Tension and Compression in Bars
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Objectives: Mechanics of/\/later/'alsinvestigates the stressing and the deformations of structures su bjected
to applied loads, starting by the simplest structural members, namely, bars in tension or compression.
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In order to treat such problems, the kinematic relations and a constitutive law are needed to complement

the equilibrium conditions which are known from Engineering Mechanics (Statics). e Lolyall 010 g3
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The kinematic relations represent the geometry of the deformation, whereas the behavior of the material
is described by the constitutive law. The students will learn how to apply these equations and how to solve

determinate as well as statically indeterminate problems. << LS Bypia pi Gyirlg LiigSiue 5y pia Jilowo Al e
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1. Stress Consider a straight bar with a constant cross-sectional area A.
lts ax/sis connecting the centroids of the cross sections.
VENY . . o
Its ends are subjected to the forces F acting on the axis (Fig. a).

The externalload causes internalforces, which can be visualized by an imaginary cut of the bar (Fig. b).
They are distributed over the cross section and called szresses (Fig. c).

They have the dimension force/area, for example, as multiples of - I ,.;'4_-*
MPa (1MPa=1N/mm?). The “Pascal” (1 Pa=1 N/m?) after the F : F
mathematician & physicist Blaise Pascal (1623—1662). The notion

of “stress” was introduced by Augustin Louis Cauchy (1789—1857). F N _.r
In (Statics) we only dealt with the resultant of the stresses : The T_ = a B= _T
internal forces. :

To determine the stresses we make an imaginary cut c-¢ perpendicular to the bar axis The stresses are
shown in the free-body diagram (Fig. c); they are denoted by 0.
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We assume that they act perpendicularly to the exposed surface A of the cross section and that

they are uniformly distributed.

Since they are normal to the cross section they are called normal/

| A
stresses. Their resultant is the normal force Nshown in (Fig. b) . - | "!—-—
Therefore we have N=0A and the stresses O can be calculated from g a ' !
the normal force NV: N g .

= F N F
In the present example the normal force Nis equal to the applied !L"! = o = -F

force F. Thus, we write the last equation as

O-:Z

For a positive normal force N (tension) the stress O is then positive (tensile stress). Reversely, if the normal

force is negative (compression) the stress is also negative (compressive stress)
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Let us now imagine the bar being sectioned by a cut which is not orthogonal to the axis of the bar

so that its direction is given by the angle ¢ (Fig. d). A* = A/cos .
Again we assume that they are 4 @
| S
uniformly distributed. : | / |
Resolve the stresses into a F | F Fd " F \
_a Ar=
component 0 perpendicular to : , cosp
P PETP - == ¥ &%
the surface (normal stress) & a F i a F F \ v F
e r: i
component T tangential to the
. i ——
surface (shear stress) (Fig. e). F A F

Equilibrium of the forces acting on the left portion of the bar (see Fig. e) yields:

—: 0A"cosp +TtA"sing —F =0
T oA*singp —tA"cosp =0
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—: 0A*cosp + TA*sing — F =0 These Eq. Egs. are written for the forces, not
gA*sing + tA*cosp = 0 for the stresses. With A* = A/cos ¢ we obtain

T
| A Nl
o+ ttan @ = % : /
ctanp —1t=0 F | F F F
Solving yield S A=
olving yields
I/ - =3 B e - P>
o = 1 F F a F F B \ F
" 1+tanZ @ A " § o7
_ _tang F | ,
U= T5tan? o A F N F
C
It is practical to write these equations in a different form. Using the trigonometric relations
1 tan @ 2tan @ 1—tan?¢
— 1 o - — —
_COSZ¢_§(1+COSZ(p), m—SlDQDCOS(ﬁ, sm2g0-m, COSZQD—W

1+ tan? ¢
and the abbreviation o, = F /A (normal stress in a section perpendicular to the axis) we get

o = 22(1 + cos 2¢), T = 2sin2¢

Stresses depend on the direction of the cut. If g, is known, o & 7 can be calculated for any ¢. The maximum
value of o is obtained for ¢ = 0, where g, _ = g,; the maximum value of ris found for ¢ = 77/4 where t__, = 0,/2.
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Two dangerous cuts:

If we section a bar near an end which is subjected to a concentrated force I (Fig. a, section c-c)

we find that the normal stress is not distributed uniformly over area.

The concentrated force produces high stresses near it (Fig.b).

--_—I -
: o . . F F

It can be shown that this stress concentrationis restricted to sections a
close to the end concentrated force: the high stresses decay rapid| ’

g Yy rapidly -] - %ﬂﬁ—%
towards the average value 0, far from the end of the bar. This fact is Fo F
referred to as Saint-Venant’s principle (Adhémar Jean Claude Barré _
de Saint-Venant, 1797-1886). F a F

The uniform distribution of the stress is also disturbed by holes, notches or any abrupt changes
(discontinuities) of the geometry. If, for example, a bar has notches the remaining cross-sectional area
(section c-¢) is also subjected to a stress concentration (Fig. c). The determination of these stresses is not

possible with the eIementary analysis presented in this course.
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Design Criteria (Requirement) st Sldlaig ol yleaa

In applications structures have to be designed in such away thata given maximum stressing is not

exceeded.

In the case of a bar this requirement means that the absolute value of the stress 0 must not exceed a

given allowable stress 0 gy 0., | 0| S 0410, The required cross section A, of a bar for a given load

and thus a known normal force N can then be determined from :

Areq = |N|/0a0w

This is referred to as dimensioningof the bar. Alternatively, the allowable load can be calculated from

IN| < Ao

allow iN the case of a given cross-sectional area A.

Note that a slender bar which is subjected to compression may fail due to buckling before the stress attains

an inadmissibly Iarge value. We will investigate buckling problems in Mechanics of Materials 2.
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General Case Let us now consider a bar with only a s/ighrtaper (See Example 1). In this case the

normal stress may be not calculated from 0 = Z , with a sufficient accuracy.

g - 2 -5 T;!HLI*,!",;EJ"'--".E._. 'hﬂmﬂﬂl! : S S

In the General case the area A and the stress @ depend on the location along the axis. If volume forces act

in the direction of the axis in addition to the concentrated forces, then the normal force IV also depends on
the location. Introducing the coordinate X in the direction of the axis we can write:

Here it is also assumed that the stress is uniformly distributed over the cross section at X.
N (x)
A(x)

o(x) =
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Example 1
A bar (length [ ) with a circular cross section and a slight taper (linearly varying from

radius 7, to 2r,) is subjected to the compressive forces F' as shown in Fig.a.

Determine the normal stress o in an arbitrary cross section perpendicular to the axis
of the bar.

Solution We introduce the coordinate z, see — }T
— 0
Fig.b. Then the radius of an arbitrary cross P =7 1

. .. a fe— 1 ——] h
section is given by

T X
r(x) =1, + Tox =15(1 + 7)

Using 0 = N /A with the cross section A(x) = m r?(x) and the constant normal force N = —F , yields

%) N —F
o(x) =——=

Ax)  mrg(1+7)?
The minus sign indicates that o is a compressive stress. Its value at the left end (x = 0) is four
times the value at the right end (x = ).
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Example 2 A water tower (height H, density p) with a cross section in the form of a circular ring
carries a tank (weight W) as shown in Fig. a. The inner radius 7"; of the ring is constant.

Determine the outer radius 7" in such away that the normal stress g in the tower is constant along

its height. The weight of the tower cannot be neglected.

Solution: Consider the tower to be a slender bar. The relation between (

N - S
SR
|
o=
=]

stress, normal force and cross-sectional area is given by 0 = N /A.
H

In this example the constant compressive stress @ = g, is given; the

*‘ o

normal force (here counted positive as compressive force) and the

s

area A are unknown.

The equilibrium condition furnishes a second equation. We introduce the coordinate x
as shown in Fig.b and consider a slice element of length dx. The cross-sectional area of
the circular ring as a function of x is: A = (12 — 1)

where r = r(x) is the unknown outer radius. The normal force at the location x

is given by N = 0,A. Atthe location x + dx, the area and the normal force are
A+dAandN +dN = og,(A + dA).
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The weight of the elementis dW = pg dV where dV = A dx is the volume of the element.

Note that terms of higher order are neglected. Equilibrium in the vertical direction yields

T 004 + da) — p9gdV —o,A =0 = g,dA — pgAdx = 0.

Separation of variables and integration lead to : -
. Wo
dA A x pgx i _
j—=j@dx = In = = A = Age %.. :
A Op AO Op i il
The constant of integration A, follows from the condition that r. IJ—LI
e |— ,T‘i
the stress at the upper end of the tower (forx = 0: N =W, & LA aw
also has to be equal to 0 y: 1 i {1100
W, W, T
Ag 0o TR 7 A+dA

Substituting this into the above two Equationsyield the outer radius:

. W, bgx
r2(x) =1 +—e %
IO
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Example 3 A slender bar (density p) is suspended from its
upper end as shown in Fig. It has a rectangular cross section
with a constant depth and a linearly varying width. The cross
section at the upper end is 4,.

Determine the stress o (x) due to the force F and the weight of
the bar. Calculate the minimum stress o,;, and its location.

Solution It is reasonable to introduce the x-coordinate at the intersection of the extended
edges of the trapezoid. The x dependent cross section area follows then as: A(x) = Ayx/h

a2

With the weight: W (x) = pgV (x) = pg fo(E)d€ pgh, = —
of the lower part equilibrium provides: N(x) = F + W(x) =F + pgA

2h
N(x) Fh+3:pgAy(x?— a?
This leads to the stress o (x) = () _ ng o<* )
A(x) Aygx .
The location x™ of the minimum is determined by condition: d—z =0
do  pgAgx(Agx) — AgFh — —pgA (x* —a®)  pgAo(x*+a®) —2Fh
dx Adx B 2A,x?
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do An(x?% + a®) — 2Fh 2Fh
5O _ oo 1094 ) _ s o
dx 2A,x?

Where the value of the minimum stress is

2Fh
PIAo

—a? = pgx”*

Omin = g(x*) = pg\/
Note:

e For pg = 0 (“weightless bar”) no minimum exists. The largest stress occurs at x = a.

* The minimum will be located within the bar, onlyifa < x* < h or
pgA,a’/(2h) < F < pgA,(h? + a*)/(2h) holds.

1/15/2024 Mechanics of Materials 1 - 2023-2024 -S1 - L6



Example 3 The contour of a light-house with circular thin-walled
cross section follows a hyperbolizc equzation

yz_b hza P = Gl
Determine the stress distribution as a consequence of weight W of the
lighthouse head (the weight of the structure can be neglected). Given:
b=2atKa
Solution As the weight I/ is the only acting external load, the
normal force N is constant (compression): N = —W

The cross section area A is changing. It is approximated by (thin-walled structure with t <« y)

A(x) = 2wyt = 2nt\/a2+ xZ—Znt\/a2+3“ x2 = 2mat /1+
The stress follows now as g = % — _ W/(Znat /1 n 3x2>

Especially at the top & bottom position we get: o(x = 0) = —W /2mat, o(x = h) = —W /4nat

W * ‘

|—l—b —I--i

Note: The stress at the top is twice as large as the stress at the bottom, which is a inefficient use of
material. This situation changes if the weight of the thin-walled structure is included in the analysis.
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