Tension and Compression in Bars
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Objectives: Mechanics of Materialsinvestigates the stressing and the deformations of structures subjected
to applied loads, starting by the simplest structural members, namely, bars in tension or compression.
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In order to treat such problems, the kinematic relations and a constitutive law are needed to complement

the equilibrium conditions which are known from Engineering Mechanics (Statics). e Lolyall 010 g3
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The kinematic relations represent the geometry of the deformation, whereas the behavior of the material
is described by the constitutive law. The students will learn how to apply these equations and how to solve

determinate as well as statically indeterminate problems. << LS Bypia pi Gyirlg LiigSiue 5y pia Jilowo Al e
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4 Single Bar under Tension or Compression

There are three different types of equations that allow us to determine the stresses & the strains in a
bar: the equilibrium condition, the kinematic relation and Hooke's law.

Depending on the problem, the equilibrium condition may be formulated for the entire bar, a portion of
the bar or for an element of the bar.

We will derive the equilibrium condition for an element. For this purpose we consider a bar which is

subjected to two forces F'; & F, atits ends and to a line load 7 = 71(X), see Fig.a.

ndx
-t [t s =o = I - — —p
P n@) | N N+dN
&
-fl:: I,I-‘_ |41 {.i‘r. -“I
- l | z z-dz

b
The forces are assumed to be in equilibrium. We imagine a slice element of infinitesimal Iength dx
separated from the bar as shown in Fig.b.

The F. B. D. shows the normal forces N and N + dN, respectively, at the ends of the element; the line

load is replaced by its resultant ndx (note that may be considered to be constant over the length dx).
Equilibrium of the forces in the direction of the axis of the bar
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—: N +dN + ndx — N =0 T

ields the equilibrium condition ~ B — - — —>
Y T F 61 N N+dN
dN |z, Mg e =
—dx+n=0 .k i ! | b T z+dz
In the special case of a vanishing line load (1. = 0) Fi=F,=N
. . . . du o
The kinematic relationfor the bar is E = d_ and Hooke’s law is given by & = E
X
If we insert the kinematic relation and @ = N /A into Hooke's law we obtain
du N(x)

du
£(x) = i EAGD N(x) = EA(x)e(x) = EA(x)E

This differential equation relates the displacements 1 (x) of the cross sections and the normal force NV ().
It may be called the constitutive law for the bar.

The displacement UL of a cross section is found through integration of the strain:
X

S=Z—Z—>jdu=fedx—>u(x)—u(0)=joedf.
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The elongation Al follows as the difference of the displacements at the ends x = [ and x = 0 of
l

Al =u(l) —u(0) = j edx

0
With € = d‘LL/dX and the constitutive law for the bar this yields

("N
Al—fOEA(x)dx

In the special case of a bar (length [) with constant axial rigidity (EA = const) which is subjected only

the bar:

to forces atitsend (n = 0, N = F) the elongation is given by

Al = : F(:F—EAAI
 EA o

EA
Quantity = is the axial rigidity (Stiffness) of the bar.

[
The Inverse ﬂ is the axial #/exibility of the bar

m 1/15/2024 https://manara.edu.sy/  Mechancs of Materials 1 4



If we want to apply these equations to specific problems, we have to distinguish between

statically determinate and statically indeterminate problems.

In a statically determinate system we can always calculate the normal force N (X) with the aid of the
equilibrium condition.

Subsequently, the strain £ (X ) follows from @ = N /A and Hooke's law € = ¢ /E'. Finally,
integration yields the displacement u(x) and the elongation Al.

In a statically indeterminate problem, with the equilibrium condition alone the normal force
cannot be calculated.
In such problems the basic equations (equilibrium condition, kinematic relation and Hooke’s law) are a

system of coup/ea’equations and have to be solved simultaneously.
Finally we will reduce the basic equations to a single equation for the displacement u.

By combining the two equations: s = du — N d_N +n=0 To get:

dx EA dx

d du (N) _ With, the primes denoting

dx EA— I (EAu') = —n

derivatives with respect to X
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If the functions EA(X), (), are given, the equation

The constants of integration are calculated from the boundary conditions.

If, for example, one end of the bar is fixed then 1/ = () at this end.

(EAu") = —n

the displacement U (X) of an arbitrary cross section can be determined by integration.

If, on the other hand, one end of the bar can move and is subjected to a force F,, then applyingd N = F,

yields the boundary condition 1" = F,/EA .

This reduces to the boundary condition 22" = 0 in the special case of a stress-free end (F, = 0) of a bar.

illustrative example As a statically determinate system let us consider a slender bar

(weight W, cross-sectional area A) that is suspended from the ceiling (Fig.a).

First we determine the normal force caused by the weight of the bar. We cut the bar

at an arbitrary position X (Fig.b).
The normal force N = the weight W " of the portion of the bar below the imaginary cut.
Thus, it is given by N(x) = W*(x) = W(l — x)/l. Thenthe normal stress is
N(x) W X
=—(1—-=
A A ( l)

Accordingly, the normal stress in the bar varies linearly; it decreases from the value
0(0) = W /A at the upper end to (1) = 0 at the free end.
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illustrative example As a statically determinate system let us consider a slender bar (weight W, cross-
sectional area A) that is suspended from the ceiling (Fig.a).

First we determine the normal force caused by the weight of the bar. We cut the bar at an arbitrary position x (Fig.b).

The normal force N = the weight W " of the portion of the bar below the imaginary cut. B
Thus, it is given by N(x) = W*(x) = W (Ll — x)/l. Then the normal stress is 4

N(x) w X
= N
o) =——=—(1-7) } 1 ()
Accordingly, the normal stress in the bar varies linearly; it decreases from the value , 1

N

0(0) = W /A at the upper end to (1) = 0 at the free end.

The elongation Al of the bar due to its own weight is obtained from W= %‘i %%

Al = j—dx—— l(l—%)dx—%g v L ||

a b
It is half the elongation of a bar with negligible weight which is subjected to the force W at the free end.

We may also solve the problem by applying the differential equation (EAu")" = —n for the displacements u(x) of the cross
sections of the bar. Integration with the constant line load n = W /1, yields

EAu" = —w/I = EAu' = —-(w/Dx+C;, =EAu=-Ww/2D)x? +Cix+C,
C, & C,, constants of integration, can be determined from the boundary conditions. The displacement of the cross section at

the upper end of the bar is equal to zero: u(0) = 0. Since the stress ¢ vanishes at the free end, we have u'(l) = 0. This leads
to C, = 0and C; = W. Thus, the displacement and the normal force are given by

x2 1Wl X
u(x) = %EK; (2 - — l_) The bar elongation Al = u(l) = AT and the normal force N (x) = FAu' = W (1 — 7)
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illustrative example As an illustrative example of a statically indeterminate system let us consider a solid
circular steel cylinder (cross-sectional area A, modulus of elasticity E, length [) is placed inside a copper tube
(cross-sectional area A,, modulus of elasticity E., length [). The assembly is compressed between a rigid plate
and the rigid floor by a force F (Fig.a). Calculate the shortening of the assembly and Determine the normal Forces
in the cylinder and in the tube..

Solution: 4 unknowns, ‘F JFG J_FS |F
Denote the compressive forces in the steel cylinder and in the copper tube by s | . _
F¢and F, respectively (Fig.b). Equilibrium at the F. B. D. of the plate yields i *Fs

Fs+F,=F. S
Since equilibrium furnishes only one equation for the two unknown forces Fs

*FO

| i i
| | i
| | |
i \ |
| | i
| @ j
I | |
i | |
i i |
| | |

and F¢, the problem is statically indeterminate. Fs + F, = F.
obtain a second equation by taking into account the deformation of the system. AL = Al
The shortenings (here counted positive) of the two parts are given according to Z 7 7 ¢ >
Al = (I/EA)F , by ) ’

Alc - il and Als - LFs

EcAc EsAg

The plate and the floor are assumed to be rigid. Therefore the geometry of the problem requires that the shortenings of the
copper tube and of the steel cylinder coincide. This gives the compatibility condition Al. = Alg = Al

Sub. in the two last equations gives  Fg = EcAgAl/l and Fo= E;AcAl/l  Sub. these into the equilibrium Eq. gives

Fl EsAq Es E-A. E.
= FS = F Og = F FC = F Oc =
ESAS + ECAC ESAS + EC'AC ESAS + ECAC ESAS + ECAC ESAS += ECAC

Al F
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5 Statically Determinate Systems of Bars
In the preceding section we calculated the stresses and deformations of single slender

bars. We will now extend the investigation to trusses and to structures which consist of
bars and rigid bodies.

In this section we will restrict ourselves to statically determinate systems where we can first
calculate the forces in the bars with the aid of the equilibrium conditions.

Subsequently, the stresses in the bars and the elongations are determined. Finally, the
displacements of arbitrary points of the structure can be found. Since it is assumed that the
elongations are small as compared with the lengths of the bars, we can apply the equilibrium
conditions to the undeformed system. )

As an illustrative example let us consider the truss in Fig. a. Both bars
have the axial rigidity EA. We want to determine the displacement of
pin C due to the applied force F . First we calculate the forces S; and
S, in the bars. The equilibrium conditions, applied to the free-body
diagram (Fig. b), yield
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T:Sysina—F=0and «: S;+S,cosa=0 = S;=—F/tana and S, = F/sina

Al =g = FL & AL =2 = ik
) EAtana 27 EA"?  EAsinacosa

Bar 1 becomes shorter (compression) and bar 2 becomes longer (tension).

The new position C’ of pin C can be found as follows. We B
consider the bars to be disconnected at C. Then the system
becomes movable: bar 1 can rotate about point A; bar 2
can rotate about point B.

The End of bar 1 makes a circle of radius [ + Al;and the
end of bar 2 makes a circle of radius (I/ cos a) + Al, the
two circles intersect at C’, (Fig.c)

The two arcs C,C'& C,C" and are very small compared to [, so
the can be approximated by the two tangents as in (Fig.d).

C—C’)=ui’+vj> - C—C’)-é’1=All=u & CC'-8,=AlL, =ucosa+vsina

u=—Fl/(EAtana)

vsina = Al, —ucosa = v = FI(1 + cos® a)/(EA sin? a cos )
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CC'=ur+vj, e,=1,e,=cosal+sinaj.
CC'-e;=u=Al; & CC'-e, =ucosa+vsina = Al,

Flcosa
u=—
EAsina
vsina = Al, —ucosa =
Fl Flcos’a
A + =

EAsinacosa EAsina

_ FI(1 +cos’a)
~ EAsinacosa

E =200 GPA, A = 400 mm?
l=2m,h=1.5mF = 20 kN
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(UB —u )l + (vg —vy)J

|f|uB — uAl K lAB & |UB — UAl < lAB,then
B

Alyg = (€4p) * [(up —ux)T + (v — v4)J 1=(up —uy) cosa + (vg — v4) sina
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Example 1. A rigid beam (weight W) is mounted on three elastic bars (axial rigidity EA) as
shown in Fig.a. Determine the angle of slope of the beam that is caused by its weight after the

structure has been assembled.

Solution First we calculate the forces in the bars with the aid of the . , .. , .< 4
V[/

equilibrium conditions (Fig.b): S, =S, =—-W/4cosa,S3=-W/2 __ /
With [, =1, = a/sina & l; = a/ tan a, the elongations /éx‘% l
are: [1S1  1pS Wa [3S Wa 53
All=Al2=11=22=— | ,Al3=313=——
EA EA 4EAsina cosa EA 2EAtana

Point B of the beam is displaced downward by v, = |Al;|. To determine
the vertical displacement v, of point A we sketch the diagram (Fig.c). First

we plot the changes Al, & Al, of the lengths in the direction of each bar. A B
The lines perpendicular to these directions intersect at the displaced \ ,
position A’ of point A.So, its vertical displacement is v, = |Al,|/cosa g/ S

Since v, and v do not coincide, the beam does not stay horizontal.

The angle of slope Sis obtained with the approximation tan f = [ (small deformations) (Fig.d)
cos® a = 2, the beam stays horizontal. = a = 37.5°
Vg—V 2 cos3 a—1 W cota . .
L == 4 — , cos® @ > Linclined to right
a 4 cosd3 a EA 2

cos3 a < ~inclined to left

m 1/15/2024 https://manara.edu.sy/  Mechancs of Materials 1 13



Example 2. (Design problem) The truss in Fig.a is under the action of the
force F = 20kN. If E = 200 Gpa (200000 MPa[=N/mm?]). Determine the
required cross-sectional areas of the three members so that the stresses do
not exceed the allowable stress g ,;;,, = 150 MPa and the displacement of B
is smaller than 0.5% of the length of bar 3. L
Solution a kol

* First we calculate the (reactions if necessary) and forces in the members. The equilibrium conditions
for the free-body diagrams of pin C and support B (Fig.b) yield:

AtC, —! Sl = Sz, T:Sl = SZ = —F/\/E AtB, _>:_53 _52COS450 =0 =>S3 = F/Z
* Then we establish the design requirements (Conditions) axwaill la s 5 5 il
» Stress requirements: g; = => (A) g = 2 i=1,23.
Oallow
1353 -2 (21)53 S3
» Displacemen requirement: ug = (Al)3— < 0.5 % 107%(20) = (43) =

min = E(Al);  0.5x1072E

Member Normal Force: Min. Area [mm?] | Min. Area [mm?] Req. Min. Areas

(length) S[kN] A= S/0o,; | Displacementof B [mm?]
1(W2) —F/V2=-141 95 - 95
2(W2) —F/V2=-141 95 — 95

3 (21) F/2=10 67 10 67
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6 Statically Indeterminate Systems of Bars

We will now investigate statically indeterminate systems for which the forces in the bars
cannot be determined with the aid of the equilibrium conditions alone since the number
of the unknown quantities exceeds the number of the equilibrium conditions.

In such systems the basic equations (1) Equilibrium conditions. (2) Kinematic *= — T
3
?/ l

equations (compatibility) & (3) Material behavior(Hooke’s law), are coupled. N\ 2

Let us consider the symmetrical truss shown in (Fig.a) It is stress-free
before the load is applied. The axial rigidities EA,, EA,, EA; = EA, are

given; the forces in the members are unknown. VK
P
The system is statically indeterminate to the first degree: The two equilibrium *
conditions applied to the free-body diagram of pin K (Fig.b) yield S
—:— 5 sina+ S5 sina=0 = 5=5;, S \‘/8381
F _ Sz (04 [0
T: Sycosa+S,+S;cosa—F=0=5,=8; =
1 2 3 . > 2cosa K
Number of static (force) unknowns is 3. Number of equilibrium equations is 2. 1
So the number of indeterminacy is: 3-2=1. Vi

The system is indeterminate to the first degree.
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; 2 1
Hook’s law gives the elongations of gy

the bars by: T
l, 1\ 2 3
All = Alg = EA1 Sl o3 k& [
Al L2 g K :
2 = EA, " 'r

The Kinematic (compatibility) condition is found by the displacement diagram (Fig.c):
Al; = Al;= Al, cosa
Substituting the material equations (Hook’s law) in this compatibility equation, we write it in

terms of the unknowns forces l L,
1
E—AlSl = E4, —3S, cosa
With the combination of the two equilibrium equations S1=8; = >
cos a

And the geometric evidence:l; = [/cosa and [, = [
We obtain the three unknowns forces, then the elongations and displacements of K.
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Both bars in the shown truss are made of steel E = 200 GPA, and
have the same cross-section area A = 400 mm?.
Determine the displacement of pin C due to the applied force F .
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An aluminum truss ABC is loaded at joint B by a point load of F=45
kN. The cross-sectional areas of the bars are: A,;=325 mm? and
Agc =390 mm? . The modulus of aluminum is £=70 GPa.

Determine the horizontal and vertical displacements of joint B, u, and v.
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An aluminum truss is shown in the figure. Joint Bis forced
to move downward by v=2.0 mm; and to the right by v =1
mm. Length £=1.00 m and the cross-sectional area of each
bar is 4=0.0008 m*. The modulus is £= 70 GPa. Determine
(a) The elongation O in each member.

(b) The force Pin each member.

(c) The components, £ _and £, of the applied force that

causes the displacement, and its magnitude £.

An aluminum truss is shown in the figure. Joint Bis loaded
by the shown force £ Length £ =1.00 m and the cross-
sectional area of each bar is 4=0.0008 m?. The modulus is
£=70 GPa. Determine

(a) The displacements of joint.

(b) The axial stress in each bar.
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An aluminum truss ABCD is loaded at joint D by a point load
F =60 kN. The cross-sectional areas of the bars are:
A,p=325mm? , Ag, =390 mm? , and A, =420 mm? . The
modulus of aluminum is £=70 GPa.

WW

Determine
1) the horizontal and vertical displacements of joint D, u, and v.
2) The axial stress in members AD, BD, and CD.
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