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4. Zeros and Poles

6)liaJl

Classification of Isolated Singular Points

» A classification is given depending on whether the principal part of its Laurent
expansion contains zero, a finite number, or an infinite number of terms.

<=z

Removable singularity

Pole of order n

Simple pole

Essential singularity

Series and Residues

Laurent Series
a, +a, (2 —2,) + ay(z — 2,)° + -
a a_¢,_ a_
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» Example 14: Removable Singularity
. 2 4
M2 - % + % — . 2= 0 is a removable singularity of f{z) = (sin 2)/z.
Z .

» Example 15: Poles and Essential Singularity

principal part

)
sinz 1 2z 2° |2l > 0, we see that a_, # 0, and so z =0 is a simple
2, 31 5  poleof the function f{z) = (sin 2)/22.

The Laurent expansion of f{z) = 1/(z— 1)%(z—3) valid for0 < |z — 1] < 2
princiaal part
1 1 1 z-1 since a_, # 0, we conclude that z =1

f(z):_Z(z—1)2_4(z—1)_§_ 16 isa pole of order 2.
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The principal part of Laurent series of the function f(2) = €7 contains an infinite
number of terms. Thus z= 0 is an essential singularity.
Zeros

= 2, IS a zero of a function fif f{z,) = 0. An analytic function f has a zero of order
nat z= z if

f(ZO) — Oa ]”(ZO) — Oa f”(ZO) — 09 Tt f(n_l)(zo) — Oa but f(n)(zo) #= 0

= If an analytic function fhas a zero of order n at z = 2, it follows that the Taylor
series expansion of fcentered at z, must have the form:

f(2)=a,(z=2)" +a,,(z -2 +a,,,(2—2)

2
= (Z o ZO)n[a’n + a’n+1(z _ ZO) + Cl,n+2(Z o ZO) + ]

)n+1 n+2 A .
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» Theorem 11 (Zero of Order n). A function f that is analytic in some disk
|z — 2| < R has a zero of order n at z = 2, if and only if f can be written

f(2) = (2 — z)"#2), where ¢ is analytic at z= zy and ¢(z,) # 0.

» Example 16: Order of a Zero
The analytic function f{z) = z sin 2? has a zero of order 3 at z= 0.

6 10 4 8
zsianZZ{Z?_z +Z _..}:Z{l_z +Z _}
3! 5! 3! 5!

Poles

* Theorem 12 (Pole of Order n): A function f that is analytic in a deleted
neighborhood of z,, 0 < |z — 2| < R has a pole of order n at z = z, if and only if f
can be written f{2) = #(2)/(z — 7y)", where ¢ is analytic at z= z; and ¢(z,) # 0.
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= Theorem 13 (Pole of Order n): If the functions fand ¢ are analytic at z = z, and
fhas a zero of order n at z = z; and g¢(z,) # 0, then the function F(2) = g(2)/f(2)

has a pole of order n at z = z,.

» Example 17: Order of Poles
22+ 5

Z o
/z) (z—1)(z +5)(z - 2)"
The denominator has zeros of order 1 at z= 1 and z = -5, and a zero of order

4 at z= 2. Since the numerator is not zero at any of these points, it follows that
fhas simple poles at z=1 and z= -5, and a pole of order 4 at 2z = 2.

2= 0is a zero of order 3 of f{z) = zsinz? = F(z) = 1/(zsinz?) has a pole of order
3atz=0.

= If a function has a pole at z = zj, then |f{z)| — o as z — z, from any direction.
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5. Residues and Residue Theorem
= |f the complex function fhas an isolated singularity at the point z,, then fhas a
Laurent series representation:

a_g

f(Z)Z ia’k(z_zo)k:'“-l‘ - n
k=—o0

(z—2,)° z-2z

a
L ta,+a(z—z)+a,(z—2,) +-

which converges for all z near z,. More precisely, the representation is valid in
some deleted neighborhood of z,, 0 < |z — ]| < R.

Residue

The coefficient a_, of 1/(z - z;) in the Laurent series given above is called the
residue of the function f at the isolated singularity z,.

a_, = Res (f(2), z,)

Series and Residues https://manara.edu.sy/ 2023-2024 8/31


https://manara.edu.sy/

[y

6)liaJl

= Example 18: Residues
z =1 is a pole of order 2 of the function f(2) = 1/(z — 1)%(z — 3). From the
Laurent series we see that the coefficient of 1/(z— 1) is a_; = Res (f(2), 1) = —Ya.
z = 0 is an essential singularity of f(z) = ¢¥2 From the Laurent series we see
that the coefficient of 1/zis a_; = Res (f(2), 0) = 3.

= Theorem 14 (Residue at a Simple Pole): If fhas a simple pole at z = z,, then:

Res (f(2), zy) = llm (2 — 2,)f(?)

» Theorem 15 (Residue at a Pole of Order n): If fhas a pole of order n at z = z,,

then | gn-1

Res (f(2), z,) = lim
=), 2) (n —1)! 2>z dz"

(2= 2)" f(2)
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= Example 19: Residue at a Pole

The function f(2) = 1/(z — 1)%(z — 3) has a simple pole at z = 3 and a pole of
order 2 at z=1

. 11
fes )39 = I =IO =l Ty =1

1. d oo d 11

Res () ) = lim =D &) =l 5=

= Suppose a function f can be written as a quotient f(z) = ¢(2)/h(z), where gand h

are analytic at z = z,. If g(2;) # 0 and if the function i has a zero of order 1 at z,,
then fhas a simple pole at z = 2, and

Res (f(2), zy) = g’((zzo))
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= Example 20: Residue at a Pole
The function 1/(2* + 1) has four simple poles

2 = & g = T, BT Tl
Res (f(2), z,) = é = ie_?’MM = — 4\1/5 — 4\1/572
Res (f(2), zy) = é = ie—gmm = 4\1/5 — 4\1/52'
Res (f(2), 25) = é = ie‘w’”ﬂl = ﬁ + ﬁz
Res (f(2), z,) = é = ie_m’”ﬂl — - 4\1/5 + 4\1/573
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Residue Theorem
» Theorem 16 (Cauchy’s Residue Theorem): Let D be a simply connected

domain and C a simple closed contour lying entirely within D. If a function fis

analytic on and within C, except at a finite number of singular points z;, 2,
z Wwithin C| then

4}0 f(2)dz = QﬂiiRes (f(2), 2,)

» Example 21: Evaluation by the Residue Theorem

1
Evaluate dz, where
C(z=1)°(2 - 3)

(a) C'is the rectangle defined by =0, xr=4, y=-1, y=1, and
(b) C'is the circle |z| = 2.
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(a) (Jg ! dz = 2mi[Res (f(2), 1) + Res (f(2), 3)] = 271 {—l + l} =0
C(z=1)(z - 3) 4 4
1 1 T
b dz =2x1 Res (f(z),1) =27mi| —— | = ——1
()950(2_1)2(2_3) (f(2), 1) [ 4j ;
= Example 22: Evaluation by the Residue Theorem
Evaluate § 229 4. where Cis the circle |z — i = 2
C 2
2" +4
C_f; 2'22 +0 dz =2n1 Res (f(2), 21) = 21 L +_22 = (3 + 21)
Czo+4 21

» Example 23: Evaluation by the Residue Theorem
Evaluate Sf}C tan zdz, where C'is the circle |z] = 2
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tan z has simple poles at the points where cosz=0. z= (2n + 1)A2, n=0, 1,
2, .... Since only —/12 and 7/2 are within the circle || =

<j>c tan zdz = 2wi[Res(f(2), — n/2) + Res(f(2),7/2)] =27 —1—-1] = -4

» Example 24: Evaluation by the Residue Theorem

Evaluate gSC e**dz, where Cis the circle || = 1
CJ:/O e’“dz = 27i Res (f(z),0) = 67i
= Note: L'Hopital’s rule is valid in complex analysis. If {2) = ¢(2)/W(z), where g

and h are analytic at z = z,, g(z;) = h(z) =0, and h’(z) = 0, then

(Z) g9'(z)
Z—>Zo h(2) h'(zo)
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6. Evaluation of Real Integrals
Integrals of the Form [ F(cos0, sin6)do

» The basic idea here is to convert this integral into a complex integral where
the contour C'is the unit circle centered at the origin. z = cos € + i sin 6 = €',

0<0<L2x | | | |
i 629 4 6—@6’ . ez@ _ 6—7,6’
dz =1e°df, cos @ = , sin @ = .
2 21
d@zﬁ, cosﬁzl(z+z_1), sinﬁzi.(z—z_l)
12 2 21
1 _ 1 1 dZ
Fl=(z+z27), —(z—2 —
¢ (2( ) 22'( )J 12

where C'is [z] = 1.
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= Example 25: A Real Trigonometric Integral

Evaluate j 19

(2 + cos 6)

é- 2 - 2 dZ
C(z+4z+1)

<z Z
f(2) = =

(2 +42+17% (-2 (z—2)
Zy = =2 — J3, 2 =2+ J3 only z is inside the unit circle C,

2 .
4}0 EFVET dz =21 Res (f(2),2,) d 1
2

Res (f(2), 2,) = zlggd—@—zl) fo)=lim o=
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: 5 de = 2ozi 14z
7 0(22 +4z+1)2 - 6\/§ 3\/§
J-z;z 40 A

0 (2 + cos 0)° } 33

Integrals of the Form jj:o f(z)dzx

« When fis continuous on (-, o), [~ f(2)dz = lim | f(x)de + lim jOR f(z)dz

» |f both limits exist, the integral is said to be convergent; if one or both of the
limits fail to exist, the integral is divergent.

* |n the event that we know (a priori) that an integral f; f(z)dz converges:

|” f@ds = lim jRR f(z)dz
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= This limit is called the Cauchy principal value of the integral and is written:

PV.[" f(@)dz = lim jRR f(z)dz

= When an integral of the form jj; f(x)dz converges, its Cauchy principal value is
the same as the value of the integral. If the integral diverges, it may still
possess a Cauchy principal value. For ex., the integral _[_OO xdz diverge, but:

2 g
P‘V‘J‘_ rdr = lim Rxda::lim{R —( ) }z()

Rowod—R R—o0 2 2

* To evaluate an integraljif(x)dx, where f(x) = P(x)/((z) is continuous on
(-0, o), by residue theory we replace x by the complex variable z and
integrate the complex function fover a closed contour C that consists of:
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the interval [-R, R] on the real axis and a semicircle
(', of radius large enough to enclose all the poles of

f(z) = P(2)/ Q(2) in the upper half-plane Re(z) > 0.

R 0 R

S = [ S+ [[ f@ria = 2713 Res (20,2

where 2, k=1, 2, ..., n, denotes poles in the upper half-plane.

If we can show that the integral 'C f(z)dz — 0 as R — o, then we have:

R

R—x ¢

P.V. j“; f(z)dr = lim '_RR f(z)dr = 27m’§Res (f(2),2,)
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= Example 26: Cauchy P.V. of an Impr'omper Integral

Evaluate the Cauchy principal value of

1

o0

1 y

1

(2% + 1)(z* +9)

f(2) =

1

gﬁdﬁ

(2 +1)(z° +9)

A1) +9) (2 +0)z—i)z+ 3i)z - 3)

dz = j : ;
B (2% +1)(z° +9)

dz + | > >
Cr (22 +1)(2" +9)

dz =1, + I,

| | e e
I +1, =27mi[Res (f(2), 1) + Res(f(2), 31)] = 27 167 +( 48iﬂ =15
4 9)\ = ‘22 + 1H22 + 9\ > (2" 1|2 - 9‘ - (R® —1)(R*> - 9)

On C,, \(22 +1)(2°

Series and Residues
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ML-inequality e
|]2| = j 9 ! 5 dz| < . i > > 0
(2" +1)(2" +9) (R? —1)(R? - 9) B>=
lim ) > 12 de = PV.[ > 12 dr = =
R—>wJd—R (CU + 1)(.73 + 9) —00 (CU + 1)([1} n 9) 19

» Theorem 17/ (Behavior of Integral as R — o). Suppose f(z) = P(2)/()(z), where
the degree of P(z) is n and the degree of ()z) is m > n + 2. If C, is a
semicircular contour z= Re?, 0 < < r, then jC f(2)dz — 0as R — oo.

» Example 27: Cauchy P.V. of an Improper Integral
I |

dx
—o 4]

Evaluate the Cauchy principal value of
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Res (f(2), 21)——E—EZ Res (f(2), zy) = b 4\5@
w1 ' _
P.V. AT dr =2ni[Res(f(2), z;) + Res(f(2), z,)] = 75

Integrals of the Forms _[_oo f(x)cosax dx or f f(z)sin ax dz
(" f@)e™ du=[" fz)cosazdr+if  f(x)sinawds

whenever both integrals on the right side converge. When f(x) = P(z)/ () is
continuous on (—oo, c©) we can evaluate both integrals at the same time by
considering the integral gffg f(2)e'**dz, where a > 0 and C consists of:
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the interval [-R, R] on the real axis and a semicircle (', of radius large enough
to enclose all the poles of f(2) in the upper half-plane Re(z) > 0.

» Theorem 18 (Behavior of Integral as R — o0): Suppose f(z) = P(2)/((z), where
the degree of P(z) is n and the degree of ()(z) is m > n + 1. If C, is a
semicircular contour z= Re?, 0 < < r, and a > 0, then:

.[0 f(2)e'**dz > 0as R - ©

» Example 28: Using Symmetry

o TSIN T
Evaluate the Cauchy principal value of _f 0 dx
z° +
o £SIN X 1 fo zSINZT
j > dr = — > dr
0 249 292" +9

23/31
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With =1, we now form the contour integral CI} e“dz

2+ 9
where C'is the same contour as example 26

5 Z”7’oiz+-“ e"dr =2mi Res (f(2)e”,31) = — 1
'CRZ +9 RZB +9 €
o i i z':z: /A
f(z)e"dz > 0as R > o = P.V. - e dr =—1
'CR _OOCU +9 6
© | © T COS T 0 TSINT T .
j 5 emdxzj 2—dx+zj 5 e”d:zzz—gz
2 +9 —© xr°+9 0 x°+9 e
o T COST o TSINT T
PV.| ———dz=0, P.V. > dr = —
" +9 " +9 e
o L SIN T 1 o TSINT T
r°+9 2 z°+9 2e
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Indented Contours '
* When fx) = P(z)/()(xr) have poles on the real axis, we
must modify the procedure used in previous Examples.
For example, to evaluate IOO f(x)dz by residues when f(z) ==~
has a pole at z = ¢, where_oé IS a real number, we use an
indented contour.

» Theorem 19 (Behavior of Integral as » — 0): Suppose f has a simple pole at
z= con the real axis. If C is the contour defined by z= ¢ + re?, 0 < < 7, then:

lim| f(2)dz=niRes(f(z),c)

r—09C,
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» Example 29: Using an Indented Contour y
0 sin x
Evaluate the Cauchy P.V. of dx

0 p(z? =2z + 2)
The function f(2) = 1/2(2* — 2z + 2) has simple poles
at z=0and at z=1 + i in the upper half-plane.

CJSC 2(2° _6; +2) te = ch +j__; +.“_cr +LR = 27i Res (f(2)e"”, 1+ 1)

where J._Cr = _jcy
Taking the limits R — o and r — 0, we find

-R =T r R

T

rv.[* G

. x(a:2 921 2) dr — w1 Res(f(2)e”,0) =2nit Res(f(2)e”,1+1)
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P.V. _° dz = m(lj +ori| S (1 49)
~x(z” -2z +2) 2 4
pv.[" Ml dy = Z ¢t (sin 1+ cos 1)

0 gp(z* — 2z + 2) 2

SIN 2

pv.[" : dr = z[1 +e ' (sin 1 — cos 1)]
*x(x” —2x +2) 2
Integration along a Branch Cut

Branch Point at z= 0 We will examine integrals of the form j(:o f(x)dz.
These integrals require a special type of contour because when f(x) is converted

to a complex function, the resulting integrand f(z) has, in addition to poles, a
nonisolated singularity at z= 0.
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= Example 30: Integration along a Branch Cut
o 1
Evaluate dz
jO \/;(x +1)

1

J(z) = The origin is a branch point since z'2 has two values for
\/;(z + 1)

any z= 0.

We can force 2 to be single valued by choosing the positive z-axis as a

y

branch cut (0 < < 27.

The integrand f(z) is single valued and analytic on and
within C, except for the simple pole at z=-1 = e™.

1 .
(J(}C BRI dz = jc . +J‘Cr oy = 21 Res (f(2),— 1)

R

On AB, z= ze% and on ED, z = zel0 +27i= ge2i

C,
z=-1 /7 A

X

S

o c,
B
jD fE
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2rin-1/2 T, p o102
j f(2)dz = j (a:e ) midr = [ 2 dp = [T —dz
"+1 Rx+1 rx+1
R (z 602)—1/2 N B U2
2)dz = . e 'dr = dx
IABf() L ze” +1 L‘ r+1
~1/2 27
z=reand z= Re'’on C.and Cf, = J. f(2)dz| < 27T = rt'? 50
C, —-Tr 1—1r r—0
R 2R 1
and dz| < 2R = — 0
.[ch(Z)Z R-1 d R -1 R"Y? row

2_[;0 \/;(313 1) dr =2ri Res(f(z),— 1) =2xmi( —1) =27

joo ! dx =7
0 \/;(x+1)
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= Example 31: Integratlon around a Point Cut y
Evaluatej i dx
(z° +1)
logZ /A T
Z) = , 12> 0,—=<argz < — x
1(2) (22 +1)2 | | 9 g 5

The branch cut consists of the origin and the negative imaginary axis.

In order that the isolated singularity z = ¢ be inside the closed path, we
require that r< 1 < R.

oz = ol A = 2miRes G

Inr + 10 0
2) = , (z=re
f& = e

On L, z=ze’ = z,and on L,, z= ze”=—zx
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. F(2)dz = - 1n(—2x) +27,7r dx:—r 1n2x+z72 dx:jR 1n2x+7,72 I
o (27 4+ 1) f(x”+1) T (z"+1)
- ‘R Inz
2)dz = dx
.Llf( ) ro(? +1)°
| | - —Inr + —rln
z=re? & z= Re?on C.and Cp, = lo J(z)dz| < 7 _T,rz)]?[ Tr = 7Z7Z_:2)2"° 7,:)00
. InR+ 7
and ||, /(2)dz| < B 1) TR = -0
. 2
2[ 21nx > dr + " 2@7[ 2dil?=27Z’iR68(f(Z),i)=2ﬂi(£+lij=—£+ﬂ—i
0 (z"+1) T (z"+1) 8 4 2 4
jOO 21n$2daj:_£, J‘OO 2]. dezz
O (" +1) 4 0 (" +1) 4
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