Lecture 3

EQUIVALENT CIRCUIT

DR. BASSAM ATIEH

Resistance Levels

Semiconductors react differently to DC and AC currents.
There are three types of resistance:

- DC (static) resistance
- AC (dynamic) resistance
- Average AC resistance

MANARA UNIVERSITY

DC (Static) Resistance

For a specific applied DC voltage VD, the diode has a specific current ID, and a specific resistance RD.

$$
R_{D}=\frac{V_{D}}{I_{D}}
$$

MANAF

AC (Dynamic) Resistance
|

$$
r_{d}=\frac{\Delta v_{D}}{\Delta I_{D}}
$$

$$
R_{D}=\frac{V_{D}}{I_{n}}=\frac{0.7 \mathrm{~V}}{2 * 10^{-3} \mathrm{~A}}=350 \Omega \quad \text { المقاومة الساكنة }
$$

نرسم مماس منحني الخواص في النقطة التي تعطي تياراً مقداره 2mA

$$
\Delta V_{d}=0.76-0.65=0.11 \mathrm{~V}
$$

$$
\Delta I_{d}=4-0=4 m A
$$

$$
r_{d}=\frac{\Delta V_{d}}{\Delta I_{d}}=\frac{0.11 \mathrm{~V}}{4 m A}=27.5 \Omega
$$

عندما يكون نيار الديود I I =25mA

$$
I_{D}=30 \mathrm{~mA} \Rightarrow V_{D}=0.8 \mathrm{~V} ; \quad I_{D}=20 \mathrm{~mA} \Rightarrow V_{D}=0.78 \mathrm{~V}
$$

$$
r_{d}=\frac{\Delta V_{D}}{\Delta I_{D}}=\frac{0.02 \mathrm{~V}}{10 \mathrm{~mA}}=2 \Omega
$$

AC (Dynamic) Resistance
 $I_{D}=I_{s}\left(e^{K V_{D} / T_{K}}-1\right)$

$$
\begin{aligned}
& \frac{d}{d V_{D}}\left(I_{D}\right)=\frac{d}{d V_{D}}\left[I_{s}\left(\mathrm{e}^{\frac{K V_{D}}{T_{\mathrm{K}}}}-1\right)\right]=\frac{K}{T_{K}}\left(I_{S} * e^{\frac{\mathrm{K}_{\mathrm{L}}}{\frac{K V_{K}}{T_{K}}}}\right)=\frac{K}{T_{K}}\left(I_{S}+I_{D}\right) \\
& \left.I_{D}=I_{s} e^{K V_{D} / T_{K}}-I_{S}\right) \Rightarrow I_{D}+I_{S}=I_{S} * \mathrm{e}^{\frac{K V_{D}}{T_{\mathrm{K}}}} \\
& \frac{d I_{D}}{d V_{D}} \cong \frac{K}{T_{K}} * I_{D}
\end{aligned}
$$

وعلى اعتّار أن 1 في الجزء العوددي من منحني الخو اص للجرمانيوم والسبلكون علـى

$$
K=11.6 / \eta=11.6 / 1=11.6
$$

$$
\frac{d I_{D}}{d V_{D}}=38.93 I_{D} \Rightarrow \frac{d V_{D}}{d I_{D}}=\frac{1}{38.93 I_{D}} \cong \frac{0.026}{I_{D}} \Rightarrow 5 \quad r_{d}=\frac{26 \mathrm{mV}}{I_{D}}
$$

AC (Dynamic) Resistance

In the forward bias region:

- The resistance depends on the amount of current $\left(I_{D}\right)$ in the diode.
- The voltage across the diode is fairly constant $\left(\mathbf{2 6 ~ m V}\right.$ for $\left.\mathbf{2 5}^{\circ} \mathrm{C}\right)$.
- r_{B} ranges from a typical 0.1Ω for high power devices to 2Ω for low power, general purpose diodes. In some cases r_{B} can be ignored.
In the reverse bias region:

$$
r_{d}^{\prime}=\infty
$$

The resistance is effectively infinite. The diode acts like an open.

Average AC Resistance

$$
\left.r_{a v}=\frac{\Delta V_{d}}{\Delta I_{d}} \right\rvert\, \text { pt.to pt. }
$$

AC resistance can be calculated using the current and voltage values for two points on the diode characteristic curve.

جَـامعة
النمـانـارة
DC or static

AC or
dynamic

$$
r_{d}=\frac{\Delta V_{d}}{\Delta I_{d}}=\frac{26 \mathrm{mV}}{I_{D}}
$$

Defined by a tangent line at the Q-point

Average ac

$$
r_{\mathrm{av}}=\frac{\Delta V_{d}}{\Delta I_{d}} \text { pt. to pt. } \quad \begin{aligned}
& \text { Defined by a straight } \\
& \text { line between limits } \\
& \text { of operation }
\end{aligned}
$$

Diode Equivalent Circuit

MANARA UNIVERSITY

Piecewise-Linear Equivalent Circuit الاراة اللمكائئة الخطية المجزأة

 جهـ العتبة الخاص بنوع الديود المستخذم كما هو موضح بالشكّل

Ideal Equivalent Circuit الدارة المكافئة المثالية:

يمكن إهمال أغلب السعات التتفر عية وتأثثير اتـها عندما تكون التــرددات منخفضـــة، إذ تكــون ممانعة هذه السعات عالية $X_{C}=\frac{1}{2 \pi . f C}$ وبالتالي يمكن أن تشكل دارة مفتوحة.
عندما يصبح f عالٍ جداً تصبح هذه السعات التقر عية ذات دويمكن أن نشكل دارات قصر ، يؤدي إلى حلوث حلقات تُغنية عكسية فـي الاارات الإلكترونية غير محمودة العو اقب. في أنصـاف النو اقلّ وبالتحديد في ثثائي الوصلة p - n يوجد تأثير لسعتين أساسيتين هما سعة Diffusion Capacitance وسعة الانتشـــار Transition Capacitance (C_{T}) العبور
 إحدى هاتّين السعتين فعالة في مجال ومهملة في المجال الآخر • ففي حالة الاستقطاب العكني
 التخزين Storage Capacitance) فتكون مهملة و في حالة الاسنقطاب الأمـــامي يصــبـح العكس هو الصحيح.

- In reverse bias, the depletion layer is very large.
- The diode's strong positive and negative polarities create capacitance, C_{T}.
- The amount of capacitance depends on the reverse voltage.

the r			ltage.		$\dagger C(\mathrm{p})$	
				15		
						!
						i
						7
nce				-10	,	,
					-	
ists		Rever	ebias $\left(C_{T}\right)$		-	
		,	(C_{t})		-	
					\bigcirc	
					\square	
				,		
			,		-Forward-bias	bias $\left(C_{D}\right)-$
(V) -25	-20	-15	$-10 \quad-5$	-5 0	$0 \quad 0.25$	50.5

تنغيرات سعة العبور وسعة الانتشار تبعاً للجهـ المطبق على الديود.

 مثّالي موصولة معه سعتّه على التثرع ع

Reverse recovery time is the time required for a diode to stop conducting once it is switched from forward bias to reverse bias.

Diode Specification Sheets

1. Forward Voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$ at a specified current and temperature.
2. Maximum forward current $\left(\mathrm{I}_{\mathrm{F}}\right)$ at a specified temperature.
3. Reverse saturation current $\left(I_{R}\right)$ at a specified voltage and temperature.
4. Reverse voltage rating, PIV or PRV or $V(B R)$, at a specified temperature.
5. Maximum power dissipation at a specified temperature.
6. Capacitance levels.
7. Reverse recovery time, $t_{r r}$.
8. Operating temperature range.

The anode is abbreviated A
The cathode is abbreviated K

Diode Testing

1. Diode Checker

- Many digital multimeters have a diode checking function.
- The diode should be tested out of circuit.
- A normal diode exhibits its forward voltage:
- Germanium diode $\cong 0.3 \mathrm{~V}$

2. Ohmmeter

- An ohmmeter set on a low Ohms scale can be used to test a diode.
- The diode should be tested out of circuit.

3. Curve Tracer

- A curve tracer displays the characteristic curve of a diode in the test circuit. This curve can be compared to the specifications of the diode from a data sheet.

Vertical per div.

1
mA

Horizontal
per div.
100
mV

Per Step

B or g_{m} per div.

Other Types of Diodes

1. Zener Diode

- A Zener is a diode operated in reverse bias at the Zener voltage (VZ). Common Zener voltages are between 1.8 V and 200 V

2. Light-Emitting Diode (LED)

- An LED emits photons when it is forward biased.
- These can be in the infrared or visible spectrum.
- The forward bias voltage is usually in the range of 2 V to 3 V .

3. Diode Arrays

Multiple diodes can be packaged together in an integrated circuit (IC).

Common Anode

Common Cathode

Diode Applications : تطبقات اللابيود

بيتخذدم الايود في مجالات عدبدة كالتحديد، اللتؤيم و القص.....إلخ . من أجــل
حل الدارات وفهم سلوك الايود فيها سنـبرس (ؤلا تُحليل خط الحمل:

أوجذ

$$
\begin{aligned}
& V_{D}=0.7 \mathrm{~V} \\
& V_{R}=E-V_{D}=8-0.7=7.3 \text { volts } \\
& I_{D}=I_{R}=\frac{V_{R}}{R}=\frac{7.3 \mathrm{~V}}{2.2 * 10^{3} \Omega} \Rightarrow \\
& I_{D} \cong 3.32 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& I_{D}=0 \Rightarrow \\
& E-V_{D}-V_{R}=0 \Rightarrow \\
& V_{D}=E-V_{R} \\
& V_{D}=E-0=8 \text { volts }
\end{aligned}
$$

|الايود مسنقطب عكسياً.

$$
\begin{aligned}
& E_{1}=10 \mathrm{~V} \circ \underbrace{\substack{R_{1} \\
R_{1}}}_{4.7 \mathrm{k} \Omega} \underbrace{\substack{R_{2}}}_{\mathrm{Si}_{2}} \\
& \text { الْـَــامعنارة } \\
& I=\frac{E_{1}+E_{2}-V_{D}}{R_{1}+R_{2}}=\frac{10+5-0.7}{(4.7+2.2) * 10^{3}}=\frac{14.3 \text { volts }}{6.9 * 10^{3} \Omega} \Rightarrow \\
& I=2.07 m A \\
& V_{1}=I * R_{1}=2.07 * 10^{-3} * 4.7 * 10^{3}=9.73 \text { volts } \\
& V_{2}=I * R_{2}=2.07 * 10^{-3} * 2.2 * 10^{3}=4.55 \text { volts } \\
& V_{0}=V_{2}-E_{2}=4.55-5=-0.45 \mathrm{volts}
\end{aligned}
$$

نلاحظ أن جهد التغذية أقل من الجهد اللازم لفتح الديود، لذا فإن الثيار المار في الدارة

$$
\begin{aligned}
& I_{D}=0 \text { Amper } \\
& V_{R}=I_{R} * R=I_{D} * R=0 \text { volts } \\
& V_{D}=E-V_{R}=0.5-0=0.5 \text { volts }
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}=E-V_{T_{1}}-V_{T_{2}} \Rightarrow \\
& V_{0}=12-0.7-0.3=11 \text { volts } \\
& I_{D}=I_{R}=\frac{V_{0}}{R}=\frac{11}{5.6 * 10^{3}} \cong 1.96 \mathrm{~mA}
\end{aligned}
$$

$I_{1}=\frac{V_{T_{2}}}{R_{1}}=\frac{0.7 \mathrm{v}}{3.3 * 10^{3} \mathrm{~A}}=0.212 \mathrm{~mA}$
$-V_{2}+E-V_{T_{2}}-V_{T_{1}}=0 \Rightarrow$
$V_{2}=+E-V_{T_{2}}-V_{T_{1}}=20-0.7-0.7 \Rightarrow$
$V_{2}=18.6 \mathrm{volts}$
$I_{2}=\frac{V_{2}}{R_{2}}=\frac{18.6 \mathrm{v}}{5.6 * 10^{3} \Omega}=3.32 \mathrm{~mA} \begin{aligned} & I_{D_{2}}+I_{1}=I_{2} \Rightarrow \\ & I_{D_{2}}=I_{2}-I_{1}=3\end{aligned}$

$$
3.32 m A-0.212 m A=3.108 m A \text {. }
$$

Forward Bias

Series Diode Configurations

Analysis (for silicon)

$$
\begin{aligned}
& V_{D}=0.7 \mathrm{~V} \text { or } V_{D}=E \text { if } E<0.7 \\
& V_{R}=E-V_{D} \\
& I_{D}=I_{R}=I_{T}=V_{R} / R \\
& \text { Reverse Bias }
\end{aligned}
$$

$$
\text { Diodes ideally behave as open circuits }{ }^{-}
$$

Analysis

- $V_{D}=E$

- $V_{R}=0 \mathrm{~V}$

- $I_{D}=0 \mathrm{~A}$

Parallel Configurations

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{D}}=0.7 \mathrm{~V} \\
& V_{D 1}=V_{D 2}=V_{O}=0.7 \mathrm{~V} \\
& V_{R}=9.3 \mathrm{~V} \\
& I_{R}=\frac{E-V_{D}}{R}=\frac{10 \mathrm{~V}-.7 \mathrm{~V}}{.33 \mathrm{k} \Omega}=28 \mathrm{~mA} \\
& I_{D 1}=I_{D 2}=\frac{28 \mathrm{~mA}}{2}=14 \mathrm{~mA}
\end{aligned}
$$

يستخدم الديود في مجالات عديدة كالتحديّيد، التنقويم و القص.....إلخ • من أجــل حل الدارات وفهم سلوك الديود فيهها سندرس (ؤلاُ تُحليل خط الحمل:

أوجذ

$$
\begin{aligned}
& V_{D}=0.7 \mathrm{~V} \\
& V_{R}=E-V_{D}=8-0.7=7.3 \text { volts } \\
& I_{D}=I_{R}=\frac{V_{R}}{R}=\frac{7.3 \mathrm{~V}}{2.2 * 10^{3} \Omega} \Rightarrow \\
& I_{D} \cong 3.32 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& I_{D}=0 \Rightarrow \\
& E-V_{D}-V_{R}=0 \Rightarrow \\
& V_{D}=E-V_{R} \\
& V_{D}=E-0=8 \text { volts }
\end{aligned}
$$

|الايود مسنقطب عكسياً.

$$
\underline{i}
$$

$$
\begin{aligned}
& \geqslant \\
& \text { الْـَامـنارةة } \\
& I=\frac{E_{1}+E_{2}-V_{D}}{R_{1}+R_{2}}=\frac{10+5-0.7}{(4.7+2.2) * 10^{3}}=\frac{14.3 \text { volts }}{6.9 * 10^{3} \Omega} \Rightarrow \\
& I=2.07 m A \\
& V_{1}=I * R_{1}=2.07 * 10^{-3} * 4.7 * 10^{3}=9.73 \text { volts } \\
& V_{2}=I * R_{2}=2.07 * 10^{-3} * 2.2 * 10^{3}=4.55 \mathrm{volts} \\
& V_{0}=V_{2}-E_{2}=4.55-5=-0.45 \mathrm{volts}
\end{aligned}
$$

مثُّال
نلاحظ أن جهـ التغنية أقل من الجهـ اللازم لفتح الايود، لذا فإن التيّار المار في الدارة
$+$

$$
\begin{aligned}
& I_{D}=0 \text { Amper } \\
& V_{R}=I_{R} * R=I_{D} * R=0 \text { volts } \\
& V_{D}=E-V_{R}=0.5-0=0.5 \text { volts }
\end{aligned}
$$

H

$V_{0}=12-0.7-0.3=11$ volts
$I_{D}=I_{R}=\frac{V_{0}}{R}=\frac{11}{5.6 * 10^{3}} \cong 1.96 \mathrm{~mA}$

$I_{1}=\frac{V_{T_{2}}}{R_{1}}=\frac{0.7 \mathrm{v}}{3.3 * 10^{3} \mathrm{~A}}=0.212 \mathrm{~mA}$
$-V_{2}+E-V_{T_{2}}-V_{T_{1}}=0 \Rightarrow$
$V_{2}=+E-V_{T_{2}}-V_{T_{1}}=20-0.7-0.7 \Rightarrow$
$V_{2}=18.6 \mathrm{volts}$
$I_{2}=\frac{V_{2}}{R_{2}}=\frac{18.6 \mathrm{v}}{5.6 * 10^{3} \Omega}=3.32 \mathrm{~mA} \quad I_{D_{2}}+I_{1}=I_{2} \Rightarrow$

$$
I_{D_{2}}=I_{2}-I_{1}=3.32 \mathrm{~mA}-0.212 \mathrm{~mA}=3.108 \mathrm{~mA}
$$

