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Absolute Convergence; The Ratio and Root Tests

DEFINITION A series 2.-:1“ converges absolutely (is absolutely convergent)
if the corresponding series of absolute values, 2 |a,|, converges.

THEOREM 12—The Absolute Convergence Test

= = O
If Elﬂn| converges, then Eﬂ,, converges.
n=1 n=1

x I N
1yt >
1 n=1 M

n=|
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The Ratio Test

THEOREM 13—The Ratio Test
Let Eﬂn be any series and suppose that

'ﬂu+ 1
iy

lim

=D

Then (a) the series converges absolutely if p << 1, (b) the series divergesif p > 1
or p is infinite, {c) the test i1s inconclusive if p = 1.

EXAMPLE 2 Investigate the convergence of the following series.

2 oan 1 g 22 (2n)! < 4"nln!
(a) E tE (b) 2‘; nln! (c) 2 (2}:?;

=0 n=I1
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@ ST aney| _ 2+ 53 2 pbsolutely
a0 3 ay (2" + 5)/3" 3" Convergent
— 2"+ 5 _ 5 21
= a + n o = .
2}1 3 E}( ) ;}]3 1 — (233} 1 — (1/3) 2
2n)! |a,.,| alr!2n 4+ 2)(2n + D(2a)!
= —— 4.  Absolutel
®) E wnl |, (n + Di(n + DI2n)! 4 Ml
© id"n!u! oy A+ Din+ D! 20! 2(n+ 1) :
. & (2n)! a, |~ 2n + 22n + D2 Falnl . m+ 1
5 5 Absolutely
n .
2n+1>1 ) 3, >3, mm=pd >3 =2 sy a 00 VEOEN
_I_
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The Root Test
THEOREM 14—The Root Test
Let Eﬂn be any series and suppose that
lim V|a,| = p.

Tl =00

Then (a) the series converges absolutely if p << 1, (b) the series divergesif p = 1
or p is infinite, (c) the test 1s inconclusive if p = 1.

EXAMPLE 4 Which of the following series converge, and which diverge?

@ D% ® 2% © 2(1 ,‘rﬂ)

n=1 n=1
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(a) > gz_ﬂ " ﬁﬂ — lf <1 Absolutely
=1 2 Convergent
n| 2" 2 Absolutely
PR =1 Divergent
) 1\ Absolutely
(1 T n) — 0 <L Convergent

https://manara.edu.sy/



[Py

Exercises TR

use the Ratio Test to determine if each series converges absolutely or diverges

= (n— 1) - 2! = n’(n + 2)! N ns"
_l n
20T 23 2T A dme D

Using the Root Test

2 (—m(e? + %D”H S - ( % ) 2 {—1}"(1 — ;1?)

Recursively Defined Terms Which of the series X -, a, defined
by the formulas in Exercises 47-56 converge, and which diverge?
Give reasons for your answers.

l—I—tzﬂm_ln“:I . 1 , n—l—lnn
R TR g Mt n+ 10 “

a) = l'r tpe) =
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Alternating Series and Conditional Convergence

THEOREM 15—The Alternating Series Test
The series

[ =)
{—l)"“u,, =u — My t My — g+ -
|

converges if the following conditions are satisfied:

1. The u,’s are all positive.

2. The u,’s are eventually nonincreasing: u, = u,s, for all n = N, for some
integer N.

3. u,—0.

I
I iy

I

: — It

I i .

| +1e3

| | iy

|

|

! :

|

' = & =

0 5y 54 L T3 5
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EXAMPLE 1 The alternating harmonic series
~ .1 1 1 1
Iyl =1 — = - — = -
P Gl V s+3—7+

n=1

5, Increases, eventually becomes

¥ larger than any constant M y
&
-
______________ -— "M
N ! -t +1 -4+
20 |]|| \I+E+T+E+?+E 1.00 |—l+% EIII 3 45
' P, 1 2
sk — | ety tets 0.75 —
] | | 1 —————-——-——"——NE——]’———IIIE
1+= l+5+5+ 7
1.0 B 1] oo 0.50 | —Ls1_ L ]II
- : B ]__l— i 3|J'||:| 1
0.5 0.25 I=3+35-3+5-%
| | | | | | | oy
e I N

. C The alternating harmonic series converges to In 2 = .693.
The harmonic series diverges,
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Conditional Convergence

DEFINITION A series that is convergent but not absolutely convergent is called
conditionally convergent.

EXAMPLE 4  If p is a positive constant, the sequence {1/n”} is a decreasing
sequence with limit zero. Therefore, the alternating p-series

{—l]" ! 1,1 1
g —2—P+§—E+"',p}ﬂ
p > 1 Absolutely
Convergent
Conditionally
O<p<l Convergent

https://manara.edu.sy/
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Exercises

Determine if the alternating series converges or diverges. Some of the series do not
satisfy the conditions of the Alternating Series Test.

S 1y ;

- o 2 10" - Ivn + 1
. _lﬂ I_".I' 1 1w+l
2, “ 7 E{ et Et D g‘: byt =

converges diverges converges absolutely diverges

Absolute and Conditional Convergence

— U" tan ' n = 1
sin n nn
E E{—l}“ 2': Ty 2E
converges conditionally . converges absolutely converges HbSDlulEly converges conditionally
e
COs i o 0o
2 2(—1]”(Vn + Vi — \.fﬂ} E(—l]“ sech n
n=] N .I'\«"'/j'_? n=1 n=1
. converges absolutely
converges absolutely diverges
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Power Series it
DEFINITIONS A power series about x = 0 is a series of the form
dexX"=cteoaxtel+ o dex+ . (1)
n=0

A power series about x = a is a series of the form

[ ]

dex—ar=gtox—atox—al+--tex—ar+--- (2
n=0

in which the center a and the coefficients ¢, ¢;, ¢5, . . ., ¢, . . . are constants.

EXAMPLE 1 Taking all the coefficients to be 1 in Equation (1) gives the geometric
power series

(==
Sat=l+x+x+--+2"+ -
n=10

1

= ltxat P+, Sl <x <L
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yg=l+x+at+x8+xt+

Lol S¥ SN T B R |

¥

ya=1+x+2?

w=1l+x

yo=1

L 4y

-1 0

1

EXAMPLE 2 The power series

1—%(:—2]+i(x—2]1+--- +(

_,_&=?

@ —27

=] b2

2

4

—%)(I—E]"-I-"' 4)

'”'%6%)&—2P+“3 0<x<4

https://manara.edu.sy/
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EXAMPLE 3 For what values of x do the following power series converge?
2
n—1 _x f‘j — — X" 13 X
[ﬂ} "2{ 1} =X 2 T 3 (E]‘ F;}”! I T X E_' -+ 37 + -
{h} E{ l}n—l "12"_. I—£+£—‘-[d}ET-"=[—|— 4+ 2 4 3 4.
~ M — 1 3 5 FI:GJ'L.-I X ) L
T L1 n Absolutely
(a) Hy n+ 1 x| T n -+ lI'TI - ITI Convergent |I| < 1

X =1 ‘ Z (_1)n—1 %Convergent
n=1

-

X =-1 ‘ Z_ divergent __, |
n 1
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e 2n—1 3 _{j
B P L. <P S
(b) i,;{ L n—1 3 + 5
(b) Unti| _ 2l 2n— 1| _ 2n — lxl—n:z Absolutely
Hi 2n + 1 4In-1 2n + 1 ) Convergent

N 1
X :1 ‘ Z(_l)n_l 2 Convergent
n=1

n-1
1

X =1 m—) > —1)°*"+ Convergent
nz;( ) 2n -1

R | TR
—1 0 i

2 <1

https://manara.edu.sy/
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o n 3 o
X X A
(c) ;2;}*1!_1+1+3!+3!+
Uppr| | 2t pl| | x|
(c) | = m+ Dl x| —nt I—inﬂfE\’Ef}’I.
- | - X
0

(d) Dal*=1+x+ 27+ 33+ - -

n={
Upey| |2+ 1)1+l B _
@ |5 = o = (n + 1)|x| = counless x = 0.
-.'_

]

1

https://manara.edu.sy/
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THEOREM 18—The Convergence Theorem for Power Series
If the power series

oo
»ax" = ay + axx + a,x®> + --- convergesat x = ¢ 7 0, then it converges
a=0

absolutely for all x with |x| < |e|. If the series diverges at x = d, then it
diverges for all x with |x| > |d]|.

Corollary to Theorem 18
The convergence of the series X ¢,(x — a)" is described by one of the following
three cases:

1. There is a positive number R such that the series diverges for x with
|x — a| > R but converges absolutely for x with |x — a| < R. The series
may or may not converge at eitherof theendpoints x = a — Randx = a + R.

2. The series converges absolutely for every x (R = co).

3. The series converges at ¥ = a and diverges elsewhere (R = 0).

SET1eS SET1eS SETICS

diverges CONVErges diverges

<) — =

—_—0r = = = O = -0 = 00— X
~dl =R el 0 d R d]

https://manara.edu.sy/
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How to Test a Power Series for Convergence
1. Use the Ratio Test (or Root Test) to find the largest open interval where the
series converges absolutely,

|x —al| <R o a—R<x<a+R

2. If R is finite, test for convergence or divergence at each endpoint, as in
Examples 3a and b. Use a Comparison Test, the Integral Test, or the Alternating
Series Test.

3. If R is finite, the series diverges for |x — a| = R (it does not even converge
conditionally) because the nth term does not approach zero for those values of x.

Diverges Diverges

A N
\\// _T-\\/Ha

Converges on [x —a, x + a] Convergeson [x —a, x +a)

(a) {b)

https://manara.edu.sy/
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Diverges Diverzes

S
-

eI
e < = -

"

i

xta\//?” x—a \/ x+a

Convergeson (x —a, x + a] Convergeson (x —a, x +a)

(c) (d)

Diverzes

IR

d
\ - / }
Converges everywhere Converges only atx=a
(e) (f)

.

https://manara.edu.sy/
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Operations on Power Series  suai

THEOREM 19—Series Multiplication for Power Series
If A(x) = 2. pa,x" and B(x) = X _, b x" converge absolutely for |x| < R,
and

n
cp, = -r.'il'nbn T+ ﬁ'lb 1 T Hlb"_z L 'ﬂn—lbl T Enbﬂ = Zﬂkb —Js
k=0

then 2, —gC,x" converges absolutely to A(x)B(x) for |x| < R:

(S0e)(3e) = Se

n=>0 = =0

THEOREM 20 If ¥°_,a, x" converges absolutely for |x| < R and f is a con-

tinuous function, then -y a,(f(x))" converges absolutely on the set of points x
where | f(x)] < R.

https://manara.edu.sy/
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THEOREM 21—Term-by-Term Differentiation
If Xc,(x — a)" has radius of convergence R = 0, it defines a function

fx) = Dcx —a)" ontheinterval a—-R<x<a+R
n=I(]

This function f has derivatives of all orders inside the interval, and we obtain the
derivatives by differentiating the original series term by term:

m ]

@) = Snex — a!,
n=1

m u]

') = Dinln — Dex — a)" ™=,

n=2

and so on. Each of these derived series converges at every point of the interval
a— R<x<a+ R

https://manara.edu.sy/
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EXAMPLE 4 Find series for f'(x) and f"(x) if

ﬂ-‘»’]=lit=1+I+xl+x?‘+_1;4+---—|—_f!-;-...
=Ef’, —1] =< x = 1.
=0
_f'[x}=“ 1 ].}=I+11:+311+4_13+"'+fu"’_’-I-"' = >l —1 =< x < 1:
AR n=1
ff(x) = 2 =72 + 6x + 122+ - -- -I-u{u—l}f—?-;-...
(1 )
- X
= San— "2 -l <x<l.

https://manara.edu.sy/



[

6)jliaJl

THEOREM 22—Term-by-Term Integration
Suppose that

fix)y = Xl — a)

=0

converges fora — R << x << a + R(R > 0). Then

oo {I _ f.-}""'l

EE" n+1

a=0

converges fora — R < x << @ + R and

r — a}n+l

ff{:;.ﬁ: Sat—2—+c

a=0

fora — R<x<a+ R.

https://manara.edu.sy/
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EXAMPLE 6 The series
L i+ P+
1 + ¢
converges on the open interval —1 << r << 1
| 23 4 x
IH(I‘I‘JLJ—/{:I+rfl’!—t—§+§—1_|_... u
2 4
I S S S
B T
oo {:_ l]"_l F
m(1+x}=E] —, —l<x<l
n=

https://manara.edu.sy/

24



[

deol ~

Exercises 5)li s
(a) find the series’ radius and interval of convergence. For what values of x does
the series converge (b) absolutely, (c) conditionally?

M=rdx + 17 1 —d<x<o0 EE'E'T'”{ZM + 1)f+| 0 o
n=l) P HE‘E‘"

= (3x — 2)" 1 1oy % .

> s 377 P 3 3<x<3

n=1 conditionally at x:% =1 ”'v” TEL

Use a geometric series to represent the given function as a power series about x = () , and find

their intervals of convergence.

3 > 3
= —C - x" <2
g(x) x _ 2 ?Ej 2n+11' |T|
a0 1 n .
about X = 5 Z[_E) (x-5) 2<x<8
n=0

https://manara.edu.sy/
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Taylor and Maclaurin Series

DEFINITIONS Let f be a function with derivatives of all orders throughout
some interval containing « as an interior point. Then the Taylor series generated

byfatx = ais

.l'r]l i
Eﬁul—ﬂ)‘k f{ﬂ}+.f{ﬂ](x—ﬂ]+'f”

f"a)

!

(x — a)’

+ -+ (x — a)" +

The Maclaurin series of f is the Taylor series generated by fat x = 0, or

Ef‘“{ 0) "{ II' J‘{"’(D)

2
=0 mn.

_I_...

https://manara.edu.sy/
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EXAMPLE 1 Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if
anywhere, does the series converge to 1 /x?

_f{l‘} = _1_-—15 f’[,ﬂ = __T—I_, _f"{x} o 21_1_—35 e f["]'[lj —_ [_ l)".fﬂ_r_"r-""'l]'.,

"2 ﬂ]g — 1"
==t o=k L@ L TO_C0
J'I'E n:’z
f[2}+_f'{3}(-T—E]—IE{!]{I—E]E-I—---—|—jd”E][x_g]u+...
I @-2) -2y (= 2y
T2 22 T 23 B + g+ T
1/2 ] 1

https://manara.edu.sy/
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‘aylor Polynomials

DEFINITION Let f be a function with derivatives of orderkfork = 1,2,..., N
in some interval containing a as an interior point. Then for any integer n from 0
through &, the Taylor polynomial of order n generated by f at x = a 1s the

polynomial

RGO = f@) + F@6 —a) + T — ap + -
k) i)
T ﬁk‘}ﬂ}(—t — a4+ -+ _f{ni!:iﬂ(x — a)".

https://manara.edu.sy/
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EXAMPLE 2 Find the Taylor series and the Taylor polynomials generated by
f(x) =¢"atx = 0.

iﬁ

k=k
X2 x"
H:{-T]_l+-T+E+"'+H~

Flxy=1+x
Px) =1+ x + (x2/2!)
Pix) =14 x + (x7/21) + (x/31).

y = Pslx)

¥ = Py(x)

y=Fx]

https://manara.edu.sy/
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EXAMPLE 3 Find the Taylor series and Taylor polynomials generated by f(x) = cos x
COS X, f'ix) = —sin x,
—Cos X, 3% = sin x,
(—1)"cos x, FRHD ) = (—1y**sin x. 2"_

£ () =

£0) =

b lx) =

n) re/ "/
—17 Ao = 0. / /‘\\v

e PSR
Eﬂ (2Kk)! S|

X

2 4
=1 — =‘-_ s ...
Popsy(x) = 1 71 T 41 + ”H[En]'

https://manara.edu.sy/
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find the Taylor polynomials of orders 0, 1, 2, and 3 generated by f at a.

f{-f} = ln_-'l.".. (= 1 P{}(I)=U,H(I)=(I—]),P2(J:)=(.1'—])—%(.1‘—])2,P3(I):(x—])—%(x_])z +%(J:—1)3
fy=V1—-x a=0 R(x) =LA =1-1xP(x) =1-Lx-1 B(x)=1-1r-13 -1

find the Taylor series generated by f at x = a.

f) =1/(1 —x)3 a=0 f(x) = cos (2x + (m/2)), a=m/4
n+2)(n+l) n —1y" 22" x 2n
f) =2, a=1 3msew
n=0

https://manara.edu.sy/ =L
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Convergence of Taylor Series

THEOREM 23—Taylor's Theorem

If { and its first n derivatives f', f", ... , f* are continuous on the closed interval
between a and b, and f™ is differentiable on the open interval between a and b,
then there exists a number ¢ between a and b such that

$6) = f@) + £@b — a) + L% — P + -
f{”]'[ H} f{n+ 1}{ r:)

7!

+ =—b —a)" + m(b — a)"tl.

https://manara.edu.sy/

32



Y

deol ~

Convergence of Taylor Series it

Taylor’'s Formula
If f has derivatives of all orders in an open interval / containing a, then for each
positive integer n and for each xin [,

£ = £@ + @ — @) + 2 — ap + -
i
T %ﬁi — a)' + R, (x), (1)
where
n+1)y
R, (x) = L‘—{G}I(I — a)y*t! for some|c between a and x. (2)

Remainder of order n or the error term

https://manara.edu.sy/
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If R, (x) — 0 as n — oo for all x I, we say that the Taylor series generated by f
at x = a converges to f on f, and we write

B ey
fo) = Ef‘() ot

k=0

EXAMPLE 1 Show that the Taylor series generated by f(x) = ¢* at x = 0 converges
to f(x) for every real value of x.

et = X .
l+1:+§+ C T R
N e n+1
Ry(x) = n+ D ¢ between 0 and x. x|+
T =
X <0 o) C < () ) ¢ <] Do) I‘Eﬂ{“‘}' (n + 1!
_fj 1 ) _111+l

X >0 m—C <X m—e® <o mmmmmmp R0 <CETT gy

for every x,

https://manara.edu.sy/

34



Y

6)jliaJl

Estimating the Remainder

THEOREM 24—The Remainder Estimation Theorem

If there is a positive constant M such that | f"*!(r)| = M for all ¢ between x
and a, inclusive, then the remainder term R,(x) in Taylor’s Theorem satisfies the
inequality

|.1‘ — H|"+I

(n + 1!

|R(x)| = M

If this inequality holds for every n and the other conditions of Taylor’s Theorem
are satisfied by f, then the series converges to f(x).

https://manara.edu.sy/
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Estimating the Remainder &)Ll
EXAMPLE 2 Show that the Taylor series for sin x at x = 0 converges for all x.
flx) = sin x, f'(x) = COS X,

fllx) = —sin x, f"(x) = —COos X,
f0) = —Fsinx,  f20@) = (—1) cos x,

fA0)y =0 and  fEENO0) = (- 1)

: B 5 (L5
51nx=x—ﬁ+%—---+[2k+l}!-I-F:‘EH{J:]. M =1
|22
| Rop i) | = 1 '{Elk |_|_ Ok (|x[**2/(2k + 2)!) =0 as k— o0 Rysy(x)—0
_ =, (1)t ¥, 0 X
ST ‘%(mw SR

https://manara.edu.sy/
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Using Taylor Series

EXAMPLE 4 Using known series, find the first few terms of the Taylor series for the
given function by using power series operations.

(a) ::7{1:: + x CO0S x) (b) & cosx
1 .., L2 1 o at ; xk
(a) 3{2,1+,1cn5,1}—3:+3,1(1 2!—|-4! + (—1) 20! +
_ 2 1 X X X
T C TR T Y e S R
c el S o
[h}ECﬂSI=(I+I+E+i+—!+"' l—iﬂ'a—"'
lj .1.'4 Multiply the first
= l T x - - = T o m_".'i-_'h|".'~ each term
3 ﬁ of the .m;u:l'_-.l SETIES.

https://manara.edu.sy/
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EXAMPLE 5 For what values of x can we replace sin x by x — (x*/3!) and obtain
an error whose magnitude is no greater than 3 X 1077

3 5 F)
: . S T T, T T
A TR AT T
5 3 5
%:%,‘LIEL{:B}{ID—J ‘ |x]¢i‘5f"‘35ﬂ}{lﬂ_4#ﬂ.514*

N

https://manara.edu.sy/
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find the Taylor series at x = 0 of the functions
COS (x2/3/\6) Sin X * COS X %ln(l + x2) EGSE X
i (_I)H Ij-n o0 (—1:]'” 22".1’2" o | i '[:—1)"_1 TEH+1 1+ i (—1)” Zin -1 Iln
2" (2n)! Z (2n+1)! 3n -~ (2n)!
n=0 n=0 n=l1 n=l1

Estimate the error if P(x) = x — (x*/6) is used to estimate the
value of sin x at x = 0.1.

error < 4.2 x1 D_ﬁ

Estimate the error if Py(x) = 1 + x + (x*/2) + (x*/6) + (x*/24)
is used to estimate the value of " at x = 1 /2.

error < 7.03x107%

tan

L(3x4)

R
1)”3“’“1}(3?? 4

>C
n=0

2n+l

https://manara.edu.sy/
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