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Polar Coordinates 6li_all

Equations Relating Polar and Cartesian Coordinates

X = rcos b, y = rsin#, rr=x 4y t:mﬂ=%
y ¥
T+ (v—3)P =09
Ra}rﬂ=g or
r=6snd

FPlx.y) = Flr. )

r L]
y (0. 3)%

'\lﬂ B B=0,r=0 .

X Initial ray

=
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Polar Coordinates

EXAMPLE 6 Replace the following polar equations by equivalent Cartesian equa-
tions and identify their graphs.

(a) rcosd =—4 x = —4

(b) 7 = 4rcos (x =27 +y*=4
4

(¢) r= y=2x — 4

2cos60 — sin @
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Graphing Polar Coordinate Equations §)Liall

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane
1. Symmetry about the x-axis: If the point (r, 8) lies on the graph, then the point
(r,—8) or (—r, w — 8) lies on the graph (Figure 11.28a).

2. Symmetry about the y-axis: If the point (r, #) lies on the graph, then the point
(r, ™ — B) or (—r,—0) lies on the graph (Figure 11.28b).

3. Symmetry about the origin: If the point (r, §) lies on the graph, then the point
(—r,8) or (r, @ + ) lies on the graph (Figure 11.28c).

.'.'r; (r, ™ — #) J'l ‘:
) (7. 8) oo | __=9 (r. 6)
i
|
|

0 : * 0 * 0 ‘
|
|
(1, —6)
i (—r.8)or (r.8 + )
or(—r.m— )
(b) About the y-axis {c) About the origin

(a) About the y-axis
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Slope

The slope of a polar curve r = f(@) in the xy-plane is dy/dx, but this is not given by the
formula r' = df /df. To see why, think of the graph of f as the graph of the parametric

equations

x =rcosf = f(0)cosb, y =rsinf@ = f(#) s 6.

Slope of the Curve r = f(#) in the Cartesian xy-Plane
ely _ '@ sinp + f(@)cosd (1)

def g f' (@ cos® — f(@)sing

provided dx/df # 0 at (r, 8).
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Graphing Polar Coordinate Equations 8)liaJl

EXAMPLE 1 Graph the curve r = 1 — cos @ in the Cartesian xy-plane.

Symmetry Tests
(r.,@) onthe graph = r =1 — cos @
= r=1— cos(—0@)

= (r, —) on the graph.

The curve is symmetric about the x-axis Cardioid
| | | 3 Zm)y
0 r=1-— cos@ 3. &
' ' ' r=1—cosd
0 0
™ 1
3 2
z 1 {1, 2)
2
L
27 3 (2
3 2
i 2 (,2) i
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Areas and Lengths in Polar Coordinates tﬁ

Area of the Fan-Shaped Region Between the Origin and the Curve

dA = Ll,rz do = %{f{ﬂ])zdﬂ.

r=f(Hwhenae =0 =B r=0andp — o« = 2. 1
Fl 2
A =\/ﬂ' ir—z dﬂ n n
.. . . . . jE;EHZZ
This is the integral of the area differential (Figure 11.33) ] =1

“Ap,
Ly

(f16,). 6,)
{:k k

1
\1 F(r, 8)

) ,,..-""r T
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Areas and Lengths in Polar Coordinates

EXAMPLE 1 Find the area of the region in the xy-plane enclosed by the cardioid
r=2(1 + cos #).

}F
r= 21 + cos &)
N RN Y
r
=027

[

ﬂ=2':rl ifrl 0 o
/ 2" 46 =f 7401+ cos 67 d = 6. (\J
0=0 0 -
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Areas and Lengths in Polar Coordinates

Areaofthe Region0 = ) =r=rna =0 = g.and f — a = 2.

B 8, 8
A=L 51" df —fﬂ irlldﬂ=-/;

(i"’lz - Fll) -l‘.'«lrﬂ (l]

[ | =

r
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Areas and Lengths in Polar Coordinates

EXAMPLE 2
the cardioid r = 1 — cos 8.

w2 |
A =j: 5 (n? = n?)do

w2

*.Tl,-"El
zf] 5 (n? = n?)as

w2
=[ (1 — (1 — 2cos@ + cos’®)) db
0

| m
_E_I'

Find the area of the region that lies inside the circle r = 1 and outside

v Upper limit
rp=1—cosé f=m/2

F1=|

N

™ Lower limit
@=—mf2

https://manara.edu.sy/
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Length of a Polar Curve s o
Length of a Polar Curve x = rcosf = f(f)cos ¥,
If r = f(#) has a continuous first derivative for &« = 8 = 8 and if the point y = rsinf = £(0) sin 6,

P(r, @) traces the curve r = f(f) exactly once as & runs from « to §, then the
length of the curve is L B dr )’ . dy Ede
— ) \\ao o) =

g dr\2
=_/; rr+ (ﬁ) da. (3)

EXAMPLE 4 Find the length of the cardioid r = 1 — cos 8. 3

r=1—cosd

Fir, &)

r+(d")_=2—?cmﬂ o
= f
/\/r-l- .:IE—/ V2 — 2cosfdf = 8.

[
=
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Exercises
® Find the areas of the regions
Bounded by the circle r = 2sin @ for m/4 = 60 = 7 /2 r=2sin0

1 |

@ [nside one leaf of the three-leaved rose r = cos 36

INE

@ Find the lengths of the curves

19

The spiral r = 0%, 0 =0 < V5 3
The curve r = V1 + sin 20, 0 =60 = m\/2 27

r = cos 36

https://manara.edu.sy/
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Work Done by a Variable Force Along a Line

DEFINITION The work done by a variable force F(x) in moving an object
along the x-axis from x = atox = b is

b
W = f F(x) dx. (2)

Work = > Fle) Ax,.
k=]

Hooke’s Law for Springs: /' =kx ks force constant

https://manara.edu.sy/
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EXAMPLE 2 Find the work required to compress a spring from its natural length of
1 ft to a length of 0.75 ft if the force constant is k = 16 1b/ft.

Compressed
F =16x
. X
0 :Unmmpmssed 1
I
025 0.2% F | @
W= / l6x dx = 8x*| = 0.5 ft-Ib. |
0 0 - |
= |
3 | F = 16x
3 |
4 Work done by F
L~ fromx =0 tox =025
]
0 0.25 B

Amount compressed

https://manara.edu.sy/ =
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EXAMPLE 3 A spring has a natural length of 1 m. A force of 24 N holds the spring
stretched to a total length of 0.8 m.

(a) Find the force constant k.
(b) How much work will it take to stretch the spring 2 m beyond its natural length?
(c) How far will a 45-N force stretch the spring?

a k2 24 = k(0.8) mmmmmp k= 24/0.8 = 30N/m.

e

1 r
b w=[ 3llrir=15::1] = 60 J.
0 0

c 45 = 3(x, ) = |.5m.

https://manara.edu.sy/ —
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EXAMPLE 4 A 5-kg bucket is lifted from the ground into the air by pulling in 20 m

of rope at a constant speed (Figure 6.38). The rope weighs 0.08 kg/m. How much work
was spent lifting the bucket and rope? T

Weight of Bucket =5x9.8=49N

Total work=work on the bucket + work on the rope

work on the bucket = weight . distance
=49x20=980J

[ )

20
Work on rope = f (0.08%20 — x)(9.8)edx = 156.8 1.
0

Total work= 980 + 156.5 = 1136.8 L.

https://manara.edu.sy/
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Exercises

7. Subway car springs It takes a force of 21,714 Ib to compress i Y
a coll spring assembly on a New York City Transit Authority sub- / I/

[

way car from its free height of 8 in. to its fully compressed height //

/

of 5in. /4

a. What is the assembly’s force constant?

b. How much work does it take to compress the assembly the

first half inch? the second half inch”? Answer to the nearest
in.-1b.

EFRBFX

k=72381b
in
~ 905 1n-1b. ~ 2714 in-1b

https://manara.edu.sy/ =
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Exercises

11. Lifting an elevator cable An electric elevator with a motor at
the top has a multistrand cable weighing 4.5 Ib/ft. When the car
15 at the first floor, 180 ft of cable are paid out, and effectively O ft
are out when the car is at the top floor. How much work does the
motor do just lifting the cable when it takes the car from the first
floor to the top?

72,900 ft-1b

https://manara.edu.sy/
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Moments and Centers of Mass 8)liall

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region in
the xy-Plane

Moment about the x-axis: M, = / ¥ dm

Moment about the y-axis: M, = / X dm

Mass: M =/ clim
M

Center of mass: X = Ef, y =

(5) y

Stoip of mass Am

dm  Mass of strip
If the density of the plat is a constant ‘ dm = o6dA

https://manara.edu.sy/ AL
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EXAMPLE 3 Find the center of mass of a thin plate covering the region bounded
above by the parabola y = 4 — x* and below by the x-axis (Figure 6.52). Assume the den-
sity of the plate at the point (x, ¥) is § = 2x%, which is twice the square of the distance
from the point to the y-axis. §
Symmetry about y-axis M, =0, X =0
dA =(4—x?)dx
dm = 5dA =2x*(4—x?)dx

y=y /2= (4 —x? ) /2 The distar-1ce of strip’s center mass
from x-axis

M, [Ju‘m—f —(4 — %) ,i,__/ 24 — 2)dx _ 2048
—7 -2 I'[]ﬁ

M = fu'm—f 5(4 — x*) dx = 113{4—,{’}:5:[_%
—2

https://manara.edu.sy/ 2L
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M, 2048 15 _ § ‘ _
M~ 105 256 7T 'F*ﬂ:(

Plates Bounded by Two Curves

center of mass (c.m.):
length:

width:

area:

mass:

X
I

[
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G5 = (2 Ff0) + gx)])

fx) — gx)
dx

dA = [f(x) — g(x)] dx
dm = 6dA = 8| f(x) — g(x)] dx.

Mijax[f (x)—g (x)]dx

1%, 2
V= L) -%0) Jox

)

0, =

}I‘

¥ = flx]

https://manara.edu.sy/
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EXAMPLE 4 Find the center of mass for the thin plate bounded by the curves

g(x) = x/2 and f(x) = Vi 0=x=1 (Figure 6.54), using Equations (6) and (7) with
the density function 8(x) = x°.

M jdm j5f(x) g (x)]dx !

https://manara.edu.sy/
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Exercises

@® The region bounded by the curves y = *+4/ Vx and the lines
x = 1 and x = 4 15 revolved about the y-axis to generate a solid.

a. Find the volume of the sohd.

b. Find the center of mass of a thin plate covenng the region if
the plate’s density at the point (x, ¥) is 8(x) = 1/x.

@® The region between the curve y = 2/x and the x-axis from x = 1
to x = 4 1s revolved about the x-axis to generate a solid.

a. Find the volume of the sohd.

b. Find the center of mass of a thin plate coverning the region if
the plate’s density at the point (x, ¥) is 8(x) = V.

3

37 A

https://manara.edu.sy/
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Numerical Integration
- . . .
I'rapezoidal Approximations =
Trapezoid area /
: (v + y2)Ax
The Trapezoidal Rule 2
To approximate f : f(x)dx, use ‘L‘t";\\\
Tz%(}h+2}’l+2}’2+"'+2}h—l+.}'n)- / \&.ﬁ,/
The y’s are the values of f at the partition points f yioo ¥ Yn—1 |¥n
p=ax=a+ Ax,x=a+ 2Ax, ...,x,_,=a+ (n— DAx,x, = b,
where Ax = (b — a)/n. Xg=da X; X3 | X, %= b
Ax
25
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EXAMPLE 1 Use the Trapezoidal Rule with n = 4 to estimate f ]21:1 dx. Compare

the estimate with the exact value.

Py

deol o
6jliall

2-1 1
M= T v :
T= %(}Jﬂ. + 2y, + 2y, + 2y; + };1) ; é
4 16
S GRER R R .
_ 75 _
) 2.34375. % 'i%
2 4
2
j x 2dx = 2.33333
1
LI - 10074l 2.34375-7/3]

E

x100% = 0.446%

% |
exact

https://manara.edu.sy/
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Simpson’s Rule: Approximations Using Parabolas

.1'" }:-
& 4

(0, ¥

(—h. ¥) (B, ¥2)
fﬁm /n/—-__-\\ y=Ax>+Bx+C
/ Parabola b= ) Equal Area

‘\Jf'n ¥ ¥a
Yo| M| ¥z n—1

i | h
> X

0|a S B - g = b —h 0 It T

Approximating thecurve y =f (x) >0 byaparabola y =Ax*+Bx +C
A typical parabola passes through three consecutive points on the curve.

(Xi—l’yi—l)’(xi’yi)’(Xi+1’yi+l) h=AX:b_a
n

https://manara.edu.sy/
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Simpson’s Rule: Approximations Usm%yﬁ'larabolas

it ¥
A, =/ (AX* + Bx + C)dx = g{gﬁhf + 6C). hiﬂ,rf}
- (—h. _}rn']/""___-"*\.\m, }"E}
r=Ax+Bx+ C
[Finding A ,C] / .
Since the curve passes through the three points Yo o Y M2
(=h.¥,).(0,y,).(h.y,)
K 0 h *

Yo=AlP —Bh+ C, y=C, y=AR + Bh+ C,
2Ah2:yo_2y1+y2 , C =Yy,
h
Ap :g(yo+4y1+y2)
Thus the area under the parabola through (X4, Y, ), (X1, ¥1). (X5, Y) E(y0+4y1+y2)
3

https://manara.edu.sy/ 2
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Simpson’s Rule

b
h h h
/ f(x) dx = g{}?ﬂ + 4y + )+ gb’? +dyy + o)+t g(yu—i + dyy—1 + ¥)

h
=300+ 4+ 2y + dys + 2yg o0 F Zymg F dyums F o)

b h %_l %
JOOd =l yo+23 Y, +43 Yo 1+,
a j=1 j=1

y.=f(x,);i=012,..,n
X, =a,X, =b,x. =a+1Ax ;i =1,2,...,n-1

https://manara.edu.sy/ 22



EXAMPLE 2

=ﬁx
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Use Simpson’s Rule with n = 4 to approximate f; 5x* dx.

S T(}’u tdy o+ 2y Ay :ﬂ;)

=é(g+4(

3
16

405 _ 3y L
—) + 2(5) + 4(ﬁ) + SL‘I) = 32135

x y = 5x*
0 0

1 2

2 16

1 3

3 405

2 16

2 80

https://manara.edu.sy/
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Error Analysis 6lial

THEOREM 1—Error Estimates in the Trapezoidal and Simpson’s Rules
If £ is continuous and M is any upper bound for the values of |f"| on [a, b],
then the error E; in the trapezoidal approximation of the integral of f fromato b

i)
for n steps satisfies the inequality / fx)dx =T — b 1_2 L. f7(c) (Ax)?
M — a)’ .
122

|ET| = Trapezoidal Rule

If ™ is continuous and M is any upper bound for the values of |f*| on [a, b],
then the error E in the Simpson’s Rule approximation of the integral of f from a
to b for n steps satisfies the inequality

|E | = M Simpson’s Rule
U7 180mt SR
i
EXAMPLE 3 ind bound for th 1 imati Jrz 4 d ] fx)yde = 8§ — b— a'.’fﬂ}{c){ﬂx)dl
Find an upper bound for the error in estimating [, 5x*dx using b 130

[

Simpson’s Rule with n = 4 (Example 2).

_Mpb—ay _120QF _ |

|Es| = 180  180-44 12

https://manara.edu.sy/ =L
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EXAMPLE 4 Estimate the minimum number of subintervals needed to approximate
the integral in Example 3 using Simpson’s Rule with an error of magnitude less than 107,

M(b — a)®

< 107,
180m°

12002)° |
<
180n*  10°

O\ 14
n > m(@) ~ 215

3

n=22

https://manara.edu.sy/
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EXAMPLE 6 A town wants to drain and fill a small polluted swamp (Figure 8.11).

The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to fill the
area after the swamp 1s drained?

A —H-Erft
S=Tb’ﬂ+4}?| + 2y, + dys + 2y + dys + )
210 (7 y1 lﬂﬂ
=T(l46+483+ 152 + 216 + 80 + 120 + 13) = 8100
[AX =2
y, =761t

y =54 fi

/ Vertical spacing = 20 fi

—4th
V =8100x5 = 405001t > =1500 yd? y#auﬁ /

Yy £l3ft

Ienored

https://manara.edu.sy/ =
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The instructions for the integrals in Exercises 1-10 have two parts,
one for the Trapezoidal Rule and one for Simpson’s Rule.

I. Using the Trapezoidal Rule

a. Estimate the integral with n = 4 steps and find an upper
bound for |E;.~|.

b. Evaluate the integral directly and find | E7|.

¢. Use the formula [|ET| [(true value)) X 100 to express |ET| as
a percentage of the integral’s true value.

II. Using Simpson’s Rule

a. Estimate the integral with n = 4 steps and find an upper
bound for |E5|.

b. Evaluate the integral directly and find | Eq].

¢. Use the formula [|ES| f (true value)) X 100 to express |ES| as
a percentage of the integral’s true value.

5. f; (£ + 1) dt 6. f_:(:ﬂ + 1) dt

https://manara.edu.sy/
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In Exercises 11-22, estimate the minimum number of subintervals
needed to approximate the integrals with an error of magnitude less
than 10~ by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The
integrals in Exercises 11-18 are the integrals from Exercises 1-8.)

3 1 2
20. f ——dx 21. f sin (x + 1) dx
Vil ) ( )
n =130 n=18 n=82 n=2=8

24. Distance traveled The accompanying table shows time-to-
speed data for a sports car accelerating from rest to 130 mph. How
far had the car traveled by the time it reached this speed? (Use
trapezoids to estimate the area under the velocity curve, but be
careful: The time intervals vary in length.)

5166.346 ft = 0.9785 nu 1 mph = 1.466667 ft/s

Time (sec)

Speed change
Zero to 30 mph 2.2
40 mph 3.2
50 mph 4.5
60 mph 39
70 mph 1.8
80 mph 10.2
90 mph 12.7
100 mph 16.0
110 mph 20.6
120 mph 26.2
130 mph 37.1

https://manara.edu.sy/
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