CFIDC301: Engineering Nathematics
 Lecture Notes 5: Series and Residues: Part B

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

Chapter 3

Series and Residues

1. Sequences and Series
2. Taylor Series
3. Laurent Series
4. Zeros and Poles
5. Residues and Residue Theorem
6. Evaluation of Real Integrals

4. Zeros and Poles

Classification of Isolated Singular Points

- A classification is given depending on whether the principal part of its Laurent expansion contains zero, a finite number, or an infinite number of terms.

$z=z_{0}$	Laurent Series
Removable singularity	$a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots$
Pole of order n	$\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\frac{a_{-(n-1)}}{\left(z-z_{0}\right)^{n-1}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\cdots$
Simple pole	$\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots$
Essential singularity	$\cdots+\frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots$

- Example 14: Removable Singularity

$$
\frac{\sin z}{z}=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots \quad z=0 \text { is a removable singularity of } f(z)=(\sin z) / z
$$

- Example 15: Poles and Essential Singularity
principal part
$\frac{\sin z}{z^{2}}=\frac{1}{z}-\frac{z}{3!}+\frac{z^{3}}{5!}-\cdots$
$|z|>0$, we see that $a_{-1} \neq 0$, and so $z=0$ is a simple pole of the function $f(z)=(\sin z) / z^{2}$.

The Laurent expansion of $f(z)=1 /(z-1)^{2}(z-3)$ valid for $0<|z-1|<2$
principal part
$f(z)=-\overbrace{\frac{1}{2(z-1)^{2}}-\frac{1}{4(z-1)}}-\frac{1}{8}-\frac{z-1}{16}-\cdots \quad \begin{aligned} & \text { since } a_{-2} \neq 0 \text {, we conclude that } z=1 \\ & \text { is a pole of order } 2 .\end{aligned}$

The principal part of Laurent series of the function $f(z)=e^{3 / z}$ contains an infinite number of terms. Thus $z=0$ is an essential singularity.

Zeros

- z_{0} is a zero of a function f if $f\left(z_{0}\right)=0$. An analytic function f has a zero of order n at $z=z_{0}$ if

$$
f\left(z_{0}\right)=0, \quad f^{\prime}\left(z_{0}\right)=0, \quad f^{\prime \prime}\left(z_{0}\right)=0, \cdots, \quad f^{(n-1)}\left(z_{0}\right)=0, \text { but } f^{(n)}\left(z_{0}\right) \neq 0
$$

- If an analytic function f has a zero of order n at $z=z_{0}$, it follows that the Taylor series expansion of f centered at z_{0} must have the form:

$$
\begin{aligned}
f(z) & =a_{n}\left(z-z_{0}\right)^{n}+a_{n+1}\left(z-z_{0}\right)^{n+1}+a_{n+2}\left(z-z_{0}\right)^{n+2}+\cdots \\
& =\left(z-z_{0}\right)^{n}\left[a_{n}+a_{n+1}\left(z-z_{0}\right)+a_{n+2}\left(z-z_{0}\right)^{2}+\cdots\right]
\end{aligned}
$$

- Theorem 11 (Zero of Order n): A function f that is analytic in some disk $\left|z-z_{0}\right|<R$ has a zero of order n at $z=z_{0}$ if and only if f can be written $f(z)=\left(z-z_{0}\right)^{n} \phi(z)$, where ϕ is analytic at $z=z_{0}$ and $\phi\left(z_{0}\right) \neq 0$.
- Example 16: Order of a Zero

The analytic function $f(z)=z \sin z^{2}$ has a zero of order 3 at $z=0$.
$z \sin z^{2}=z\left[z^{2}-\frac{z^{6}}{3!}+\frac{z^{10}}{5!}-\cdots\right]=z^{3}\left[1-\frac{z^{4}}{3!}+\frac{z^{8}}{5!}-\cdots\right]$

Poles

- Theorem 12 (Pole of Order n): A function f that is analytic in a deleted neighborhood of $z_{0}, 0<\left|z-z_{0}\right|<R$ has a pole of order n at $z=z_{0}$ if and only if f can be written $f(z)=\phi(z) /\left(z-z_{0}\right)^{n}$, where ϕ is analytic at $z=z_{0}$ and $\phi\left(z_{0}\right) \neq 0$.
- Theorem 13 (Pole of Order n): If the functions f and g are analytic at $z=z_{0}$ and f has a zero of order n at $z=z_{0}$ and $g\left(z_{0}\right) \neq 0$, then the function $F(z)=g(z) / f(z)$ has a pole of order n at $z=z_{0}$.
- Example 17: Order of Poles

$$
f(z)=\frac{2 z+5}{(z-1)(z+5)(z-2)^{4}}
$$

The denominator has zeros of order 1 at $z=1$ and $z=-5$, and a zero of order 4 at $z=2$. Since the numerator is not zero at any of these points, it follows that f has simple poles at $z=1$ and $z=-5$, and a pole of order 4 at $z=2$. $z=0$ is a zero of order 3 of $f(z)=z \sin z^{2} \Rightarrow F(z)=1 /\left(z \sin z^{2}\right)$ has a pole of order 3 at $z=0$.

- If a function has a pole at $z=z_{0}$, then $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$ from any direction.

5. Residues and Residue Theorem

- If the complex function f has an isolated singularity at the point z_{0}, then f has a Laurent series representation:

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}=\cdots+\frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots
$$

which converges for all z near z_{0}. More precisely, the representation is valid in some deleted neighborhood of $z_{0}, 0<\left|z-z_{0}\right|<R$.

Residue

The coefficient a_{-1} of $1 /\left(z-z_{0}\right)$ in the Laurent series given above is called the residue of the function f at the isolated singularity z_{0}.

$$
a_{-1}=\operatorname{Res}\left(f(z), z_{0}\right)
$$

- Example 18: Residues
$z=1$ is a pole of order 2 of the function $f(z)=1 /(z-1)^{2}(z-3)$. From the Laurent series we see that the coefficient of $1 /(z-1)$ is $a_{-1}=\operatorname{Res}(f(z), 1)=-1 / 4$. $z=0$ is an essential singularity of $f(z)=e^{3 / z}$. From the Laurent series we see that the coefficient of $1 / z$ is $a_{-1}=\operatorname{Res}(f(z), 0)=3$.
- Theorem 14 (Residue at a Simple Pole): If f has a simple pole at $z=z_{0}$, then:

$$
\operatorname{Res}\left(f(z), z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

- Theorem 15 (Residue at a Pole of Order n): If f has a pole of order n at $z=z_{0}$, then

$$
\operatorname{Res}\left(f(z), z_{0}\right)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n} f(z)
$$

- Example 19: Residue at a Pole

The function $f(z)=1 /(z-1)^{2}(z-3)$ has a simple pole at $z=3$ and a pole of order 2 at $z=1$

$$
\begin{gathered}
\operatorname{Res}(f(z), 3)=\lim _{z \rightarrow 3}(z-3) f(z)=\lim _{z \rightarrow 3} \frac{1}{(z-1)^{2}}=\frac{1}{4} \\
\operatorname{Res}(f(z), 1)=\frac{1}{1!} \lim _{z \rightarrow 1} \frac{d}{d z}(z-1)^{2} f(z)=\lim _{z \rightarrow 1} \frac{d}{d z} \frac{1}{z-3}=-\frac{1}{4}
\end{gathered}
$$

- Suppose a function f can be written as a quotient $f(z)=g(z) / h(z)$, where g and h are analytic at $z=z_{0}$. If $g\left(z_{0}\right) \neq 0$ and if the function h has a zero of order 1 at z_{0}, then f has a simple pole at $z=z_{0}$ and

$$
\operatorname{Res}\left(f(z), z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

- Example 20: Residue at a Pole

The function $1 /\left(z^{4}+1\right)$ has four simple poles

$$
\begin{gathered}
z_{1}=e^{\pi i / 4}, z_{2}=e^{3 \pi i / 4}, z_{3}=e^{5 \pi i / 4}, z_{4}=e^{7 \pi i / 4} \\
\operatorname{Res}\left(f(z), z_{1}\right)=\frac{1}{4 z_{1}^{3}}=\frac{1}{4} e^{-3 \pi i / 4}=-\frac{1}{4 \sqrt{2}}-\frac{1}{4 \sqrt{2}} i \\
\operatorname{Res}\left(f(z), z_{2}\right)=\frac{1}{4 z_{2}^{3}}=\frac{1}{4} e^{-9 \pi i / 4}=\frac{1}{4 \sqrt{2}}-\frac{1}{4 \sqrt{2}} i \\
\operatorname{Res}\left(f(z), z_{3}\right)=\frac{1}{4 z_{3}^{3}}=\frac{1}{4} e^{-15 \pi i / 4}=\frac{1}{4 \sqrt{2}}+\frac{1}{4 \sqrt{2}} i \\
\operatorname{Res}\left(f(z), z_{4}\right)=\frac{1}{4 z_{4}^{3}}=\frac{1}{4} e^{-21 \pi i / 4}=-\frac{1}{4 \sqrt{2}}+\frac{1}{4 \sqrt{2}} i
\end{gathered}
$$

Residue Theorem

- Theorem 16 (Cauchy's Residue Theorem): Let D be a simply connected domain and C a simple closed contour lying entirely within D. If a function f is analytic on and within C, except at a finite number of singular points z_{1}, z_{2}, \ldots, z_{n} within C, then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f(z), z_{k}\right)
$$

- Example 21: Evaluation by the Residue Theorem Evaluate $\oint_{C} \frac{1}{(z-1)^{2}(z-3)} d z$, where
(a) C is the rectangle defined by $x=0, x=4, y=-1, y=1$, and
(b) C is the circle $|z|=2$.

(a) $\oint_{C} \frac{1}{(z-1)^{2}(z-3)} d z=2 \pi i[\operatorname{Res}(f(z), 1)+\operatorname{Res}(f(z), 3)]=2 \pi i\left[-\frac{1}{4}+\frac{1}{4}\right]=0$
(b) $\oint_{C} \frac{1}{(z-1)^{2}(z-3)} d z=2 \pi i \operatorname{Res}(f(z), 1)=2 \pi i\left(-\frac{1}{4}\right)=-\frac{\pi}{2} i$
- Example 22: Evaluation by the Residue Theorem

Evaluate $\oint_{C} \frac{2 z+6}{z^{2}+4} d z$, where C is the circle $|z-i|=2$

$$
\oint_{C} \frac{2 z+6}{z^{2}+4} d z=2 \pi i \operatorname{Res}(f(z), 2 i)=2 \pi i \frac{3+2 i}{2 i}=\pi(3+2 i)
$$

- Example 23: Evaluation by the Residue Theorem Evaluate $\oint_{C} \tan z d z$, where C is the circle $|z|=2$
$\tan z$ has simple poles at the points where $\cos z=0 . z=(2 n+1) \pi / 2, n=0,1$, $2, \ldots$. Since only $-\pi / 2$ and $\pi / 2$ are within the circle $|z|=2$,

$$
\oint_{C} \tan z d z=2 \pi i[\operatorname{Res}(f(z),-\pi / 2)+\operatorname{Res}(f(z), \pi / 2)]=2 \pi i[-1-1]=-4 \pi i
$$

- Example 24: Evaluation by the Residue Theorem

Evaluate $\oint_{C} e^{3 / z} d z$, where C is the circle $|z|=1$

$$
\oint_{C} e^{3 / z} d z=2 \pi i \operatorname{Res}(f(z), 0)=6 \pi i
$$

- Note: L'Hôpital's rule is valid in complex analysis. If $f(z)=g(z) / h(z)$, where g and h are analytic at $z=z_{0}, g\left(z_{0}\right)=h\left(z_{0}\right)=0$, and $h^{\prime}\left(z_{0}\right) \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{g(z)}{h(z)}=\frac{g^{\prime}\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

6. Evaluation of Real Integrals

Integrals of the Form $\int_{0}^{2 \pi} F(\cos \theta, \sin \theta) d \theta$

- The basic idea here is to convert this integral into a complex integral where the contour C is the unit circle centered at the origin. $z=\cos \theta+i \sin \theta=e^{i \theta}$, $0 \leq \theta \leq 2 \pi$

$$
\begin{gathered}
d z=i e^{i \theta} d \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \\
d \theta=\frac{d z}{i z}, \quad \cos \theta=\frac{1}{2}\left(z+z^{-1}\right), \quad \sin \theta=\frac{1}{2 i}\left(z-z^{-1}\right) \\
\oint_{C} F\left(\frac{1}{2}\left(z+z^{-1}\right), \frac{1}{2 i}\left(z-z^{-1}\right)\right) \frac{d z}{i z}
\end{gathered}
$$

where C is $|z|=1$.

- Example 25: A Real Trigonometric Integral

Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{(2+\cos \theta)^{2}}$

$$
\begin{aligned}
& \frac{4}{i} \oint_{C} \frac{z}{\left(z^{2}+4 z+1\right)^{2}} d z \\
& f(z)=\frac{z}{\left(z^{2}+4 z+1\right)^{2}}=\frac{z}{\left(z-z_{0}\right)^{2}\left(z-z_{1}\right)^{2}}
\end{aligned}
$$

$$
z_{0}=-2-\sqrt{3}, z_{1}=-2+\sqrt{3} \text { only } z_{1} \text { is inside the unit circle } C,
$$

$$
\oint_{C} \frac{z}{\left(z^{2}+4 z+1\right)^{2}} d z=2 \pi i \operatorname{Res}\left(f(z), z_{1}\right)
$$

$$
\operatorname{Res}\left(f(z), z_{1}\right)=\lim _{z \rightarrow z_{1}} \frac{d}{d z}\left(z-z_{1}\right)^{2} f(z)=\lim _{z \rightarrow z_{1}} \frac{d}{d z} \frac{z}{\left(z-z_{0}\right)^{2}}=\frac{1}{6 \sqrt{3}}
$$

$$
\begin{aligned}
& \frac{4}{i} \oint_{C} \frac{z}{\left(z^{2}+4 z+1\right)^{2}} d z=\frac{4}{i} 2 \pi i \frac{1}{6 \sqrt{3}}=\frac{4 \pi}{3 \sqrt{3}} \\
& \int_{0}^{2 \pi} \frac{d \theta}{(2+\cos \theta)^{2}}=\frac{4 \pi}{3 \sqrt{3}}
\end{aligned}
$$

Integrals of the Form $\int_{-\infty}^{\infty} f(x) d x$

- When f is continuous on $(-\infty, \infty), \int_{-\infty}^{\infty} f(x) d x=\lim _{r \rightarrow \infty} \int_{-r}^{0} f(x) d x+\lim _{R \rightarrow \infty} \int_{0}^{R} f(x) d x$
- If both limits exist, the integral is said to be convergent; if one or both of the limits fail to exist, the integral is divergent.
- In the event that we know (a priori) that an integral $\int_{-\infty}^{\infty} f(x) d x$ converges:

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x
$$

- This limit is called the Cauchy principal value of the integral and is written:

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x
$$

- When an integral of the form $\int_{-\infty}^{\infty} f(x) d x$ converges, its Cauchy principal value is the same as the value of the integral. If the integral diverges, it may still possess a Cauchy principal value. For ex., the integral $\int_{-\infty}^{\infty} x d x$ diverge, but:

$$
\text { P.V. } \int_{-\infty}^{\infty} x d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} x d x=\lim _{R \rightarrow \infty}\left[\frac{R^{2}}{2}-\frac{(-R)^{2}}{2}\right]=0
$$

- To evaluate an integral $\int_{-\infty}^{\infty} f(x) d x$, where $f(x)=P(x) / Q(x)$ is continuous on $(-\infty, \infty)$, by residue theory we replace x by the complex variable z and integrate the complex function f over a closed contour C that consists of:
the interval $[-R, R]$ on the real axis and a semicircle C_{R} of radius large enough to enclose all the poles of $f(z)=P(z) / Q(z)$ in the upper half-plane $\operatorname{Re}(z)>0$.

$$
\oint_{C} f(z) d z=\int_{C_{R}} f(z) d z+\int_{-R}^{R} f(x) d x=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f(z), z_{k}\right)
$$

where $z_{k}, k=1,2, \ldots, n$, denotes poles in the upper half-plane.
If we can show that the integral $\int_{C_{R}} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$, then we have:

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f(z), z_{k}\right)
$$

- Example 26: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x$

$$
\begin{aligned}
& f(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+9\right)}=\frac{1}{(z+i)(z-i)(z+3 i)(z-3 i)} \xrightarrow{\left({ }^{-R}\right.} d z=\int_{-R}^{R} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x+\int_{C_{R}} \frac{1}{\left(z^{2}+1\right)\left(z^{2}+9\right)} d z=I_{1}+I_{2} \\
& \oint_{C} \frac{1}{\left(z^{2}+1\right)\left(z^{2}+9\right)} d z=2 \pi i\left[\frac{1}{16 i}+\left(-\frac{1}{48 i}\right)\right]=\frac{\pi}{12} \\
& I_{1}+I_{2}=2 \pi i[\operatorname{Res}(f(z), i)+\operatorname{Res}(f(z), 3 i)]=2 t
\end{aligned}
$$

$$
\text { On } C_{R},\left|\left(z^{2}+1\right)\left(z^{2}+9\right)\right|=\left|z^{2}+1\right|\left|z^{2}+9\right| \geq\left.\left||z|^{2}-1\right|| | z\right|^{2}-9 \mid=\left(R^{2}-1\right)\left(R^{2}-9\right)
$$

$M L$-inequality

$$
\begin{gathered}
\left|I_{2}\right|=\left|\int_{C_{R}} \frac{1}{\left(z^{2}+1\right)\left(z^{2}+9\right)} d z\right| \leq \frac{\pi R}{\left(R^{2}-1\right)\left(R^{2}-9\right)} \underset{R \rightarrow \infty}{\rightarrow} 0 \\
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x=P \cdot V \cdot \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x=\frac{\pi}{12}
\end{gathered}
$$

- Theorem 17 (Behavior of Integral as $R \rightarrow \infty$): Suppose $f(z)=P(z) / Q(z)$, where the degree of $P(z)$ is n and the degree of $Q(z)$ is $m \geq n+2$. If C_{R} is a semicircular contour $z=R e^{i \theta}, 0 \leq \theta \leq \pi$, then $\int_{C_{R}} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$.
- Example 27: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of $\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x$

$$
\begin{gathered}
\operatorname{Res}\left(f(z), z_{1}\right)=-\frac{1}{4 \sqrt{2}}-\frac{1}{4 \sqrt{2}} i \quad \operatorname{Res}\left(f(z), z_{2}\right)=\frac{1}{4 \sqrt{2}}-\frac{1}{4 \sqrt{2}} i \\
\text { P.V. } \int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x=2 \pi i\left[\operatorname{Res}\left(f(z), z_{1}\right)+\operatorname{Res}\left(f(z), z_{2}\right)\right]=\frac{\pi}{\sqrt{2}}
\end{gathered}
$$

Integrals of the Forms $\int_{-\infty}^{\infty} f(x) \cos \alpha x d x$ or $\int_{-\infty}^{\infty} f(x) \sin \alpha x d x$

$$
\int_{-\infty}^{\infty} f(x) e^{i \alpha x} d x=\int_{-\infty}^{\infty} f(x) \cos \alpha x d x+i \int_{-\infty}^{\infty} f(x) \sin \alpha x d x
$$

whenever both integrals on the right side converge. When $f(x)=P(x) / Q(x)$ is continuous on $(-\infty, \infty)$ we can evaluate both integrals at the same time by considering the integral $\oint_{C} f(z) e^{i \alpha z} d z$, where $\alpha>0$ and C consists of:
the interval $[-R, R]$ on the real axis and a semicircle C_{R} of radius large enough to enclose all the poles of $f(z)$ in the upper half-plane $\operatorname{Re}(z)>0$.

- Theorem 18 (Behavior of Integral as $R \rightarrow \infty$): Suppose $f(z)=P(z) / Q(z)$, where the degree of $P(z)$ is n and the degree of $Q(z)$ is $m \geq n+1$. If C_{R} is a semicircular contour $z=R e^{i \theta}, 0 \leq \theta \leq \pi$, and $\alpha>0$, then:

$$
\int_{C_{R}} f(z) e^{i \alpha z} d z \rightarrow 0 \text { as } R \rightarrow \infty
$$

- Example 28: Using Symmetry

Evaluate the Cauchy principal value of $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+9} d x$

$$
\int_{0}^{\infty} \frac{x \sin x}{x^{2}+9} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+9} d x
$$

With $\alpha=1$, we now form the contour integral $\oint_{C} \frac{z}{z^{2}+9} e^{i z} d z$ where C is the same contour as example 26

$$
\begin{aligned}
& \int_{C_{R}} \frac{z}{z^{2}+9} e^{i z} d z+\int_{-R}^{R} \frac{x}{x^{2}+9} e^{i x} d x=2 \pi i \operatorname{Res}\left(f(z) e^{i z}, 3 i\right)=\frac{\pi}{e^{3}} i \\
& \int_{C_{R}} f(z) e^{i z} d z \rightarrow 0 \text { as } R \rightarrow \infty \Rightarrow P \cdot V \cdot \int_{-\infty}^{\infty} \frac{x}{x^{4}+9} e^{i x} d x=\frac{\pi}{e^{3}} i \\
& \int_{-\infty}^{\infty} \frac{x}{x^{2}+9} e^{i x} d x=\int_{-\infty}^{\infty} \frac{x \cos x}{x^{2}+9} d x+i \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+9} e^{i x} d x=\frac{\pi}{e^{3}} i \\
& P . V \cdot \int_{-\infty}^{\infty} \frac{x \cos x}{x^{2}+9} d x=0, \quad P . V \cdot \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+9} d x=\frac{\pi}{e^{3}} \\
& \int_{0}^{\infty} \frac{x \sin x}{x^{2}+9} d x=\frac{1}{2} P . V \cdot \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+9} d x=\frac{\pi}{2 e^{3}}
\end{aligned}
$$

Indented Contours

- When $f(x)=P(x) / Q(x)$ have poles on the real axis, we must modify the procedure used in previous Examples. For example, to evaluate $\int_{-\infty}^{\infty} f(x) d x$ by residues when $f(z)$
 has a pole at $z=c$, where c is a real number, we use an indented contour.
- Theorem 19 (Behavior of Integral as $r \rightarrow 0$): Suppose f has a simple pole at $z=c$ on the real axis. If C_{r} is the contour defined by $z=c+r e^{i \theta}, 0 \leq \theta \leq \pi$, then:

$$
\lim _{r \rightarrow 0} \int_{C_{r}} f(z) d z=\pi i \operatorname{Res}(f(z), c)
$$

- Example 29: Using an Indented Contour

Evaluate the Cauchy P.V. of $\int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}-2 x+2\right)} d x$
The function $f(z)=1 / z\left(z^{2}-2 z+2\right)$ has simple poles at $z=0$ and at $z=1+i$ in the upper half-plane.

$$
\oint_{C} \frac{e^{i z}}{z\left(z^{2}-2 z+2\right)} d z=\int_{C_{R}}+\int_{-R}^{-r}+\int_{-C_{r}}+\int_{r}^{R}=2 \pi i \operatorname{Res}\left(f(z) e^{i z}, 1+i\right)
$$

$$
\text { where } \int_{-C_{r}}=-\int_{C_{r}}
$$

Taking the limits $R \rightarrow \infty$ and $r \rightarrow 0$, we find

$$
P . V \cdot \int_{-\infty}^{\infty} \frac{e^{i x}}{x\left(x^{2}-2 x+2\right)} d x-\pi i \operatorname{Res}\left(f(z) e^{i z}, 0\right)=2 \pi i \operatorname{Res}\left(f(z) e^{i z}, 1+i\right)
$$

$$
\begin{aligned}
& P . V \cdot \int_{-\infty}^{\infty} \frac{e^{i x}}{x\left(x^{2}-2 x+2\right)} d x=\pi i\left(\frac{1}{2}\right)+2 \pi i\left(\frac{e^{-1+i}}{4}(1+i)\right) \\
& P . V \cdot \int_{-\infty}^{\infty} \frac{\cos x}{x\left(x^{2}-2 x+2\right)} d x=\frac{\pi}{2} e^{-1}(\sin 1+\cos 1) \\
& P . V \cdot \int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}-2 x+2\right)} d x=\frac{\pi}{2}\left[1+e^{-1}(\sin 1-\cos 1)\right]
\end{aligned}
$$

Integration along a Branch Cut

Branch Point at $z=0$ We will examine integrals of the form $\int_{0}^{\infty} f(x) d x$.
These integrals require a special type of contour because when $f(x)$ is converted to a complex function, the resulting integrand $f(z)$ has, in addition to poles, a nonisolated singularity at $z=0$.

- Example 30: Integration along a Branch Cut

Evaluate $\int_{0}^{\infty} \frac{1}{\sqrt{x}(x+1)} d x$
$f(z)=\frac{1}{\sqrt{z}(z+1)} \begin{aligned} & \text { The origin is a branch point since } z^{1 / 2} \text { has two values for } \\ & \text { any } z \neq 0 \text {. }\end{aligned}$
We can force $z^{1 / 2}$ to be single valued by choosing the positive x-axis as a branch cut $(0<\theta<2 \pi$.
The integrand $f(z)$ is single valued and analytic on and within C, except for the simple pole at $z=-1=e^{\pi i}$.
$\oint_{C} \frac{1}{z^{1 / 2}(z+1)} d z=\int_{C_{R}}+\int_{E D}+\int_{C_{r}}+\int_{A B}=2 \pi i \operatorname{Res}(f(z),-1)$
On $A B, z=x e^{0 i}$, and on $E D, z=x e^{(0+2 \pi) i}=x e^{2 \pi i}$

$$
\begin{aligned}
& \int_{E D} f(z) d z=\int_{R}^{r} \frac{\left(x e^{2 \pi i}\right)^{-1 / 2}}{x e^{2 \pi i}+1} e^{2 \pi i} d x=-\int_{R}^{r} \frac{x^{-1 / 2}}{x+1} d x=\int_{r}^{R} \frac{x^{-1 / 2}}{x+1} d x \\
& \int_{A B} f(z) d z=\int_{r}^{R} \frac{\left(x e^{0 i}\right)^{-1 / 2}}{x e^{0 i}+1} e^{0 i} d x=\int_{r}^{R} \frac{x^{-1 / 2}}{x+1} d x \\
& z=r e^{i \theta} \text { and } z=R e^{i \theta} \text { on } C_{r} \text { and } C_{R}, \Rightarrow\left|\int_{C_{r}} f(z) d z\right| \leq \frac{r^{-1 / 2}}{1-r} 2 \pi r=\frac{2 \pi}{1-r} r^{1 / 2} \underset{r \rightarrow 0}{\rightarrow} 0 \\
& 2 \int_{0}^{\infty} \frac{1}{\sqrt{x}(x+1)} d x=2 \pi i \operatorname{Res}(f(z),-1)=2 \pi i(-i)=2 \pi \\
& \int_{0}^{\infty} \frac{1}{\sqrt{x}(x+1)} d x=\pi
\end{aligned}
$$

- Example 31: Integration around a Point Cut

Evaluate $\int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{2}} d x$

$$
f(z)=\frac{\log z}{\left(z^{2}+1\right)^{2}}, \quad|z|>0,-\frac{\pi}{2}<\arg z<\frac{\pi}{2}
$$

The branch cut consists of the origin and the negative imaginary axis.
In order that the isolated singularity $z=i$ be inside the closed path, we require that $r<1<R$.

$$
\begin{aligned}
& \oint_{C} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z=\int_{C_{R}}+\int_{-R}^{-r}+\int_{-C_{r}}+\int_{r}^{R}=2 \pi i \operatorname{Res}(f(z), i) \\
& f(z)=\frac{\ln r+i \theta}{\left(r^{2} e^{i 2 \theta}+1\right)^{2}}, \quad\left(z=r e^{i \theta}\right) \quad \text { On } L_{1}, z=x e^{0 i}=x, \text { and on } L_{2}, z=x e^{\pi i}=-x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{L_{2}} f(z) d z=\int_{-R}^{-r} \frac{\ln (-x)+i \pi}{\left(x^{2}+1\right)^{2}} d x=-\int_{R}^{r} \frac{\ln x+i \pi}{\left(x^{2}+1\right)^{2}} d x=\int_{r}^{R} \frac{\ln x+i \pi}{\left(x^{2}+1\right)^{2}} d x \\
& \int_{L_{1}} f(z) d z=\int_{r}^{R} \frac{\ln x}{\left(x^{2}+1\right)^{2}} d x \\
& z=r e^{i \theta} \& z=R e^{i \theta} \text { on } C_{r} \text { and } C_{R}, \Rightarrow\left|\int_{C_{r}} f(z) d z\right| \leq \frac{-\ln r+\pi}{\left(1-r^{2}\right)^{2}} \pi r=\pi \frac{\pi r-r \ln r}{\left(1-r^{2}\right)^{2}} \underset{r \rightarrow 0}{\rightarrow} 0 \\
& \quad \text { and }\left|\int_{C_{R}} f(z) d z\right| \leq \frac{\ln R+\pi}{\left(R^{2}-1\right)^{2}} \pi R=\underset{r \rightarrow 0}{\rightarrow 0} 0
\end{aligned}
$$

$$
2 \int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{2}} d x+\int_{r}^{R} \frac{i \pi}{\left(x^{2}+1\right)^{2}} d x=2 \pi i \operatorname{Res}(f(z), i)=2 \pi i\left(\frac{\pi}{8}+\frac{1}{4} i\right)=-\frac{\pi}{2}+\frac{\pi^{2}}{4} i
$$

$$
\int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{2}} d x=-\frac{\pi}{4}, \quad \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{4}
$$

