

CEDC301: Engineering Mathematics Lecture Notes 5: Series and Residues: Part B

Ramez Koudsieh, Ph.D.

Faculty of Engineering Department of Robotics and Intelligent Systems Manara University

https://manara.edu.sy/

Chapter 3 Series and Residues

- 1. Sequences and Series
 - 2. Taylor Series
 - 3. Laurent Series
 - 4. Zeros and Poles
- 5. Residues and Residue Theorem
 - 6. Evaluation of Real Integrals

4. Zeros and Poles

Classification of Isolated Singular Points

 A classification is given depending on whether the principal part of its Laurent expansion contains zero, a finite number, or an infinite number of terms.

$z = z_0$	Laurent Series
Removable singularity	$a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$
Pole of order n	$\frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-(n-1)}}{(z-z_0)^{n-1}} + \dots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \dots$
Simple pole	$\frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$
Essential singularity	$\cdots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$

Example 14: Removable Singularity

 $\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots \qquad z = 0 \text{ is a removable singularity of } f(z) = (\sin z)/z.$

Example 15: Poles and Essential Singularity

$$\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} - \cdots \qquad |z| > 0, \text{ we see that } a_{-1} \neq 0, \text{ and so } z = 0 \text{ is a simple}$$
pole of the function $f(z) = (\sin z)/z^2$.

The Laurent expansion of $f(z) = 1/(z-1)^2(z-3)$ valid for 0 < |z-1| < 2

principal part

$$f(z) = -\frac{1}{2(z-1)^2} - \frac{1}{4(z-1)} - \frac{1}{8} - \frac{z-1}{16} - \dots \quad \text{since } a_{-2} \neq 0, \text{ we conclude that } z = 1$$

is a pole of order 2.

The principal part of Laurent series of the function $f(z) = e^{3/z}$ contains an infinite number of terms. Thus z = 0 is an essential singularity.

Zeros

 z₀ is a zero of a function f if f(z₀) = 0. An analytic function f has a zero of order n at z = z₀ if

 $f(z_0) = 0, \quad f'(z_0) = 0, \quad f''(z_0) = 0, \dots, \quad f^{(n-1)}(z_0) = 0, \text{ but } f^{(n)}(z_0) \neq 0$

• If an analytic function f has a zero of order n at $z = z_0$, it follows that the Taylor series expansion of f centered at z_0 must have the form:

$$f(z) = a_n (z - z_0)^n + a_{n+1} (z - z_0)^{n+1} + a_{n+2} (z - z_0)^{n+2} + \cdots$$
$$= (z - z_0)^n [a_n + a_{n+1} (z - z_0) + a_{n+2} (z - z_0)^2 + \cdots]$$

- Theorem 11 (Zero of Order *n*): A function *f* that is analytic in some disk $|z z_0| < R$ has a zero of order *n* at $z = z_0$ if and only if *f* can be written $f(z) = (z z_0)^n \phi(z)$, where ϕ is analytic at $z = z_0$ and $\phi(z_0) \neq 0$.
- Example 16: Order of a Zero

The analytic function $f(z) = z \sin z^2$ has a zero of order 3 at z = 0.

$$z\sin z^{2} = z\left[z^{2} - \frac{z^{6}}{3!} + \frac{z^{10}}{5!} - \cdots\right] = z^{3}\left[1 - \frac{z^{4}}{3!} + \frac{z^{8}}{5!} - \cdots\right]$$

Poles

• Theorem 12 (Pole of Order *n*): A function *f* that is analytic in a deleted neighborhood of z_0 , $0 < |z - z_0| < R$ has a pole of order *n* at $z = z_0$ if and only if *f* can be written $f(z) = \phi(z)/(z - z_0)^n$, where ϕ is analytic at $z = z_0$ and $\phi(z_0) \neq 0$.

- Theorem 13 (Pole of Order *n*): If the functions f and g are analytic at $z = z_0$ and f has a zero of order n at $z = z_0$ and $g(z_0) \neq 0$, then the function F(z) = g(z)/f(z) has a pole of order n at $z = z_0$.
- Example 17: Order of Poles

$$f(z) = \frac{2z+5}{(z-1)(z+5)(z-2)^4}$$

The denominator has zeros of order 1 at z = 1 and z = -5, and a zero of order 4 at z = 2. Since the numerator is not zero at any of these points, it follows that *f* has simple poles at z = 1 and z = -5, and a pole of order 4 at z = 2.

z = 0 is a zero of order 3 of $f(z) = z \sin z^2 \Rightarrow F(z) = 1/(z \sin z^2)$ has a pole of order 3 at z = 0.

• If a function has a pole at $z = z_0$, then $|f(z)| \to \infty$ as $z \to z_0$ from any direction.

5. Residues and Residue Theorem

If the complex function *f* has an isolated singularity at the point *z*₀, then *f* has a Laurent series representation:

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k = \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

which converges for all z near z_0 . More precisely, the representation is valid in some deleted neighborhood of z_0 , $0 < |z - z_0| < R$.

Residue

The coefficient a_{-1} of $1/(z - z_0)$ in the Laurent series given above is called the residue of the function f at the isolated singularity z_0 .

 $a_{-1} = Res (f(z), z_0)$

Example 18: Residues

z = 1 is a pole of order 2 of the function $f(z) = 1/(z - 1)^2(z - 3)$. From the Laurent series we see that the coefficient of 1/(z - 1) is $a_{-1} = Res(f(z), 1) = -\frac{1}{4}$. z = 0 is an essential singularity of $f(z) = e^{3/z}$. From the Laurent series we see that the coefficient of 1/z is $a_{-1} = Res(f(z), 0) = 3$.

• Theorem 14 (Residue at a Simple Pole): If f has a simple pole at $z = z_0$, then:

$$Res (f(z), z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

• Theorem 15 (Residue at a Pole of Order *n*): If *f* has a pole of order *n* at $z = z_0$, then 1 d^{n-1}

$$Res (f(z), z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z)$$

Example 19: Residue at a Pole

The function $f(z) = 1/(z - 1)^2(z - 3)$ has a simple pole at z = 3 and a pole of order 2 at z = 1

$$Res (f(z), 3) = \lim_{z \to 3} (z - 3)f(z) = \lim_{z \to 3} \frac{1}{(z - 1)^2} = \frac{1}{4}$$
$$Res (f(z), 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} (z - 1)^2 f(z) = \lim_{z \to 1} \frac{d}{dz} \frac{1}{z - 3} = -\frac{1}{4}$$

• Suppose a function f can be written as a quotient f(z) = g(z)/h(z), where g and h are analytic at $z = z_0$. If $g(z_0) \neq 0$ and if the function h has a zero of order 1 at z_0 , then f has a simple pole at $z = z_0$ and

Res
$$(f(z), z_0) = \frac{g(z_0)}{h'(z_0)}$$

Example 20: Residue at a Pole

The function $1/(z^4 + 1)$ has four simple poles

$$\begin{aligned} z_1 &= e^{\pi i/4}, \, z_2 = e^{3\pi i/4}, \, z_3 = e^{5\pi i/4}, \, z_4 = e^{7\pi i/4} \\ Res \, (f(z), \, z_1) &= \frac{1}{4z_1^3} = \frac{1}{4}e^{-3\pi i/4} = -\frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i \\ Res \, (f(z), \, z_2) &= \frac{1}{4z_2^3} = \frac{1}{4}e^{-9\pi i/4} = \frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i \\ Res \, (f(z), \, z_3) &= \frac{1}{4z_3^3} = \frac{1}{4}e^{-15\pi i/4} = \frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i \\ Res \, (f(z), \, z_4) &= \frac{1}{4z_4^3} = \frac{1}{4}e^{-21\pi i/4} = -\frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i \end{aligned}$$

Series and Residues

Residue Theorem

• Theorem 16 (Cauchy's Residue Theorem): Let D be a simply connected domain and C a simple closed contour lying entirely within D. If a function f is analytic on and within C, except at a finite number of singular points $z_1, z_2, ..., z_n$ within C, then

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n Res (f(z), z_k)$$

(a)
$$\oint_C \frac{1}{(z-1)^2(z-3)} dz = 2\pi i [Res(f(z), 1) + Res(f(z), 3)] = 2\pi i \left[-\frac{1}{4} + \frac{1}{4} \right] = 0$$

(b)
$$\oint_C \frac{1}{(z-1)^2(z-3)} dz = 2\pi i \operatorname{Res} (f(z), 1) = 2\pi i \left(-\frac{1}{4}\right) = -\frac{\pi}{2} i$$

• Example 22: Evaluation by the Residue Theorem Evaluate $\oint_C \frac{2z+6}{z^2+4} dz$, where *C* is the circle |z-i| = 2

$$\oint_C \frac{2z+6}{z^2+4} dz = 2\pi i \operatorname{Res} \left(f(z), 2i\right) = 2\pi i \frac{3+2i}{2i} = \pi (3+2i)$$

• Example 23: Evaluation by the Residue Theorem Evaluate $\oint_C \tan z dz$, where *C* is the circle |z| = 2

tan *z* has simple poles at the points where $\cos z = 0$. $z = (2n + 1)\pi/2$, n = 0, 1, 2, ... Since only $-\pi/2$ and $\pi/2$ are within the circle |z| = 2, $\oint_C \tan z dz = 2\pi i [Res(f(z), -\pi/2) + Res(f(z), \pi/2)] = 2\pi i [-1-1] = -4\pi i$

- Example 24: Evaluation by the Residue Theorem Evaluate $\oint_C e^{3/z} dz$, where *C* is the circle |z| = 1 $\oint_C e^{3/z} dz = 2\pi i \operatorname{Res} (f(z), 0) = 6\pi i$
- Note: L'Hôpital's rule is valid in complex analysis. If f(z) = g(z)/h(z), where g and h are analytic at $z = z_0$, $g(z_0) = h(z_0) = 0$, and $h'(z_0) \neq 0$, then

$$\lim_{z \to z_0} \frac{g(z)}{h(z)} = \frac{g'(z_0)}{h'(z_0)}$$

6. Evaluation of Real Integrals

Integrals of the Form $\int_{0}^{2\pi} F(\cos\theta, \sin\theta) d\theta$

• The basic idea here is to convert this integral into a complex integral where the contour *C* is the unit circle centered at the origin. $z = \cos \theta + i \sin \theta = e^{i\theta}$, $0 \le \theta \le 2\pi$

$$dz = ie^{i\theta}d\theta, \quad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
$$d\theta = \frac{dz}{iz}, \quad \cos \theta = \frac{1}{2}(z + z^{-1}), \quad \sin \theta = \frac{1}{2i}(z - z^{-1})$$
$$\oint_C F\left(\frac{1}{2}(z + z^{-1}), \frac{1}{2i}(z - z^{-1})\right)\frac{dz}{iz}$$
where C is $|z| = 1$.

Example 25: A Real Trigonometric Integral

Evaluate $\int_{0}^{2\pi} \frac{d\theta}{\left(2 + \cos \theta\right)^2}$ $\frac{4}{i} \oint_C \frac{z}{(z^2 + 4z + 1)^2} dz$ $f(z) = \frac{z}{(z^2 + 4z + 1)^2} = \frac{z}{(z - z_0)^2 (z - z_1)^2}$ $z_0 = -2 - \sqrt{3}, z_1 = -2 + \sqrt{3}$ only z_1 is inside the unit circle *C*, $\oint_C \frac{z}{\left(z^2 + 4z + 1\right)^2} dz = 2\pi i \operatorname{Res}\left(f(z), z_1\right)$ $\operatorname{Res}\left(f(z), z_1\right) = \lim_{z \to z_1} \frac{d}{dz} (z - z_1)^2 f(z) = \lim_{z \to z_1} \frac{d}{dz} \frac{z}{\left(z - z_0\right)^2} = \frac{1}{6\sqrt{3}}$

Series and Residues

$$\frac{4}{i} \oint_C \frac{z}{(z^2 + 4z + 1)^2} dz = \frac{4}{i} 2\pi i \frac{1}{6\sqrt{3}} = \frac{4\pi}{3\sqrt{3}}$$
$$\int_0^{2\pi} \frac{d\theta}{(2 + \cos\theta)^2} = \frac{4\pi}{3\sqrt{3}}$$

Integrals of the Form $\int_{-\infty}^{\infty} f(x) dx$

- When f is continuous on $(-\infty, \infty)$, $\int_{-\infty}^{\infty} f(x) dx = \lim_{x \to \infty} \int_{-r}^{0} f(x) dx + \lim_{R \to \infty} \int_{0}^{R} f(x) dx$
- If both limits exist, the integral is said to be convergent; if one or both of the limits fail to exist, the integral is divergent.
- In the event that we know (a priori) that an integral $\int_{-\infty}^{\infty} f(x) dx$ converges:

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

• This limit is called the Cauchy principal value of the integral and is written:

$$P.V.\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

• When an integral of the form $\int_{-\infty}^{\infty} f(x) dx$ converges, its Cauchy principal value is the same as the value of the integral. If the integral diverges, it may still possess a Cauchy principal value. For ex., the integral $\int_{-\infty}^{\infty} x dx$ diverge, but:

$$P.V.\int_{-\infty}^{\infty} x dx = \lim_{R \to \infty} \int_{-R}^{R} x dx = \lim_{R \to \infty} \left[\frac{R^2}{2} - \frac{(-R)^2}{2} \right] = 0$$

• To evaluate an integral $\int_{-\infty}^{\infty} f(x) dx$, where f(x) = P(x)/Q(x) is continuous on $(-\infty, \infty)$, by residue theory we replace x by the complex variable z and integrate the complex function f over a closed contour C that consists of:

the interval [-R, R] on the real axis and a semicircle C_R of radius large enough to enclose all the poles of f(z) = P(z)/Q(z) in the upper half-plane Re(z) > 0.

$$\oint_{C} f(z)dz = \int_{C_{R}} f(z)dz + \int_{-R}^{R} f(x)dx = 2\pi i \sum_{k=1}^{n} Res(f(z), z_{k})$$

where z_k , k = 1, 2, ..., n, denotes poles in the upper half-plane. If we can show that the integral $\int_{C_R} f(z)dz \to 0$ as $R \to \infty$, then we have: $P.V.\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f(z), z_k)$

-R

Example 26: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+9)} dx$$

$$f(z) = \frac{1}{(z^2+1)(z^2+9)} = \frac{1}{(z+i)(z-i)(z+3i)(z-3i)}$$

$$\oint_{C} \frac{1}{(z^2+1)(z^2+9)} dz = \int_{-R}^{R} \frac{1}{(x^2+1)(x^2+9)} dx + \int_{C_R} \frac{1}{(z^2+1)(z^2+9)} dz = I_1 + I_2$$

$$I_1 + I_2 = 2\pi i [Res(f(z), i) + Res(f(z), 3i)] = 2\pi i \left[\frac{1}{16i} + \left(-\frac{1}{48i}\right)\right] = \frac{\pi}{12}$$
On C_R , $|(z^2+1)(z^2+9)| = |z^2+1||z^2+9| \ge ||z|^2 - 1|||z|^2 - 9| = (R^2 - 1)(R^2 - 9)$

- Theorem 17 (Behavior of Integral as $R \to \infty$): Suppose f(z) = P(z)/Q(z), where the degree of P(z) is n and the degree of Q(z) is $m \ge n + 2$. If C_R is a semicircular contour $z = Re^{i\theta}$, $0 \le \theta \le \pi$, then $\int_{C_R} f(z)dz \to 0$ as $R \to \infty$.
- Example 27: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of $\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$

$$Res (f(z), z_1) = -\frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i \quad Res (f(z), z_2) = \frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i$$
$$P.V.\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx = 2\pi i [Res(f(z), z_1) + Res(f(z), z_2)] = \frac{\pi}{\sqrt{2}}$$

Integrals of the Forms $\int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx$ or $\int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx$

$$\int_{-\infty}^{\infty} f(x) e^{i\alpha x} dx = \int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx + i \int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx$$

whenever both integrals on the right side converge. When f(x) = P(x)/Q(x) is continuous on $(-\infty, \infty)$ we can evaluate both integrals at the same time by considering the integral $\oint_C f(z)e^{i\alpha z}dz$, where $\alpha > 0$ and *C* consists of:

the interval [-R, R] on the real axis and a semicircle C_R of radius large enough to enclose all the poles of f(z) in the upper half-plane Re(z) > 0.

• Theorem 18 (Behavior of Integral as $R \to \infty$): Suppose f(z) = P(z)/Q(z), where the degree of P(z) is n and the degree of Q(z) is $m \ge n + 1$. If C_R is a semicircular contour $z = Re^{i\theta}$, $0 \le \theta \le \pi$, and $\alpha > 0$, then:

$$\int_{C_R} f(z) e^{i\alpha z} dz \to 0 \text{ as } R \to \infty$$

Example 28: Using Symmetry

Evaluate the Cauchy principal value of $\int_0^\infty \frac{x \sin x}{x^2 + 9} dx$

$$\int_{0}^{\infty} \frac{x \sin x}{x^{2} + 9} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2} + 9} dx$$

With $\alpha = 1$, we now form the contour integral $\oint_C \frac{z}{z^2 + 9} e^{iz} dz$ where *C* is the same contour as example 26

$$\int_{C_R} \frac{z}{z^2 + 9} e^{iz} dz + \int_{-R}^R \frac{x}{x^2 + 9} e^{ix} dx = 2\pi i \operatorname{Res}\left(f(z)e^{iz}, 3i\right) = \frac{\pi}{e^3} dx$$

$$\int_{C_R} f(z)e^{iz} dz \to 0 \text{ as } R \to \infty \Rightarrow P.V. \int_{-\infty}^{\infty} \frac{x}{x^4 + 9} e^{ix} dx = \frac{\pi}{e^3} i$$

$$\int_{-\infty}^{\infty} \frac{x}{x^2 + 9} e^{ix} dx = \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx + i \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 9} e^{ix} dx = \frac{\pi}{e^3} i$$

$$P.V. \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx = 0, \quad P.V. \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 9} dx = \frac{\pi}{e^3}$$

$$\int_{0}^{\infty} \frac{x \sin x}{x^2 + 9} dx = \frac{1}{2} P.V. \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 9} dx = \frac{\pi}{2e^3}$$

Series and Residues

Indented Contours

• When f(x) = P(x)/Q(x) have poles on the real axis, we must modify the procedure used in previous Examples. For example, to evaluate $\int_{-\infty}^{\infty} f(x) dx$ by residues when $f(z) = \frac{1}{-R}$ has a pole at z = c, where c is a real number, we use an indented contour.

• Theorem 19 (Behavior of Integral as $r \to 0$): Suppose f has a simple pole at z = c on the real axis. If C_r is the contour defined by $z = c + re^{i\theta}$, $0 \le \theta \le \pi$, then:

$$\lim_{r \to 0} \int_{C_r} f(z) dz = \pi i \operatorname{Res} \left(f(z), c \right)$$

$$P.V.\int_{-\infty}^{\infty} \frac{e^{ix}}{x(x^2 - 2x + 2)} dx = \pi i \left(\frac{1}{2}\right) + 2\pi i \left(\frac{e^{-1+i}}{4}(1+i)\right)$$
$$P.V.\int_{-\infty}^{\infty} \frac{\cos x}{x(x^2 - 2x + 2)} dx = \frac{\pi}{2} e^{-1} (\sin 1 + \cos 1)$$
$$P.V.\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 - 2x + 2)} dx = \frac{\pi}{2} [1 + e^{-1} (\sin 1 - \cos 1)]$$

Integration along a Branch Cut

Branch Point at z = 0 We will examine integrals of the form $\int_0^{\infty} f(x) dx$. These integrals require a special type of contour because when f(x) is converted to a complex function, the resulting integrand f(z) has, in addition to poles, a nonisolated singularity at z = 0.

Example 30: Integration along a Branch Cut

Evaluate $\int_0^\infty \frac{1}{\sqrt{x(x+1)}} dx$ $f(z) = \frac{1}{\sqrt{z(z+1)}}$ The origin is a branch point since $z^{1/2}$ has two values for any $z \neq 0$.

We can force $z^{1/2}$ to be single valued by choosing the positive *x*-axis as a branch cut ($0 < \theta < 2\pi$.

The integrand f(z) is single valued and analytic on and within *C*, except for the simple pole at $z = -1 = e^{\pi i}$.

$$\oint_{C} \frac{1}{z^{1/2}(z+1)} dz = \int_{C_{R}} + \int_{ED} + \int_{C_{r}} + \int_{AB} = 2\pi i \operatorname{Res} \left(f(z), -1 \right)$$

On *AB*, *z* = *xe*^{0*i*}, and on *ED*, *z* = *xe*^{(0 + 2\pi)*i*} = *xe*^{2\pi i}

$$\int_{ED} f(z)dz = \int_{R}^{r} \frac{(xe^{2\pi i})^{-1/2}}{xe^{2\pi i}+1} e^{2\pi i}dx = -\int_{R}^{r} \frac{x^{-1/2}}{x+1}dx = \int_{r}^{R} \frac{x^{-1/2}}{x+1}dx$$

$$\int_{AB} f(z)dz = \int_{r}^{R} \frac{(xe^{0i})^{-1/2}}{xe^{0i}+1} e^{0i}dx = \int_{r}^{R} \frac{x^{-1/2}}{x+1}dx$$

$$z = re^{i\theta} \text{ and } z = Re^{i\theta} \text{ on } C_{r} \text{ and } C_{R}, \Rightarrow \left| \int_{C_{r}} f(z)dz \right| \le \frac{r^{-1/2}}{1-r} 2\pi r = \frac{2\pi}{1-r} r^{1/2} \xrightarrow[r \to 0]{} 0$$

$$\text{ and } \left| \int_{C_{R}} f(z)dz \right| \le \frac{R^{-1/2}}{R-1} 2\pi R = \frac{2\pi R}{R-1} \frac{1}{R^{1/2}} \xrightarrow[R \to \infty]{} 0$$

$$2\int_{0}^{\infty} \frac{1}{\sqrt{x(x+1)}} dx = 2\pi i \operatorname{Res}(f(z), -1) = 2\pi i(-i) = 2\pi$$

Example 31: Integration around a Point Cut

Evaluate
$$\int_{0}^{\infty} \frac{\ln x}{(x^{2}+1)^{2}} dx$$
$$f(z) = \frac{\log z}{(z^{2}+1)^{2}}, \quad |z| > 0, -\frac{\pi}{2} < \arg z < \frac{\pi}{2}$$

The branch cut consists of the origin and the negative imaginary axis. In order that the isolated singularity z = i be inside the closed path, we require that r < 1 < R.

$$\oint_{C} \frac{\log z}{\left(z^{2}+1\right)^{2}} dz = \int_{C_{R}} + \int_{-R}^{-r} + \int_{-C_{r}}^{R} + \int_{r}^{R} = 2\pi i \operatorname{Res}\left(f(z), i\right)$$

$$f(z) = \frac{\ln r + i\theta}{\left(r^{2}e^{i2\theta} + 1\right)^{2}}, \quad (z = re^{i\theta}) \quad \text{On } L_{1}, \ z = xe^{0i} = x, \text{ and on } L_{2}, \ z = xe^{\pi i} = -x$$

$$\begin{aligned} \int_{L_2} f(z) dz &= \int_{-R}^{-r} \frac{\ln(-x) + i\pi}{(x^2 + 1)^2} dx = -\int_{-R}^{r} \frac{\ln x + i\pi}{(x^2 + 1)^2} dx = \int_{-R}^{R} \frac{\ln x + i\pi}{(x^2 + 1)^2} dx \\ \int_{L_1} f(z) dz &= \int_{-R}^{R} \frac{\ln x}{(x^2 + 1)^2} dx \\ z &= re^{i\theta} \& z = Re^{i\theta} \text{ on } C_r \text{ and } C_R, \Rightarrow \left| \int_{C_r} f(z) dz \right| \le \frac{-\ln r + \pi}{(1 - r^2)^2} \pi r = \pi \frac{\pi r - r\ln r}{(1 - r^2)^2} \xrightarrow{r \to 0} 0 \\ \text{and } \left| \int_{C_R} f(z) dz \right| \le \frac{\ln R + \pi}{(R^2 - 1)^2} \pi R = \xrightarrow{r \to 0} 0 \\ 2 \int_{0}^{\infty} \frac{\ln x}{(x^2 + 1)^2} dx + \int_{-R}^{R} \frac{i\pi}{(x^2 + 1)^2} dx = 2\pi i \operatorname{Res}(f(z), i) = 2\pi i \left(\frac{\pi}{8} + \frac{1}{4}i\right) = -\frac{\pi}{2} + \frac{\pi^2}{4}i \\ \int_{0}^{\infty} \frac{\ln x}{(x^2 + 1)^2} dx = -\frac{\pi}{4}, \qquad \int_{0}^{\infty} \frac{1}{(x^2 + 1)^2} dx = \frac{\pi}{4} \end{aligned}$$

Series and Residues

https://manara.edu.sy/

2023-2024

31/31