

## دارات الكترونية المحاضرة /6/ - عملي

الدكتور السموءل صالح المهندس جبران خليل المهندسة ايه خيربك



## AC Equivalent circuit

• The fixed-bias configuration of JFET transistor have an operating point defined by:  $V_{GSQ}$  = -2 V and  $I_{DQ}$  = 5.625 mA, with  $I_{DSS}$  = 10 mA and  $V_p$  = -8 V. The network is drawn as the following Fig. with an applied signal  $V_I$ .

• The value of  $y_{os}$  is provided as 40 mS





## AC Equivalent circuit







## AC Equivalent circuit

a. 
$$g_{m0} = \frac{I_{DSS}}{|V_P|} = \frac{2(10mA)}{8V} = 2.5 \text{ mS}$$

$$g_m = g_{m0} (1 - \frac{V_{GSQ}}{V_P}) = 2.5 mS (1 - \frac{-2v}{-8v}) = 1.88 mS$$

b. 
$$r_b = \frac{1}{y_{os}} = \frac{1}{40\mu S} = 25k\Omega$$

c. 
$$Z_i = R_G = 1M\Omega$$

$$d. \quad Z_o = R_D || r_d = 2k\Omega || 25k\Omega$$

e. 
$$A_v = -g_m(R_D||r_d) = -(1.88mS)(1.85k\Omega) = -3.48$$

f. 
$$A_v = -g_m R_D = -(1.88mS)(2k\Omega) = -3.76$$

As demonstrated in part (f), a ratio of 25 k $\Omega$ :2 k $\Omega$  = 12.5:1 between  $r_d$  and  $R_D$  results in a difference of 8% in the solution.