Lecture 3: Orthogonality - Projection

CEDC102: Linear Algebra

Manara University
2023-2024

[^0]- Length and Dot Product in $\mathbb{R}^{\boldsymbol{n}}$
- Projection matrices
- Orthonormal Bases: Gram-Schmidt Process

Length and Dot Product in \mathbb{R}^{n}

- Length:

The length of a vector $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} is given by

$$
\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

- Note: The length of a vector is also called its norm.
- Notes: Properties of length
(1) $\|\boldsymbol{V}\| \geq 0$
(2) $\|\boldsymbol{V}\|=1 \Rightarrow \boldsymbol{V} \quad$ is called a unit vector
(3) $\|\boldsymbol{v}\|=0$ iff $\boldsymbol{v}=0$
- Ex :
(a) In \mathbb{R}^{5}, the length of $\boldsymbol{v}=(0,-2,1,4,-2)$ is given by

$$
\|v\|=\sqrt{0^{2}+(-2)^{2}+1^{2}+4^{2}+(-2)^{2}}=\sqrt{25}=5
$$

(b) In \mathbb{R}^{3} the length of $\boldsymbol{v}=\left(\frac{2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right)$ is given by

$$
\|\boldsymbol{V}\|=\sqrt{\left(\frac{2}{\sqrt{17}}\right)^{2}+\left(\frac{-2}{\sqrt{17}}\right)^{2}+\left(\frac{3}{\sqrt{17}}\right)^{2}}=\sqrt{\frac{17}{17}}=1 \quad(V \text { is a unit vector })
$$

- A standard unit vector in \mathbb{R}^{n} :

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}=\{(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots,(0,0, \ldots, 1)\}
$$

- Ex :
the standard unit vector in $\mathbb{R}^{2}:\{i, j\}=\{(1,0),(0,1)\}$
the standard unit vector in $\mathbb{R}^{3}:\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Notes: (Two nonzero vectors are parallel)
$\boldsymbol{u}=\boldsymbol{c} \boldsymbol{v}$
(1) $c>0 \Rightarrow \boldsymbol{u}$ and \boldsymbol{v} have the same direction
(2) $c<0 \Rightarrow \boldsymbol{u}$ and \boldsymbol{v} have the opposite direction
- Theorem : (Length of a scalar multiple)

Let \boldsymbol{v} be a vector in \mathbb{R}^{n} and \boldsymbol{c} be a scalar, then $\|c \boldsymbol{c}\|=|c|\|\boldsymbol{v}\|$

- Theorem: (Unit vector in the direction of V)

If \boldsymbol{v} is a nonzero vector in \mathbb{R}^{n}, then the vector $\boldsymbol{u}=\frac{\boldsymbol{V}}{\|\boldsymbol{V}\|}$ has length 1 and has the same
direction as \boldsymbol{V}.
This vector \boldsymbol{u} is called the unit vector in the direction of \boldsymbol{v}.

- Note: The process of finding the unit vector in the direction of \boldsymbol{v} is called normalizing the vector \boldsymbol{v}.
- Ex : (Finding a unit vector)

Find the unit vector in the direction of $\boldsymbol{v}=(3,-1,2)$, and verify that this vector has length 1.

Sol:

$$
\|\boldsymbol{v}\|=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{14}
$$

$$
\begin{aligned}
& \Rightarrow \frac{v}{\|v\|}=\frac{(3,-1,2)}{\sqrt{3^{2}+(-1)^{2}+2^{2}}}=\frac{1}{\sqrt{14}}(3,-1,2)=\left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right) \\
& \sqrt{\left(\frac{3}{\sqrt{14}}\right)^{2}+\left(\frac{-1}{\sqrt{14}}\right)^{2}+\left(\frac{2}{\sqrt{14}}\right)^{2}}=\sqrt{\frac{14}{14}}=1 \Rightarrow \frac{v}{\|v\|} \text { is a unit vector }
\end{aligned}
$$

- Distance between two vectors:

The distance between two vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^{n} is: $d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|$

- Notes: (Properties of distance)
(1) $d(\boldsymbol{u}, \boldsymbol{v}) \geq 0$
(2) $d(\boldsymbol{u}, \boldsymbol{v})=0$ if and only if $\boldsymbol{u}=\boldsymbol{v}$
(3) $d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$

- Ex: (Distance between 2 vectors)

The distance between $\boldsymbol{u}=(0,2,2)$ and $\boldsymbol{v}=(2,0,1)$ is

$$
d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|=\|(0-2), 2-0,2-1) \|=\sqrt{(-2)^{2}+2^{2}+1^{2}}=3
$$

- Dot product in \mathbb{R}^{n} :

The dot product of $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is the scalar quantity

$$
\boldsymbol{u} \cdot \boldsymbol{V}=u_{1} V_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

- Ex: (Finding the dot product of two vectors)

The dot product of $\boldsymbol{u}=(1,2,0,-3)$ and $\boldsymbol{v}=(3,-2,4,2)$ is

$$
\boldsymbol{u} \cdot \boldsymbol{v}=(1)(3)+(2)(-2)+(0)(4)+(-3)(2)=-7
$$

- Theorem: (Properties of the dot product)

If $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are vectors in \mathbb{R}^{n} and \boldsymbol{c} is a scalar, then the following properties are true.
(1) $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}$
(2) $\boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} . \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{w}$
(3) $c(u, v)=(c u) . v=u \cdot(c \boldsymbol{v})$
(4) $\boldsymbol{v} \cdot \boldsymbol{v} \geq 0$, and $\boldsymbol{v} \cdot \boldsymbol{v}=0$ if and only if $\boldsymbol{v}=\mathbf{0}$
(5) $\boldsymbol{V} \cdot \boldsymbol{V}=\|\boldsymbol{V}\|^{2}$

- Euclidean n-space:
\mathbb{R}^{n} was defined to be the set of all order n-tuples of real numbers. When \mathbb{R}^{n} is combined with the standard operations of vector addition, scalar multiplication, vector length, and the dot product, the resulting vector space is called Euclidean n-space.
- Ex: (Finding dot products)

$$
\boldsymbol{u}=(2,-2), \boldsymbol{v}=(5,8), \boldsymbol{w}=(-4,3)
$$

(a) $u \cdot v$
(b) $(u, v) W$
(c) $u \cdot(2 v)$
(d) $\|\boldsymbol{W}\|^{2}$
(e) $\boldsymbol{u} \cdot(\boldsymbol{v}-2 \boldsymbol{w})$

Sol:
(a) $\boldsymbol{u} \cdot \boldsymbol{v}=(2)(5)+(-2)(8)=-6$
(b) $(u . v) \boldsymbol{w}=-\boldsymbol{W}=-6(-4,3)=(24,-18)$
(c) $u \cdot(2 v)=2(u \cdot v)=2(-6)=-12$
(d) $\|\boldsymbol{w}\|^{2}=\boldsymbol{w} \cdot \boldsymbol{W}=(-4)(-4)+(3)(3)=25$
(e) $(\boldsymbol{v}-2 \boldsymbol{w})=(5-(-8), 8-6)=(13,2)$

$$
u_{1}(v-2 \boldsymbol{w})=(2)(13)+(-2)(2)=22
$$

- Ex: (Using the properties of the dot product)

Given $\boldsymbol{u} \cdot \boldsymbol{u}=39, \boldsymbol{u} \cdot \boldsymbol{v}=-3, \boldsymbol{v} \cdot \boldsymbol{v}=79$
Find $(u+2 \boldsymbol{v}) .(3 \boldsymbol{u}+\boldsymbol{v})$
Sol:

$$
\begin{aligned}
(u+2 v) \cdot(3 u+v)= & u \cdot(3 u+v)+2 v \cdot(3 u+v) \\
& =u \cdot(3 u)+u \cdot v+(2 v) \cdot(3 u)+(2 v) \cdot v \\
& =3(u \cdot u)+u \cdot v+6(v \cdot u)+2(v \cdot v) \\
& =3(u \cdot u)+7(u \cdot v)+2(v \cdot v) \\
& =3(39)+7(-3)+2(79)=254
\end{aligned}
$$

- Theorem : (The Cauchy - Schwarz inequality)

If \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^{n}, then $|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|$

- Ex 8: (An example of the Cauchy - Schwarz inequality)

Verify the Cauchy - Schwarz inequality for $\boldsymbol{u}=(1,-1,3)$ and $\boldsymbol{v}=(2,0,-1)$ Sol:

$$
\begin{aligned}
& u \cdot u=11, \boldsymbol{u} \cdot \boldsymbol{v}=-1, \boldsymbol{v} \cdot \boldsymbol{v}=5 \\
& |\boldsymbol{u} \cdot \boldsymbol{v}|=|-1|=1 \\
& \|\boldsymbol{u}\|\|\boldsymbol{v}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}} \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}=\sqrt{11} \sqrt{5}=\sqrt{55} \\
& \Rightarrow|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|
\end{aligned}
$$

- The angle between two vectors in \mathbb{R}^{n} :

$$
\cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{V}}{\|\boldsymbol{u}\|\|\boldsymbol{V}\|}, 0 \leq \theta \leq \pi
$$

$$
\begin{aligned}
\theta & =\pi \\
\cos \theta & =-1
\end{aligned}
$$

Obtuse angle

$\frac{\pi}{2}<\theta<\pi$
$\cos \theta<0$

Right angle

$\theta=\frac{\pi}{2}$
$\cos \theta=0$

Acute angle $\mathbf{u} \cdot \mathbf{v}>0$

$0<\theta<\frac{\pi}{2}$
$\cos \theta>0$

Same direction

$\theta=0$ $\cos \theta=1$

- Note:

The angle between the zero vector and another vector is not defined.

- Ex: (Finding the angle between two vectors)

$$
\boldsymbol{u}=(-4,0,2,-2), \boldsymbol{v}=(2,0,-1,1)
$$

Sol:

$$
\begin{aligned}
& \|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}=\sqrt{(-4)^{2}+0^{2}+2^{2}+(-2)^{2}}=\sqrt{24} \\
& \|\boldsymbol{V}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{V}}=\sqrt{(2)^{2}+0^{2}+(-1)^{2}+1^{2}}=\sqrt{6} \\
& \boldsymbol{u} \cdot \boldsymbol{V}=(-4)(2)+(0)(0)+(2)(-1)+(-2)(1)=-12 \\
& \Rightarrow \cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}=\frac{-12}{\sqrt{24} \sqrt{6}}=\frac{-12}{\sqrt{144}}=-1
\end{aligned}
$$

$\Rightarrow \theta=\pi \boldsymbol{u}$ and \boldsymbol{v} have opposite directions ($\boldsymbol{u}=-2 \boldsymbol{v}$)

Orthogonal vectors

Two vectors are orthogonal when their dot product is zero: $v \cdot w=v^{T} \cdot w=0$ Think of Pythagoras: right triangle with sides v and w.

$$
\text { Orthogonal vectors } \quad v^{T} \cdot w=0 \quad \text { and } \quad\|v\|^{2}+\|w\|^{2}=\|v+w\|^{2}
$$

The right side is $(v+w)^{T} \cdot(v+w)$ This equals $v^{T} \cdot v+w^{T} \cdot w$ when $w^{T} \cdot v=v^{T} \cdot w=0$

Orthogonal subspaces

Two subspaces \boldsymbol{V} and \boldsymbol{W} of a vector space are orthogonal if every vector v in V is perpendicular to every vector \boldsymbol{w} in W :

Orthogonal subspaces $\quad v^{T} \cdot w=0$ for all v in V and \boldsymbol{w} in W

Example 1 The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional). Those subspaces are orthogonal.

Every vector up the meeting line of the walls is perpendicular to every vector in the floor
Example 2 Two walls look perpendicular but those two subspaces are not orthogonal!
The meeting line is in both V and W-and this line is not perpendicular to itself.
Two planes (dimensions 2 and 2 in \mathbb{R}^{3}) cannot be orthogonal subspaces.

حَـامعة الـَـــنارة

When a vector is in two orthogonal subspaces, it must be zero. It is perpendicular to itself.

orthogonal plane \boldsymbol{V} and line \boldsymbol{W}

non-orthogonal planes

The crucial examples for linear algebra come from the four fundamental subspaces.

حَــامعة
الـَمَـنارة

Row space is orthogonal to the Nullspace, Because $A x=0$: Every vector x in the nullspace is perpendicular to every row of A,

$$
A x=\left[\begin{array}{c}
\text { row } 1 \\
\vdots \\
\text { row } m
\end{array}\right][x]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] \longleftarrow \begin{gathered}
(\text { row } 1) \cdot x \text { is zero } \\
(\text { row } m) \cdot x \text { is zero }
\end{gathered}
$$

Every row has a zero dot product with x. Then x is also perpendicular to every combination of the rows.

The whole row space $C\left(A^{T}\right)$ is orthogonal to $N(A)$.

Every vector y in the nullspace of A^{T} is perpendicular to every column of A. The left nullspace $\boldsymbol{N}\left(\boldsymbol{A}^{\boldsymbol{T}}\right)$ and the column space $\boldsymbol{C}(\boldsymbol{A})$ are orthogonal in $\mathbb{R}^{\boldsymbol{m}}$

$$
C(A) \perp N\left(A^{\mathrm{T}}\right)
$$

$$
A^{\mathrm{T}} \boldsymbol{y}=\left[\begin{array}{c}
(\text { column } \mathbf{1})^{\mathrm{T}} \\
\cdots \\
(\operatorname{column} \boldsymbol{n})^{\mathrm{T}}
\end{array}\right][\boldsymbol{y}]=\left[\begin{array}{l}
0 \\
\dot{0}
\end{array}\right] .
$$

- Orthogonal Complements:

If W is a subspace of \mathbb{R}^{n}, then the set of all vectors in \mathbb{R}^{n} that are orthogonal to every vector in W is called the orthogonal complement of W and is denoted by the symbol W^{\perp}

- Theorem:

If W is a subspace of \mathbb{R}^{n}, then:
(a) W^{\perp} is a subspace of V
(b) $W^{\perp} \cap W=\{\mathbf{0}\}$
(c) $R^{n}=W \oplus W^{\perp}$

- Note:

If W is a subspace of \mathbb{R}^{n}, then $\left(W^{\perp}\right)^{\perp}=W$

- Ex :

- Theorem : If A is an $m \times n$ matrix, then:
(a) $N(A)$ and the $C\left(A^{T}\right)$ are orthogonal complements in \mathbb{R}^{n}
(b) $N\left(A^{T}\right)$ and the $C(A)$ are orthogonal complements in \mathbb{R}^{m}

حَــامعة
الـَـــنارة
mestas wevtict

[^1]- Ex:

Find the orthogonal complement of the subspace W of R^{4} spanned by the two column vectors V_{1} and \boldsymbol{V}_{2} of the matrix A

Sol:
$N S\left(A^{T}\right)$ and the $C S(A)$ are orthogonal complements \Rightarrow

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
W=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\} \text { and } W^{\perp}=\operatorname{span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}
$$

- Summary of equivalent conditions for square matrices:

If A is an $n \times n$ matrix, then the following conditions are equivalent:
(1) A is invertible
(2) $A x=b$ has a unique solution for any $n \times 1$ matrix b.
(3) $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution
(4) A is row-equivalent to I_{n}
(5) $\operatorname{rank}(A)=n$
(6) The n row vectors of A are linearly independent.
(7) The n column vectors of A are linearly independent.
(8) The column vectors of A span R^{n}
(9) The row vectors of A span R^{n}
(10) The column vectors of A form a basis for R^{n}
(11) The row vectors of A form a basis for R^{n}
(12) $\operatorname{rank}(A)=n$
(13) $\operatorname{nullity}(A)=0$
(14) The orthogonal complement of the null space of A is R^{n}
(15) The orthogonal complement of the row space of A is $\{\mathbf{0}\}$

- Orthogonal projections :

Let \boldsymbol{a} and \boldsymbol{b} be two vectors in an inner product space V, such that $\boldsymbol{a} \neq 0$. Then the orthogonal projection of b onto a is given by $\operatorname{proj}_{a} b=a \frac{a^{T} b}{a^{T} a}$

Projecting \boldsymbol{b} onto \boldsymbol{a} with error $\boldsymbol{e}=\boldsymbol{b}-\widehat{\boldsymbol{x}} \boldsymbol{a}$

$$
\boldsymbol{a} \cdot(\boldsymbol{b}-\widehat{\boldsymbol{x}} \boldsymbol{a})=0 \quad \text { or } \quad \boldsymbol{a} \cdot \boldsymbol{b}-\widehat{\boldsymbol{x}} \boldsymbol{a} \cdot \boldsymbol{a}=0
$$

$$
\widehat{\boldsymbol{x}}=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}}=\frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}}
$$

The projection \boldsymbol{p} of b onto a line and onto $S=$ column space of A.

The projection of b onto the line through a is the vector $p=\widehat{x} a=\frac{a^{\mathrm{T}} b}{a^{\top} a} a$
Special case 1: If $\boldsymbol{b}=\boldsymbol{a}$ then $\widehat{\boldsymbol{x}}=1$. The projection of \boldsymbol{a} onto \boldsymbol{a} is itself. $P \boldsymbol{a}=\boldsymbol{a}$.
Special case 2: If \boldsymbol{b} is perpendicular to \boldsymbol{a} then $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}=0$. The projection is $\boldsymbol{p}=\mathbf{0}$.
Projection matrix:
Now comes the projection matrix. In the formula for p, what matrix is multiplying b ?
You can see the matrix better if the number x is on the right side of a :
Projection matrix: Proj $p=P b=a \frac{a^{T} b}{a^{T} a}$ the matrix is $P=\frac{a a^{T}}{a^{T} a}$

Properties of projection matrix

- P is a column times a row!
- The column is a, the row is a^{T}, divide by the number $a^{T} a$.
- The projection matrix P is m by m,
- its rank is one.
- the column space of P is the line through a
- P is symmetric $P^{T}=P$
- $P^{2}=P$. Projecting a second time doesn't change anything,

Why project?
Because $A x=b$ may have no solution
Instead : Solve $A \hat{x}=p$ (projection of b onto the column space of A)
Problem: Find the combination $p=\widehat{x}_{1} a_{1}+\cdots+\widehat{x}_{n} a_{n}$ closest to a given vector b.
Find the vector \widehat{x}, find the projection $p=A \widehat{x}$, find the projection matrix P.
The key: This error vector $b-A \widehat{x}$ is perpendicular to the subspace.

$$
\left[\begin{array}{c}
-a_{1}^{\mathrm{T}}- \\
\vdots \\
-a_{n}^{\mathrm{T}}-
\end{array}\right][\boldsymbol{b}-A \widehat{\boldsymbol{x}}]=\left[\begin{array}{l}
\mathbf{0} \\
\end{array}\right]
$$

The matrix with those rows $a^{T}{ }_{i}$ is A^{T}. The n equations are exactly $A^{T}(b-A \hat{x})=0$ Note: $e=(b-A \hat{x}) \in N\left(A^{T}\right)$ witch is perpendicular to $C(A)$

Rewrite the last equation $A^{T} A \hat{x}=A^{T} b$

The combination $p=\widehat{x_{1}} a_{1}+\cdots+\widehat{x_{n}} a_{n}$ that is the closest to b comes from \hat{x}
Find $\hat{x}(n \times 1) \quad A^{T}(b-A \hat{x})=0$ or $\quad A^{T} A \hat{x}=A^{T} b$
This symmetric matrix $A^{T} A$ is n by n. It is invertible if the $a^{\prime} s$ are independent. The solution is $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$. The projection of b onto the subspace is p :

$$
\text { Find } p(m \times 1) \quad p=A \hat{x}=A\left(A^{T} A\right)^{-1} A^{T} b
$$

The next formula picks out the projection matrix that is multiplying b

$$
\text { Find } \mathrm{P}(m \times m) \quad \mathrm{P}=A\left(A^{T} A\right)^{-1} A^{T}
$$

The matrix A is rectangular. It has no inverse matrix.

Orthonormal Bases: Gram-Schmidt Process

- Orthogonal:

A set S of vectors in an inner product space V is called an orthogonal set if every pair of vectors in the set is orthogonal.

$$
S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right\} \subseteq V \quad<\boldsymbol{v}_{i}, \boldsymbol{v}_{j}>=0, \quad i \neq j
$$

- Orthonormal:

An orthogonal set in which each vector is a unit vector is called orthonormal

$$
\left.S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \subseteq V \quad<\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{j}\right\rangle= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- Note:

If S is a basis, then it is called an orthogonal basis or an orthonormal basis.

- Ex: (A nonstandard orthonormal basis for R^{3})

Show that the following set is an orthonormal basis.

$$
S=\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2 \sqrt{2}}{3}\right),\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right)\right\}
$$

Sol:

$$
\begin{array}{ll}
\boldsymbol{V}_{1} \cdot \boldsymbol{V}_{2}=-\frac{1}{6}+\frac{1}{6}+0=0 & \left\|\boldsymbol{v}_{1}\right\|=\sqrt{\boldsymbol{V}_{1} \cdot \boldsymbol{V}_{1}}=\sqrt{\frac{1}{2}+\frac{1}{2}+0}=1 \\
\boldsymbol{V}_{1} \cdot \boldsymbol{V}_{3}=\frac{2}{3 \sqrt{2}}-\frac{2}{3 \sqrt{2}}+0=0 & \left\|\boldsymbol{v}_{2}\right\|=\sqrt{\boldsymbol{v}_{2} \cdot \boldsymbol{V}_{2}}=\sqrt{\frac{2}{36}+\frac{2}{36}+\frac{8}{9}}=1 \\
\boldsymbol{V}_{2} \cdot \boldsymbol{V}_{3}=-\frac{\sqrt{2}}{9}-\frac{\sqrt{2}}{9}+\frac{2 \sqrt{2}}{9}=0 & \left\|\boldsymbol{v}_{3}\right\|=\sqrt{\boldsymbol{v}_{3} \cdot \boldsymbol{V}_{3}}=\sqrt{\frac{4}{9}+\frac{4}{9}+\frac{1}{9}}=1
\end{array}
$$

- Ex : (An orthonormal basis for P_{3})
with the inner product $\langle p, q\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
the standard basis $B=\left\{1, x, x^{2}, x^{3}\right\}$ is orthonormal
- Ex: (An Orthogonal Set in $C[0,2 \pi])$

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f(x) g(x) d x
$$

Show that the set $\mathcal{S}=\{1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots, \sin n x, \cos n x\}$ is orthogonal
Sol: $\langle 1, \sin n x\rangle=\int_{0}^{2 \pi} \sin n x d x=0, \quad\langle 1, \cos n x\rangle=\int_{0}^{2 \pi} \cos n x d x=0$
$\langle\sin m x, \cos n x\rangle=\int_{0}^{2 \pi} \sin m x \cos n x d x=0$
$\langle\sin m x, \sin n x\rangle=\int_{0}^{2 \pi} \sin m x \sin n x d x=0, \quad m \neq n$
$\langle\cos m x, \cos n x\rangle=\int_{0}^{2 \pi} \cos m x \cos n x d x=0, \quad m \neq n$
The set S is orthogonal but not orthonormal
An orthonormal set can be formed by normalizing each vector in S
$\|1\|=\sqrt{\langle 1,1\rangle}=\sqrt{\int_{0}^{2 \pi} d x}=\sqrt{2 \pi}$
$\|\sin n x\|=\sqrt{\langle\sin n x, \sin n x\rangle}=\sqrt{\int_{0}^{2 \pi} \sin ^{2} n x d x}=\sqrt{\pi}$
$\|\cos n x\|=\sqrt{\langle\cos n x, \cos n x\rangle}=\sqrt{\int_{0}^{2 \pi} \cos ^{2} n x d x}=\sqrt{\pi}$
So the set $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \sin x, \frac{1}{\sqrt{\pi}} \cos x, \cdots, \frac{1}{\sqrt{\pi}} \sin n x, \frac{1}{\sqrt{\pi}} \cos n x\right\}$ is orthonormal

- Theorem : (Orthogonal sets are linearly independent)

If $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.

- Corollary to Theorem :

If V is an inner product space of dimension n, then any orthogonal set of n nonzero vectors is a basis for V.

- Ex: (Using orthogonality to test for a basis)

Show that the following set is a basis for R^{4}

$$
S=\{(2,3,2,-2), \quad(1,0,0,1), \quad(-1,0,2,1), \quad(-1,2,-1,1)\}
$$

Sol:
$\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{2}}, \boldsymbol{V}_{\mathbf{3}}, \boldsymbol{V}_{\mathbf{4}}$: nonzero vectors

$$
\begin{array}{ll}
\boldsymbol{V}_{\mathbf{1}} \cdot \boldsymbol{V}_{\mathbf{2}}=2+0+0-2=0 & \boldsymbol{V}_{\mathbf{2}} \cdot \boldsymbol{V}_{3}=-1+0+0+1=0 \\
\boldsymbol{V}_{\mathbf{1}} \cdot \boldsymbol{V}_{3}=-2+0+4-2=0 & \boldsymbol{V}_{\mathbf{2}} \cdot \boldsymbol{V}_{4}=-1+0+0+1=0 \\
\boldsymbol{V}_{\mathbf{1}} \cdot \boldsymbol{V}_{\mathbf{4}}=-2+6-2-2=0 & \boldsymbol{V}_{\mathbf{3}} \cdot \boldsymbol{V}_{4}=1+0-2+1=0 \\
\Rightarrow S \text { is orthogonal } \Rightarrow S \text { is a basis for } \boldsymbol{R}^{4}
\end{array}
$$

- Theorem : (Coordinates relative to an orthonormal basis)

If $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ is an orthogoal/orthonormal basis for an inner product space V, and if \boldsymbol{u} is any vector in V, then

$$
\begin{array}{ll}
\boldsymbol{u}=\frac{\left\langle\boldsymbol{U}, \boldsymbol{V}_{1}\right\rangle}{\left\|\boldsymbol{V}_{1}\right\|^{2}} \boldsymbol{V}_{1}+\frac{\left\langle\boldsymbol{U}, \boldsymbol{V}_{2}\right\rangle}{\left\|\boldsymbol{V}_{2}\right\|^{2}} \boldsymbol{V}_{\mathbf{2}}+\cdots+\frac{\left\langle\boldsymbol{U}, \boldsymbol{V}_{n}\right\rangle}{\left\|\boldsymbol{V}_{\mathbf{n}}\right\|^{2}} \boldsymbol{V}_{n} & \text { orthogonal } \\
\boldsymbol{U}=\left\langle\boldsymbol{U}, \boldsymbol{V}_{\mathbf{1}}\right\rangle \boldsymbol{V}_{\mathbf{1}}+\left\langle\boldsymbol{U}, \boldsymbol{V}_{2}\right\rangle \boldsymbol{V}_{\mathbf{2}}+\cdots+\left\langle\boldsymbol{U}, \boldsymbol{V}_{n}\right\rangle \boldsymbol{V}_{n} & \text { orthonormal }
\end{array}
$$

- Note:

Coordinate vector of a vector \boldsymbol{w} in V relative to an orthogonal/ orthonormal basis S is

$$
[\boldsymbol{u}]_{S}=\left(\frac{\left\langle\boldsymbol{u}, \boldsymbol{V}_{\mathbf{1}}\right\rangle}{\left\|\boldsymbol{V}_{\mathbf{1}}\right\|^{2}}, \frac{\left\langle\boldsymbol{u}, \boldsymbol{V}_{\mathbf{2}}\right\rangle}{\left\|\boldsymbol{V}_{\mathbf{2}}\right\|^{2}}, \cdots, \frac{\left\langle\boldsymbol{u}, \boldsymbol{V}_{\boldsymbol{n}}\right\rangle}{\left\|\boldsymbol{V}_{\mathbf{n}}\right\|^{2}}\right)^{T} \quad[\boldsymbol{u}]_{S}=\left(\left\langle\boldsymbol{u}, \boldsymbol{V}_{\mathbf{1}}\right\rangle,\left\langle\boldsymbol{u}, \boldsymbol{V}_{\mathbf{2}}\right\rangle, \cdots,\left\langle\boldsymbol{u}, \boldsymbol{V}_{\boldsymbol{n}}\right\rangle\right)^{T}
$$

- Ex: (Representing vectors relative to an orthonormal basis)

Find the coordinates of vector $\boldsymbol{u}=(5,-5,2)$ relative to the following orthonormal basis

$$
S=\left\{\left(\frac{3}{5}, \frac{4}{5}, 0\right),\left(-\frac{4}{5}, \frac{3}{5}, 0\right),(0,0,1)\right\}
$$

Sol: $\quad<\boldsymbol{u}, \boldsymbol{V}_{\mathbf{1}}>=\boldsymbol{u} \cdot \boldsymbol{V}_{\mathbf{1}}=(5,-5,2) \cdot\left(\frac{3}{5}, \frac{4}{5}, 0\right)=-1$

$$
\Rightarrow[\boldsymbol{u}]_{S}=\left[\begin{array}{c}
-1 \\
-7 \\
2
\end{array}\right]
$$

- Theorem : (Projection Theorem)

If W is a finite-dimensional subspace of an inner product space V, then every vector \boldsymbol{u} in V can be expressed in exactly one way as $\boldsymbol{u}=\boldsymbol{w}_{1}+\boldsymbol{w}_{2}$, where \boldsymbol{w}_{1} is in W and \boldsymbol{w}_{2} is in W^{\perp}

$$
\boldsymbol{u}=\operatorname{proj}_{W} \boldsymbol{\|}+\operatorname{proj}_{W^{-}} \boldsymbol{u}=\operatorname{proj}_{W} \boldsymbol{u}+\left(\boldsymbol{u}-\operatorname{proj}_{W} \boldsymbol{u}\right)
$$

- Theorem : (Projection Theorem)

Let W be a finite-dimensional subspace of an inner product space V. If $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{r}}\right\}$ is an orthogonal/orthonormal basis for W, then

$$
\begin{array}{ll}
\operatorname{proj}_{W} \boldsymbol{U}=\frac{\left\langle\boldsymbol{u}, \boldsymbol{v}_{1}\right\rangle}{\left\|\boldsymbol{V}_{1}\right\|^{2}} \boldsymbol{V}_{1}+\frac{\left\langle\boldsymbol{U}, \boldsymbol{v}_{2}\right\rangle}{\left\|\boldsymbol{V}_{2}\right\|^{2}} \boldsymbol{V}_{2}+\cdots+\frac{\left\langle\boldsymbol{u}, \boldsymbol{V}_{r}\right\rangle}{\left\|\boldsymbol{V}_{\boldsymbol{r}}\right\|^{2}} \boldsymbol{V}_{\boldsymbol{r}} & \text { orthogonal } \\
\operatorname{proj}_{W} \boldsymbol{U}=\left\langle\boldsymbol{u}, \boldsymbol{V}_{1}\right\rangle \boldsymbol{V}_{1}+\left\langle\boldsymbol{u}, \boldsymbol{V}_{2}\right\rangle \boldsymbol{V}_{2}+\cdots+\left\langle\boldsymbol{u}, \boldsymbol{V}_{\boldsymbol{r}}\right\rangle \boldsymbol{V}_{\boldsymbol{r}} & \text { orthonormal }
\end{array}
$$

- Ex: (Calculating Projections)

Let R^{3} have the Euclidean inner product, and let W be the subspace spanned by the orthonormal vectors $\boldsymbol{V}_{1}=(0,1,0)$ and $\boldsymbol{v}_{2}=(-4 / 5,0,3 / 5)$. The orthogonal projection of $\boldsymbol{u}=(1,1,1)$ on W is

$$
\operatorname{proj}_{W} \boldsymbol{u}=\left\langle\boldsymbol{u}, \boldsymbol{V}_{\mathbf{1}}\right\rangle \boldsymbol{V}_{\mathbf{1}}+\left\langle\boldsymbol{u}, \boldsymbol{V}_{\mathbf{2}}\right\rangle \boldsymbol{V}_{\mathbf{2}}=(1)(0,1,0)+(-1 / 5)(-4 / 5,0,3 / 5)=(4 / 25,1,-3 / 25)
$$

The component of \boldsymbol{u} orthogonal to W is

$$
\operatorname{proj}_{W^{\perp}} \boldsymbol{u}=\boldsymbol{u}-\operatorname{proj}_{W} \boldsymbol{U}=(1,1,1)-(4 / 25,1,-3 / 25)=(21 / 25,0,28 / 25)
$$

- A geometric interpretation of orthogonal projections in R^{3}

- Theorem : (Projection Theorem)

Every nonzero finite-dimensional inner product space has an orthonormal basis
Proof (Gram-Schmidt orthonormalization construction)
Let W be any nonzero finite-dimensional subspace of an inner product space, and suppose that $\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{r}\right\}$ is any basis for W

Step 1: Let $\boldsymbol{v}_{\mathbf{1}}=\boldsymbol{u}_{\mathbf{1}}$

$$
\begin{gathered}
\text { Step 2: } \boldsymbol{v}_{2}=\boldsymbol{u}_{2}-\operatorname{proj}_{W_{1}} \boldsymbol{u}_{2}=\boldsymbol{u}_{2}-\frac{\left\langle\boldsymbol{u}_{2}, \boldsymbol{v}_{1}\right\rangle}{\left\langle\boldsymbol{v}_{1}, \boldsymbol{V}_{1}\right\rangle} \boldsymbol{v}_{\mathbf{1}} \\
W_{1}=\operatorname{span}\left(\boldsymbol{v}_{\mathbf{1}}\right) \text { and } \boldsymbol{v}_{2} \perp \boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2} \neq \mathbf{0}
\end{gathered}
$$

Step 3: $\boldsymbol{v}_{3}=\boldsymbol{u}_{3}-\operatorname{proj}_{W_{2}} \boldsymbol{U}_{3}=\boldsymbol{u}_{3}-\frac{\left\langle\boldsymbol{U}_{3}, \boldsymbol{V}_{1}\right\rangle}{\left\langle\boldsymbol{v}_{1}, \boldsymbol{V}_{1}\right\rangle} \boldsymbol{V}_{\mathbf{1}}-\frac{\left\langle\boldsymbol{U}_{3}, \boldsymbol{v}_{2}\right\rangle}{\left\langle\boldsymbol{v}_{2}, \boldsymbol{V}_{\mathbf{2}}\right\rangle} \boldsymbol{V}_{\mathbf{2}}$

$$
W_{2}=\operatorname{span}\left(\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right) \text { and } \boldsymbol{v}_{\mathbf{3}} \perp W_{2}, \boldsymbol{v}_{\mathbf{3}} \neq \mathbf{0}
$$

Continuing in this way we will produce after r steps an orthogonal set of nonzero vectors $\left\{\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{V}_{r}\right\}$

By normalizing these basis vectors we can obtain
 an orthonormal basis

- Theorem : (Gram-Schmidt orthonormalization process)
(1) Let $B=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ is a basis for an inner product space V
(2) Let $B^{\prime}=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$, where

$$
\begin{aligned}
& V_{1}=u_{1} \\
& \boldsymbol{V}_{\mathbf{2}}=\boldsymbol{u}_{\mathbf{2}}-\operatorname{proj}_{W_{1}} \boldsymbol{U}_{\mathbf{2}}=\boldsymbol{U}_{\mathbf{2}}-\frac{\left\langle\boldsymbol{U}_{\mathbf{2}}, \boldsymbol{V}_{\mathbf{1}}\right\rangle}{\left\langle\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{V}_{1}\right\rangle} \boldsymbol{V}_{\mathbf{1}} \\
& \boldsymbol{V}_{3}=\boldsymbol{u}_{3}-\operatorname{proj}_{W_{2}} \boldsymbol{U}_{3}=\boldsymbol{u}_{3}-\frac{\left\langle\boldsymbol{U}_{3}, \boldsymbol{V}_{\mathbf{1}}\right\rangle}{\left\langle\boldsymbol{V}_{1}, \boldsymbol{V}_{1}\right\rangle} \boldsymbol{V}_{1}-\frac{\left.<\boldsymbol{U}_{3}, \boldsymbol{V}_{\mathbf{2}}\right\rangle}{<\boldsymbol{V}_{2}, \boldsymbol{V}_{2}>} \boldsymbol{V}_{\mathbf{2}} \\
& \vdots \\
& \boldsymbol{V}_{\boldsymbol{n}}=\boldsymbol{u}_{\boldsymbol{n}}-\operatorname{proj}_{W_{\boldsymbol{n}-1}} \boldsymbol{u}_{\boldsymbol{n}}=\boldsymbol{u}_{\boldsymbol{n}}-\sum_{i=1}^{n-1} \frac{<\boldsymbol{u}_{\boldsymbol{n}}, \boldsymbol{V}_{\boldsymbol{i}}>}{<\boldsymbol{V}_{\boldsymbol{i}}, \boldsymbol{V}_{\boldsymbol{i}}>} \boldsymbol{V}_{\boldsymbol{i}}
\end{aligned}
$$

Then B is an orthogonal basis for V
(3) Let $\boldsymbol{w}_{\boldsymbol{i}}=\frac{\boldsymbol{V}_{\boldsymbol{i}}}{\left\|\boldsymbol{V}_{\boldsymbol{i}}\right\|}$

Then $B^{\prime \prime}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$ is an orthonormal basis for V

Also, $\operatorname{span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}=\operatorname{span}\left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\boldsymbol{k}}\right\}$ for $k=1,2, \ldots, n$

- Ex: (Applying the Gram-Schmidt orthonormalization process)

Apply the Gram-Schmidt orthonormalization process to the basis B for R^{2}

$$
B=\begin{array}{cc}
\boldsymbol{u}_{1} & \boldsymbol{\mu}_{2} \\
\{(1,1), & (0,1)\}
\end{array}
$$

Sol:

$$
\begin{aligned}
& \boldsymbol{V}_{1}=\boldsymbol{u}_{1}=(1,1) \\
& \boldsymbol{V}_{2}=\boldsymbol{u}_{2}-\frac{\left\langle\boldsymbol{U}_{2}, \boldsymbol{V}_{1}\right\rangle}{\left\langle\boldsymbol{V}_{1}, \boldsymbol{V}_{1}\right\rangle} \boldsymbol{V}_{1}=(0,1)-\frac{1}{2}(1,1)=\left(-\frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

The set $B=\left\{V_{1}, v_{2}\right\}$ is an orthogonal basis for R^{2}

$$
\begin{aligned}
& \boldsymbol{W}_{1}=\frac{\boldsymbol{V}_{1}}{\left\|\boldsymbol{V}_{1}\right\|}=\frac{1}{\sqrt{2}}(1,1)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \\
& \boldsymbol{W}_{2}=\frac{\boldsymbol{V}_{2}}{\left\|\boldsymbol{V}_{2}\right\|}=\frac{1}{1 / \sqrt{2}}\left(-\frac{1}{2}, \frac{1}{2}\right)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

The set $B^{\prime \prime}=\left\{\boldsymbol{W}_{1}, \boldsymbol{W}_{2}\right\}$ is an orthonormal basis for \boldsymbol{R}^{2}

- Ex: (Applying the Gram-Schmidt orthonormalization process)

Apply the Gram-Schmidt orthonormalization process to the basis B for R^{3}

$$
B=\begin{array}{ccc}
\boldsymbol{u}_{1}, & \boldsymbol{u}_{2}, & \boldsymbol{u}_{3} \\
\{(1,1,0), & (1,2,0), & (0,1,2)\}
\end{array}
$$

Sol:

$$
\begin{aligned}
\boldsymbol{V}_{1} & =\boldsymbol{u}_{1}=(1,1,0) \\
\boldsymbol{V}_{2} & =\boldsymbol{u}_{2}-\frac{\left\langle\boldsymbol{u}_{2}, \boldsymbol{V}_{1}>\right.}{<\boldsymbol{V}_{1}, \boldsymbol{V}_{1}>} \boldsymbol{V}_{1}=(1,2,0)-\frac{3}{2}(1,1,0)=\left(-\frac{1}{2}, \frac{1}{2}, 0\right) \\
\boldsymbol{V}_{3} & =\boldsymbol{u}_{3}-\frac{\left\langle\boldsymbol{u}_{3}, \boldsymbol{V}_{1}\right\rangle}{<\boldsymbol{V}_{1}, \boldsymbol{V}_{1}>} \boldsymbol{V}_{1}-\frac{\left\langle\boldsymbol{u}_{3}, \boldsymbol{V}_{2}\right\rangle}{\left\langle\boldsymbol{V}_{2}, \boldsymbol{V}_{2}>\right.} \boldsymbol{V}_{2} \\
& =(1,2,0)-\frac{1}{2}(1,1,0)-\frac{1 / 2}{1 / 2}\left(-\frac{1}{2}, \frac{1}{2}, 0\right)=(0,0,2)
\end{aligned}
$$

The set $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is an orthogonal basis for \boldsymbol{R}^{3}

$$
\begin{aligned}
& \boldsymbol{W}_{1}=\frac{\boldsymbol{V}_{1}}{\left\|\boldsymbol{V}_{1}\right\|}=\frac{1}{\sqrt{2}}(1,1,0)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& \boldsymbol{W}_{2}=\frac{\boldsymbol{V}_{2}}{\left\|\boldsymbol{V}_{2}\right\|}=\frac{1}{1 / \sqrt{2}}\left(-\frac{1}{2}, \frac{1}{2}, 0\right)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& \boldsymbol{W}_{3}=\frac{\boldsymbol{V}_{3}}{\left\|\boldsymbol{V}_{3}\right\|}=\frac{1}{2}(0,0,2)=(0,0,1)
\end{aligned}
$$

The set $B^{\prime \prime}=\left\{\boldsymbol{W}_{1}, \boldsymbol{w}_{2}, \boldsymbol{W}_{3}\right\}$ is an orthonormal basis for $\boldsymbol{R}^{\boldsymbol{B}}$

- Ex: (Applying the Gram-Schmidt orthonormalization process)

Apply the Gram-Schmidt orthonormalization process to the standard basis $B=\left\{1, x, x^{2}\right\}$ in P_{2}

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Sol:
Let $B=\left\{1, x, x^{2}\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$
$\boldsymbol{V}_{\mathbf{1}}=\boldsymbol{u}_{\mathbf{1}}=1$
$\boldsymbol{V}_{\mathbf{2}}=\boldsymbol{U}_{\mathbf{2}}-\frac{\left\langle\boldsymbol{U}_{2}, \boldsymbol{V}_{\mathbf{1}}\right\rangle}{\left\langle\boldsymbol{V}_{1}, \boldsymbol{V}_{\mathbf{1}}\right\rangle} \boldsymbol{V}_{\mathbf{1}}=X-\frac{0}{2}(1)=X$
$\boldsymbol{V}_{3}=\boldsymbol{u}_{3}-\frac{\left\langle\boldsymbol{u}_{3}, \boldsymbol{v}_{\mathbf{1}}\right\rangle}{\left\langle\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{1}}\right\rangle} \boldsymbol{V}_{\mathbf{1}}-\frac{\left\langle\boldsymbol{U}_{3}, \boldsymbol{V}_{\mathbf{2}}\right\rangle}{\left\langle\boldsymbol{V}_{2}, \boldsymbol{V}_{\mathbf{2}}\right\rangle} \boldsymbol{V}_{2}=x^{2}-\frac{2 / 3}{2}(1)-\frac{0}{2 / 3}(x)=x^{2}-\frac{1}{3}$
by normalizing $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \boldsymbol{v}_{\mathbf{3}}\right\}$
$\boldsymbol{W}_{1}=\frac{\boldsymbol{V}_{1}}{\left\|\boldsymbol{V}_{1}\right\|}=\frac{1}{\sqrt{2}}(1)=\frac{1}{\sqrt{2}}$
$\boldsymbol{W}_{2}=\frac{\boldsymbol{v}_{2}}{\left\|\boldsymbol{V}_{2}\right\|}=\frac{1}{\sqrt{2 / 3}}(x)=\sqrt{\frac{3}{2}} x$
$\boldsymbol{W}_{3}=\frac{\boldsymbol{V}_{3}}{\left\|\boldsymbol{V}_{3}\right\|}=\frac{1}{\sqrt{8 / 45}}\left(x^{2}-\frac{1}{3}\right)=\frac{1}{2} \sqrt{\frac{5}{2}}\left(3 x^{2}-1\right)$
Legendre Polynomials

[^0]: https://manara.edu.sy/

[^1]: https://manara.edu.sy/

