

https://manara.edu.sy/

https://manara.edu.sy/

Talking to the Arduino

• What good is a conversation with our Arduino if it’s only going in one
direction?

• Now that we understand how the Arduino sends data to our computer, let’s
discuss how to send commands from our computer to the Arduino.

https://manara.edu.sy/

https://manara.edu.sy/

Arduino IDE serial monitor has a text entry field at the top, and a drop-down menu at
the bottom.

https://manara.edu.sy/

https://manara.edu.sy/

• The drop-down menu determines what, if anything, is appended to end of our
commands when we send them to the Arduino.

• When we select Newline, which just appends a \n to the end of anything that we send
from the text entry field at the top of the serial monitor window.

• Unlike with some other terminal programs, the Arduino IDE serial monitor sends our
whole command string at one time when we press the Enter key or the Send button.

• This is in contrast to other serial terminals like PuTTy that send characters as we type
them.

https://manara.edu.sy/

https://manara.edu.sy/

• How to use the Arduino IDE serial monitor to send commands manually to the
Arduino?

• How to send multiple command values at once ?

Reading Information from a Computer or Other Serial Device

https://manara.edu.sy/

https://manara.edu.sy/

• Arduino’s serial port has a buffer. In other words, we can send several bytes

of data at once and the Arduino will queue them up and process them in order
based on the content of our sketch.

• We do not need to worry about sending data faster than our loop time, but we
do need to worry about sending so much data that it overflows the buffer and
information is lost.

https://manara.edu.sy/

https://manara.edu.sy/

Telling the Arduino to Echo Incoming
Data

• The simplest thing we can do is to make the Arduino echo back everything that we send it.

• To accomplish this, the Arduino basically just needs to monitor its serial input buffer and print any
character that it receives.

• To do this, we need to use two commands :
– Serial.available() : returns the number of characters (or bytes) that are currently stored in the Arduino’s

incoming serial buffer. Whenever it’s more than zero, we will read the characters and echo them back to
the computer.

– Serial.read() : reads and returns the next character that is available in the buffer.

• Each call to Serial.read()will only return 1 byte, so we need to run it for as long as Serial.available() is
returning a value greater than zero.

• Each time Serial.read() grabs a byte, that byte is removed from the buffer, so the next byte is ready
to be read.

https://manara.edu.sy/

https://manara.edu.sy/

//Echo every character

char data; //Holds incoming character

void setup()

{

Serial.begin(9600); //Serial Port at 9600 baud

}

void loop()

{

//Only print when data is received

if (Serial.available() > 0)

{

data = Serial.read(); //Read byte of data

Serial.print(data); //Print byte of data

}

}

https://manara.edu.sy/

https://manara.edu.sy/

• When we send an alphanumeric character via the serial monitor, we aren’t actually
passing a “5”, or an “A”. We are sending a byte that the computer interprets as a
character.

• In the case of serial communication, the ASCII character set is used to represent all
the letters, number, symbols, and special commands that we might want to send.

https://manara.edu.sy/

https://manara.edu.sy/

ASCII
table

https://manara.edu.sy/

https://manara.edu.sy/

• When reading a value that we have sent from the computer, the data must be
read as a char type.

• Even if we are only expecting to send numbers from the serial terminal, we
need to read values as a character first, and then convert as necessary.

• For example, if we modify the code to declare data as type int , sending a value
of 5 would return 53 to the serial monitor because the decimal representation
of the character 5 is the number 53.

https://manara.edu.sy/

https://manara.edu.sy/

• We often want to send numeric values to the Arduino. So how do we do that?

• We can do so in a few ways:

– First, we can simply compare the characters directly. If we want to turn an LED on when we send
a 1 , we can compare the character values like this: if (Serial.read() == '1') .

– A second option is to convert each incoming byte to an integer by subtracting the zero-valued
character, like this: int val = Serial.read() - '0' However, this doesn’t work very well if we intend to
send numbers that are greater than 9, because they will be multiple digits. To deal with this, the
Arduino IDE includes a handy function called parseInt()that attempts to extract integers from a
serial data stream.

https://manara.edu.sy/

https://manara.edu.sy/

Example1 : Sending Single Characters to Control an LED

• In this example, we write a sketch that uses a simple character comparison to control
an LED.

• When only sending a single character, the easier thing to do is to do a simple
character comparison in an if statement.

• We will send a 1 to turn an LED on, and a 0 to turn it off.

• We wire an LED up to pin 9 of our Arduino.

• Each time a character is added to the buffer, it is compared to a '0' or a '1' , and the
appropriate action is taken.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

//Single Character Control of an LED
const int LED=9;
char data; //Holds incoming character
void setup() {
Serial.begin(9600); //Serial Port at 9600 baud
pinMode(LED, OUTPUT);
}
void loop() {
//Only act when data is available in the buffer
if (Serial.available() > 0)
{
data = Serial.read(); //Read byte of data
//Turn LED on
if (data == '1')
{
digitalWrite(LED, HIGH);
Serial.println("LED ON");
}
//Turn LED off
else if (data == '0')
{
digitalWrite(LED, LOW);
Serial.println("LED OFF"); } } }

https://manara.edu.sy/

https://manara.edu.sy/

➢In this example, an else if statement is used instead of a simple else statement.

➢Because our terminal is also set to send a newline character with each transmission,
it’s critical to clear these from the buffer.

➢ Serial.read() will read in the newline character which is not equivalent to a '0' or a '1' ,
and it will be overwritten the next time Serial.read() is called.

➢If just an else statement were used, both '0' and '\n' would trigger turning the LED
off. Even when sending a '1' , the LED would immediately turn off again when the
'\n' was received!

https://manara.edu.sy/

https://manara.edu.sy/

Example2 : Sending Lists of Values to Control an RGB LED

• Sending a single command character is fine for controlling a single digital pin, but

what if we want to command multiple devices ?
• This example explores sending multiple comma-separate values to simultaneously

command multiple devices.

• To facilitate testing this, we wire up a common cathode RGB LED

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• To control this RGB LED, we send three separate 8-bit values (0–255) to set the
brightness of each LED color.

• For example, to set all the colors to full brightness, we send “255,255,255” .

• This presents a few challenges:

– We need to differentiate between numbers and commas.

– We need to turn this sequence of characters into integers that we can pass to

analogWrite()functions.

– We need to be able to handle the fact that values could be one, two, or three digits.

https://manara.edu.sy/

https://manara.edu.sy/

• The Arduino IDE implements a very handy function for identifying and extracting
integers: Serial.parseInt().

• Serial.parseInt()returns the first valid integer number from the serial buffer.
Characters that are not integers are skipped.

• Serial.parseInt()is terminated by the first character that is not a digit.

• Each call to this function waits until a non-numeric value enters the serial buffer,
and converts the previous digits into an integer.

• The first two values are read when the commas are detected, and the last value is
read when the newline is detected.

https://manara.edu.sy/

https://manara.edu.sy/

//Define LED pins
const int RED =11;
const int GREEN =10;
const int BLUE =9;
//Variables for RGB levels
int rval = 0;
int gval = 0;
int bval = 0;
void setup()
{
Serial.begin(9600); //Serial Port at 9600 baud
//Set pins as outputs
pinMode(RED, OUTPUT);
pinMode(GREEN, OUTPUT);
pinMode(BLUE, OUTPUT);
}

https://manara.edu.sy/

https://manara.edu.sy/

void loop()

{

//Keep working as long as data is in the buffer

while (Serial.available() > 0)

{

rval = Serial.parseInt(); //First valid integer

gval = Serial.parseInt(); //Second valid integer

bval = Serial.parseInt(); //Third valid integer

if (Serial.read() == '\n') //Done transmitting

{

//set LED

analogWrite(RED, rval);

analogWrite(GREEN, gval);

analogWrite(BLUE, bval);

} } }

https://manara.edu.sy/

https://manara.edu.sy/

• The program keeps looking for the three integer values until a newline is detected. Once
this happens, the values that were read are used to set the brightness of the LEDs.

• To use this, we open the serial monitor and enter three values between 0 and 255
separated by a comma, like "200,30,180" .

• We can try mixing all kinds of pretty colors!

https://manara.edu.sy/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

