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Chapter 3

Series and Residues

1. Sequences and Series

2. Taylor Series

3. Laurent Series

4. Zeros and Poles

5. Residues and Residue Theorem

6. Evaluation of Real Integrals
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4. Zeros and Poles

Classification of Isolated Singular Points

▪ A classification is given depending on whether the principal part of its Laurent 

expansion contains zero, a finite number, or an infinite number of terms.
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▪ Example 14: Removable Singularity

sin 

! !

z z z

z
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z = 0 is a removable singularity of f(z) = (sin z)/z. 

▪ Example 15: Poles and Essential Singularity
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principal part 

↓
|z| > 0, we see that a−1  0, and so z = 0 is a simple 

pole of the function f(z) = (sin z)/z2.
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principal part

The Laurent expansion of f(z) = 1/(z − 1)2(z − 3) valid for 0 < |z − 1| < 2

since a−2  0, we conclude that z = 1 

is a pole of order 2.
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The principal part of Laurent series of the function f(z) = e3/z contains an infinite 

number of terms. Thus z = 0 is an essential singularity.

Zeros

▪ z0 is a zero of a function f if f(z0) = 0. An analytic function f has a zero of order 

n at z = z0 if

( ) ( )( ) , ( ) , ( ) , , ( but ) , ( )n nf z f z f z f z f z− = = = = 1
0 0 0 0 00 0 0 0 0

▪ If an analytic function f has a zero of order n at z = z0, it follows that the Taylor 

series expansion of f centered at z0 must have the form:
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▪ Theorem 11 (Zero of Order n): A function f that is analytic in some disk 

|z − z0| < R has a zero of order n at z = z0 if and only if f can be written 

f(z) = (z − z0)
nf(z), where f is analytic at z = z0 and f(z0)  0.

▪ Example 16: Order of a Zero

The analytic function f(z) = z sin z2 has a zero of order 3 at z = 0.

sin 
! ! ! !
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Poles

▪ Theorem 12 (Pole of Order n): A function f that is analytic in a deleted 

neighborhood of z0, 0 < |z − z0| < R has a pole of order n at z = z0 if and only if f 
can be written f(z) = f(z)/(z − z0)

n, where f is analytic at z = z0 and f(z0)  0.

https://manara.edu.sy/


https://manara.edu.sy/Series and Residues 7/312023-2024

▪ Example 17: Order of Poles

▪ Theorem 13 (Pole of Order n): If the functions f and g are analytic at z = z0 and 

f has a zero of order n at z = z0 and g(z0)  0, then the function F(z) = g(z)/f(z) 

has a pole of order n at z = z0.

z = 0 is a zero of order 3 of f(z) = z sin z2 ⇒ F(z) = 1/(z sin z2) has a pole of order 

3 at z = 0.

▪ If a function has a pole at z = z0, then |f(z)| → ∞ as z → z0 from any direction.
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( )( )( )4
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The denominator has zeros of order 1 at z = 1 and z = −5, and a zero of order 

4 at z = 2. Since the numerator is not zero at any of these points, it follows that 

f has simple poles at z = 1 and z = −5, and a pole of order 4 at z = 2.
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5. Residues and Residue Theorem

▪ If the complex function f has an isolated singularity at the point z0, then f has a 

Laurent series representation:

( ) ( ) ( ) ( )
( )

k
k

k
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00

which converges for all z near z0. More precisely, the representation is valid in 

some deleted neighborhood of z0, 0 < |z − z0| < R.

Residue

The coefficient a−1 of 1/(z - z0) in the Laurent series given above is called the 

residue of the function f at the isolated singularity z0.

 ( ( ), )− =a Res f z z1 0
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▪ Example 18: Residues

z = 1 is a pole of order 2 of the function f(z) = 1/(z − 1)2(z − 3). From the 

Laurent series we see that the coefficient of 1/(z − 1) is a−1 = Res (f(z), 1) = −¼.

z = 0 is an essential singularity of f(z) = e3/z. From the Laurent series we see 

that the coefficient of 1/z is a−1 = Res (f(z), 0) = 3.

▪ Theorem 14 (Residue at a Simple Pole): If f has a simple pole at z = z0, then:

 ( ( ), ) lim ( ) ( )
→

= −
z z

Res f z z z z f z
0

0 0

▪ Theorem 15 (Residue at a Pole of Order n): If f has a pole of order n at z = z0, 

then
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▪ Example 19: Residue at a Pole

The function f(z) = 1/(z − 1)2(z − 3) has a simple pole at z = 3 and a pole of 

order 2 at z = 1

 ( ( ), ) lim ( ) ( ) lim
( )→ →

= − = =
−z z

Res f z z f z
z 23 3

1 1
3 3

41

 ( ( ), ) lim ( ) ( ) lim
! → →

= − = = −
−z z

d d
Res f z z f z

dz dz z
2

1 1

1 1 1
1 1
1 3 4

▪ Suppose a function f can be written as a quotient f(z) = g(z)/h(z), where g and h 

are analytic at z = z0. If g(z0)  0 and if the function h has a zero of order 1 at z0, 

then f has a simple pole at z = z0 and

( )
 ( ( ), )

( )
=



g z
Res f z z

h z
0

0
0
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▪ Example 20: Residue at a Pole

The function 1/(z4 + 1) has four simple poles
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Residue Theorem

▪ Theorem 16 (Cauchy’s Residue Theorem): Let D be a simply connected 

domain and C a simple closed contour lying entirely within D. If a function f is 

analytic on and within C, except at a finite number of singular points z1, z2, ..., 

zn within C, then

( )  ( ( ), )
=

= 
n

kC
k

f z dz i Res f z z
1

2

▪ Example 21: Evaluation by the Residue Theorem

Evaluate                                , where
( ) ( )C

dz
z z− −

 2

1

1 3
(a) C is the rectangle defined by x = 0, x = 4, y = −1, y = 1, and

(b) C is the circle |z| = 2.
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▪ Example 22: Evaluation by the Residue Theorem

Evaluate                    , where C is the circle |z − i| = 2
C

z
dz

z

+

+
 2

2 6

4

 ( ( ), ) ( )
C

z i
dz i Res f z i i i
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24

▪ Example 23: Evaluation by the Residue Theorem

Evaluate                 , where C is the circle |z| = 2tan 
C

zdz
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tan [ ( ( ), / ) ( ( ), / )] [ ]
C

zdz i Res f z Res f z i i    = − + = − − = − 2 2 2 2 1 1 4

tan z has simple poles at the points where cos z = 0. z = (2n + 1)/2, n = 0, 1, 

2, .... Since only −/2 and /2 are within the circle |z| = 2,

▪ Example 24: Evaluation by the Residue Theorem

Evaluate               , where C is the circle |z| = 1
/z

C
e dz
3

/ ( ( ), )z

C
e dz i Res f z i = =
3 2 0 6

▪ Note: L’Hôpital’s rule is valid in complex analysis. If f(z) = g(z)/h(z), where g 

and h are analytic at z = z0, g(z0) = h(z0) = 0, and h’(z0)  0, then

( )( )
lim

( ) ( )z z

g zg z

h z h z→


=

0

0

0
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6. Evaluation of Real Integrals

Integrals of the Form (cos , sin )F d


  
2

0

▪ The basic idea here is to convert this integral into a complex integral where 

the contour C is the unit circle centered at the origin. z = cos  + i sin  = ei,

0    2
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, cos ( ), sin ( )

i i i i
i e e e e
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1 11 1

2 2
where C is |z| = 1.
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▪ Example 25: A Real Trigonometric Integral

Evaluate
( cos )
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( )C
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Integrals of the Form ( )f x dx


−
▪ When f is continuous on (−∞, ∞), ( ) lim ( ) lim ( )

R

rr R
f x dx f x dx f x dx



− −→ →
= +  

0

0

▪ If both limits exist, the integral is said to be convergent; if one or both of the 

limits fail to exist, the integral is divergent. 

▪ In the event that we know (a priori) that an integral                  converges:( )f x dx


−
( ) lim ( )

R

RR
f x dx f x dx



− −→
= 
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▪ This limit is called the Cauchy principal value of the integral and is written:

( ) lim ( ). .
R

RR
PV f x dx f x dx



− −→
= 

▪ When an integral of the form                 converges, its Cauchy principal value is 

the same as the value of the integral. If the integral diverges, it may still 

possess a Cauchy principal value. For ex., the integral           diverge, but:

( )f x dx


−

xdx


−
( )

lim lim. .
R

RR R

R R
PV xdx xdx



− −→ →

 −
= = − = 

 
 

2 2

0
2 2

▪ To evaluate an integral        , where f(x) = P(x)/Q(x) is continuous on 

(−∞, ∞), by residue theory we replace x by the complex variable z and 

integrate the complex function f over a closed contour C that consists of:

( )f x dx


−
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the interval [−R, R] on the real axis and a semicircle 

CR of radius large enough to enclose all the poles of 

f(z) = P(z)/Q(z) in the upper half-plane Re(z) > 0.

( ) ( ) ( ) ( ( ), )
R

nR

kC C R
k

f z dz f z dz f x dx i Res f z z
−

=

= + =   
1

2

where zk, k = 1, 2, ..., n, denotes poles in the upper half-plane. 

If we can show that the integral                                         , then we have:( )  as 
RC
f z dz R→ →  0

( ) lim ( ) ( ( ), ). .
nR

kRR
k

PV f x dx f x dx i Res f z z


− −→
=

= =  
1

2
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▪ Example 26: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of

( )
( )( )( )( )( )( )

f z
z i z i z i z iz z

= =
+ − + −+ +2 2

1 1

3 31 9

( )( )
dx

x x



− + +
 2 2

1

1 9

( )( ) ( )( ) ( )( )R

R

C R C
dz dx dz I I

z z x x z z−
= + = +

+ + + + + +
   1 22 2 2 2 2 2

1 1 1

1 9 1 9 1 9

[ ( ( ), ) ( ( ), )]I I i Res f z i Res f z i i
i i


 

  
+ = + = + − =  

  
1 2

1 1
2 3 2

16 48 12

On CR, ( )( ) ( )( )z z z z z z R R+ + = + +  − − = − −
2 22 2 2 2 2 21 9 1 9 1 9 1 9
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ML-inequality

( )( ) ( )( )RC R

R
I dz

z z R R



→
=  →

+ + − −
2 2 2 2 2

1
0

1 9 1 9

lim
( )( ) ( )( )

. .
R

RR
dx PV dx

x x x x



− −→
= =

+ + + +
 2 2 2 2

1 1

121 9 1 9

▪ Theorem 17 (Behavior of Integral as R → ∞): Suppose f(z) = P(z)/Q(z), where 

the degree of P(z) is n and the degree of Q(z) is m  n + 2. If CR is a 

semicircular contour z = Rei, 0    , then                   → 0 as R → ∞.( )
RC
f z dz

▪ Example 27: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of dx
x



− +
 4

1

1
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 ( ( ), )  ( ( ), )Res f z z i Res f z z i= − − = −1 2

1 1 1 1

4 2 4 2 4 2 4 2

[ ( ( ), ) ( ( ), )]. .PV dx i Res f z z Res f z z
x






−
= + =

+
 1 24

1
2

1 2

Integrals of the Forms ( ) cos  or ( ) sinf x x dx f x x dx 
 

− − 

( ) ( ) cos ( ) sini xf x e dx f x x dx i f x x dx  
  

− − −
= +  

whenever both integrals on the right side converge. When f(x) = P(x)/Q(x) is 

continuous on (−∞, ∞) we can evaluate both integrals at the same time by 

considering the integral                      , where  > 0 and C consists of:( ) i z
C
f z e dz
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the interval [−R, R] on the real axis and a semicircle CR of radius large enough 

to enclose all the poles of f(z) in the upper half-plane Re(z) > 0.

▪ Theorem 18 (Behavior of Integral as R → ∞): Suppose f(z) = P(z)/Q(z), where 

the degree of P(z) is n and the degree of Q(z) is m  n + 1. If CR is a 

semicircular contour z = Rei, 0    , and  > 0, then:

( )  as 
R

i z

C
f z e dz R → →  0

▪ Example 28: Using Symmetry

Evaluate the Cauchy principal value of
sinx x

dx
x



+
 20 9

sin sinx x x x
dx dx

x x

 

−
=

+ +
 2 20

1

29 9

https://manara.edu.sy/


https://manara.edu.sy/Series and Residues 24/312023-2024

With  = 1, we now form the contour integral
iz

C

z
e dz

z +
 2 9

where C is the same contour as example 26

( ( ) , )
R

Riz ix iz

C R

z x
e dz e dx i Res f z e i i

z x e




−
+ = =

+ +
 2 2 3

2 3
9 9

( )  as . .
R

iz ix

C

x
f z e dz R PV e dx i

x e



−
→ →   =

+
  4 3

0
9

cos sinix ixx x x xx
e dx dx i e dx i

x x x e

  

− − −
= + =

+ + +
  2 2 2 39 9 9

cos sin
,. . . .

x x x x
PV dx PV dx

x x e

 

− −
= =

+ +
 2 2 3

0
9 9

sin sin
. .

x x x x
dx PV dx

x x e

 

−
= =

+ +
 2 2 30

1

29 9 2
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Indented Contours

▪ When f(x) = P(x)/Q(x) have poles on the real axis, we 

must modify the procedure used in previous Examples. 

For example, to evaluate                by residues when f (z) 

has a pole at z = c, where c is a real number, we use an 

indented contour.

( )f x dx


−

▪ Theorem 19 (Behavior of Integral as r → 0): Suppose f has a simple pole at 

z = c on the real axis. If Cr is the contour defined by z = c + rei, 0    , then:

lim ( ) ( ( ), )
rCr
f z dz i Res f z c

→
=0

https://manara.edu.sy/


https://manara.edu.sy/Series and Residues 26/312023-2024

( ( ) , )
( ) R r

iz r R iz

C C R C r

e
dz i Res f z e i

z z z


−

− −
= + + + = +

− +
    2

2 1
2 2

▪ Example 29: Using an Indented Contour

Evaluate the Cauchy P.V. of
sin

( )

x
dx

x x x



− − +
 2 2 2

The function f(z) = 1/z(z2 − 2z + 2) has simple poles 

at z = 0 and at z = 1 + i in the upper half-plane.

where
r rC C−
= − 

Taking the limits R → ∞ and r → 0, we find

( ( ) , ) ( ( ) , )
( )

. .
ix

iz ize
PV dx i Res f z e i Res f z e i

x x x
 



−
− = +

− +
 2

0 2 1
2 2
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cos
(sin cos )

( )
. .

x
PV dx e

x x x

 −

−
= +

− +


1
2

1 1
22 2

sin
[ (sin cos )]

( )
. .

x
PV dx e

x x x

 −

−
= + −

− +


1
2

1 1 1
22 2

( )
( )

. .
ix ie e

PV dx i i i
x x x

 
− +



−

  
= + +  

− +    


1

2

1
2 1

2 42 2

Integration along a Branch Cut

Branch Point at z = 0 We will examine integrals of the form                . 

These integrals require a special type of contour because when f(x) is converted 

to a complex function, the resulting integrand f(z) has, in addition to poles, a 

nonisolated singularity at z = 0.

( )
0
f x dx
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▪ Example 30: Integration along a Branch Cut

Evaluate
( )0

1

1
dx

x x



+


( )
( )

1

1
f z

z z
=

+
The origin is a branch point since z1/2 has two values for 

any z  0.

We can force z1/2 to be single valued by choosing the positive x-axis as a 

branch cut (0 <  < 2.

The integrand f(z) is single valued and analytic on and 

within C, except for the simple pole at z = −1 = ei.

/
( ( ), )

( )
= + + + = −

+
    

R rC C ED C AB
dz i Res f z

z z1 2

1
2 1

1
On AB, z = xe0i, and on ED, z = xe(0 + 2)i = xe2i 
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/ / /( )
( )

2 1 2 1 2 1 2
2

2 1 11

ir r Ri
iED R R r

xe x x
f z dz e dx dx dx

x xxe






− − −

= = − =
+ ++

   
/ /( )

( )
0 1 2 1 2

0
0 11

iR Ri
iAB r r

xe x
f z dz e dx dx

xxe

− −

= =
++

  

z = rei and z = Rei on Cr and CR, ⇒

( ( ), ) ( )
( )

  


= − = − =
+

 dx i Res f z i i
x x0

1
2 2 1 2 2

1

( )



=

+
 dx
x x0

1

1

/
/( )

1 2
1 2

0

2
2 0

1 1rC r

r
f z dz r r

r r




−

→
 = →

− −
/

/
( )

1 2

1 2

2 1
2 0
1 1RC R

R R
f z dz R

R R R




−

→
 = →

− −and
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▪ Example 31: Integration around a Point Cut

Evaluate
ln

( )



+


x
dx

x 2 20 1
log

( ) , , arg
( )

 
= > − < <

+

z
f z z z

z2 2
0
2 21

The branch cut consists of the origin and the negative imaginary axis.

On L1, z = xe0i = x, and on L2, z = xei = −x

In order that the isolated singularity z = i be inside the closed path, we 

require that r < 1 < R.
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ln
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L r

x
f z dz dx

x1
2 21

z = rei & z = Rei on Cr and CR, ⇒
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x x
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