Lecture 9

(BJT BIASING) طرق انجیاز BJT DR. BASSAMATIEH

https://manara.edu.sy/

Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Operating Point

The DC input establishes an operating or quiescent point called the Q-point.

- The Three States of Operation
- 1. Active or Linear Region Operation

Base–Emitter junction is forward biased Base–Collector junction is reverse biased.

2. Cutoff Region Operation

Base-Emitter junction is reverse biased.

3. Saturation Region Operation

Base-Emitter junction is forward biased Base-Collector junction is forward biased.

دارات الانحياز DC Biasing Circuits

- Fixed-bias circuit
- Emitter-stabilized bias circuit
- Collector-emitter loop
- Voltage divider bias circuit
- DC bias with voltage feedback

- دارة الانحياز الثابت
- دارة انحياز الباعث المستقر
- دارة الانحياز لحلقة الباعث المجمع
 - دارة انحياز مجزئ الجهد
 - و دارة الانحياز بالتغذية العكسية

Fixed-bias circuit

ac

input

signal

دارة الانحياز الثابت

المنارة

 V_{CE}

The Base-Emitter Loop

From Kirchhoff's voltage law:

$$+\mathbf{V}_{CC}-\mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{B}}-\mathbf{V}_{\mathbf{BE}}=\mathbf{0}$$

Solving for base current:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

Collector-Emitter Loop

Collector current:

$$I_C = \beta I_B$$

From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_C R_C$$

Load Line Analysis

Saturation

When the transistor is operating in saturation, current through the transistor is at its maximum possible value.

$$V_{CE} \cong 0 V$$

$$I_{Csat} = \frac{V_{CC}}{R_{C}}$$

The Q-point is the operating point:

• where the value of R_B sets the value of I_B

Circuit Values Affect

Emitter-Stabilized Bias Circuit

Base-Emitter Loop

From Kirchhoff's voltage law:

$$+ \mathbf{V_{CC}} - \mathbf{I_E} \mathbf{R_E} - \mathbf{V_{BE}} - \mathbf{I_E} \mathbf{R_E} = \mathbf{0}$$

Since $I_E = (\beta + 1)I_B$:

$$V_{CC} - I_B R_B - (\beta \pm 1) I_B R_E = 0$$

Solving for IB:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

Collector-Emitter Loop

From Kirchhoff's voltage law:

$$I_{\mathbf{E}}^{\mathbf{R}} \mathbf{E}^{+\mathbf{V}}_{\mathbf{C}\mathbf{E}}^{+\mathbf{I}} \mathbf{C}^{\mathbf{R}}_{\mathbf{C}}^{-\mathbf{V}}_{\mathbf{C}\mathbf{C}}^{=\mathbf{0}}$$

Since $I_E \cong I_C$:

$$\mathbf{V_{CE}} = \mathbf{V_{CC}} - \mathbf{I_C}(\mathbf{R_C} + \mathbf{R_E})$$

Also:

$$\begin{aligned} \mathbf{V_E} &= \mathbf{I_E} \mathbf{R_E} \\ \mathbf{V_C} &= \mathbf{V_{CE}} + \mathbf{V_E} = \mathbf{V_{CC}} - \mathbf{I_C} \mathbf{R_C} \\ \mathbf{V_B} &= \mathbf{V_{CC}} - \mathbf{I_R} \mathbf{R_B} = \mathbf{V_{BE}} + \mathbf{V_E} \end{aligned}$$

Improved Biased Stability

Stability refers circuit condition in which the currents and voltages fairly will remain constant over a wide range of temperatures and transistor Beta (β) values.

Adding Re to the emitter improves the stability of a transistor.

Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of

any variations in β .

Approximate Analysis

Where
$$I_B \ll I_1$$
 and $I_1 \cong I_2$:

Where β $R_E > 10R_2$:

$$V_{B} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$\mathbf{E} = \frac{\mathbf{V_E}}{\mathbf{R_E}}$$
 $\mathbf{V_E} = \mathbf{V_B} - \mathbf{V_B}$

From Kirchhoff's voltage law:

$$\mathbf{V}_{\mathbf{CE}} = \mathbf{V}_{\mathbf{CC}} - \mathbf{I}_{\mathbf{C}} \mathbf{R}_{\mathbf{C}} - \mathbf{I}_{\mathbf{E}} \mathbf{R}_{\mathbf{E}}$$

المنارة

Transistor Saturation Level

Load Line Analysis $I_E \cong I_C$

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_C + R_E}$$

$$\mathbf{V}_{\mathbf{CE}} = \mathbf{V}_{\mathbf{CC}} - \mathbf{I}_{\mathbf{C}} (\mathbf{R}_{\mathbf{C}} + \mathbf{R}_{\mathbf{E}})$$

Saturation:

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$

$$V_{CE} = 0V$$

$$E_{\rm Th} = V_{R_2} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$I_B = \frac{E_{\text{Th}} - V_{BE}}{R_{\text{Th}} + (\beta + 1)R_E}$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

DC Bias with Voltage Feedback

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base. In this bias circuit the Q-point is only slightly dependent on the transistor beta, β .

From Kirchhoff's voltage law:

$$\mathbf{V_{CC}} - \mathbf{I_C'R_C} - \mathbf{I_BR_B} - \mathbf{V_{BE}} - \mathbf{I_ER_E} = \mathbf{0}$$

Where
$$I_B \ll I_C$$
: $I'_C = I_C + I_B \cong I_C$

Knowing $I_C = \beta I_B$ and $I_E \cong I_C$,:

$$V_{CC} - \beta I_B R_C - I_B R_B - V_{BE} - \beta I_B R_E = 0$$

Solving for
$$I_B$$
:
$$I_B = \frac{V_{CC} - V_{BE}}{R_B + \beta(R_C + R_E)}$$

Collector-Emitter Loop

Applying Kirchoff's voltage law: $I_E + V_{CE} + I'_C R_C - V_{CC} = 0$

$$\mathbf{I}_{\mathbf{E}} + \mathbf{V}_{\mathbf{CE}} + \mathbf{I'}_{\mathbf{C}}\mathbf{R}_{\mathbf{C}} - \mathbf{V}_{\mathbf{CC}} = \mathbf{0}$$

Since
$$I'_C \cong I_C$$
 and $I_C = \beta I_B$:

Since
$$I'_C \cong I_C$$
 and $I_C = \beta I_B$: $I_C(R_C + R_E) + V_{CE} - V_{CC} = 0$

Solving for V_{CE} :

$$\mathbf{V}_{\mathbf{CE}} = \mathbf{V}_{\mathbf{CC}} - \mathbf{I}_{\mathbf{C}}(\mathbf{R}_{\mathbf{C}} + \mathbf{R}_{\mathbf{E}})$$

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_C + R_E}$$

Load Line Analysis

Cutoff:

$$V_{CE} = V_{CC}$$

$$I_C = 0 \, mA$$

Saturation:

$$egin{array}{c} \mathbf{V_{CC}} \\ \mathbf{I_C} &= & \mathbf{V_{CC}} \\ \mathbf{R_C} + & \mathbf{R_E} \\ \mathbf{V_{CE}} &= & \mathbf{0} \ \mathbf{V} \\ \end{array}$$

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

Switching Circuit Calculations

resistance at saturation $R_{sat} =$

جَامعة

Saturation current:

$$I_{Csat} = \frac{V_{CC}}{R_C}$$

To ensure saturation:

$$I_{B} > \frac{I_{Csat}}{\beta_{dc}}$$

resistance at cutoff

$$\mathbf{R_{cutoff}} = \frac{\mathbf{v_{CC}}}{\mathbf{I_{CEO}}}$$

PNP Transistors

The analysis for pnp transistor biasing circuits is the same as that for *npn* transistor circuits. The only difference is that the currents are flowing in the opposite direction.

MANARA UNIVERSITY