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 Symmetric matrices

 Positive definite matrices

 Singular Value Decomposition 

 Similar Matrices and Jordan Form
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Symmetric Matrices and Orthogonal Diagonalization

 Symmetric matrix: A square matrix A is symmetric if it is equal to its transpose: A = AT

(symmetric) (symmetric) (nonsymmetric)

 Ex: (Symmetric matrices and nonsymetric matrices)

A
 

 =
  

0 1 2

1 3 0

2 0 5

4 3

3 1
B

 
=   

3 2 1

1 4 0

1 0 5

C
 
 = 
 
 

 Theorem : (Eigenvalues of symmetric matrices)

If A is an nn symmetric matrix, then the following properties are true.

(1) A is diagonalizable. (2) All eigenvalues of A are real.

(3) A has an orthonormal set of n eigenvectors
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 Ex :

Prove that a symmetric matrix is diagonalizable
a c

A
c b

 
=   

Sol: Characteristic equation:

( )
a c

I A a b ab c
c b


  


 

 = =     =
 

2 2 0

As a quadratic in , this polynomial has a discriminant of

( ) ( )

( )

a b ab c a ab b ab c

a ab b c

a b c

   =    

=   

=   

2 2 2 2 2

2 2 2

2 2

4 2 4 4

2 4

4 0
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The characteristic polynomial of A has two distinct real roots, which implies that

A has two distinct real eigenvalues. Thus, A is diagonalizable.

(1) ( )a b c  =2 24 0

,  a b c = = 0

a
A

a
 

=   

0

0
A is a diagonal matrix

( ) ( )a b c  2 22 4 0
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A square matrix P is called orthogonal if it is invertible and P1 = PT
 Orthogonal matrix:

 Ex 3: (Orthogonal matrices)

(a)  is orthogonal because TP P P    
= = =      

10 1 0 1

1 0 1 0

3 34 4
5 5 5 5

3 34 4
5 5 5 5

0 0

(b) 0 1 0  is orthogonal because 0 1 0

0 0

TP P P

   
   = = =
   

   

1
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 Theorem : (Properties of orthogonal matrices)

An nn matrix P is orthogonal

(1) if and only if its column vectors form an orthonormal set in Rn

(2) if and only if its row vectors form an orthonormal set in Rn

 Ex : (An orthogonal matrix)

0P

 
 

=  
 
   

1 2 2
3 3 3

2 1

5 5

2 4 5

3 5 3 5 3 5Sol:

If P is a orthogonal matrix, then T TP P PP I =  =1
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0

0

TPP I

      
     

=   = =     
              

1 2 21 2 2
3 5 3 53 3 3

2 1 2 1 4
35 5 5 3 5

2 4 5 2 5
33 5 3 5 3 5 3 5

1 0 0

0 1 0

0 0 1

Let , , 0p p p

     
     

=  = =     
              

1 2 2
3 3 3

2 1
1 2 35 5

52 4
3 53 5 3 5

p p p p p p

p p p

= = =

= = =

1 2 1 3 2 3

1 2 3

0

1

  
{ , , } is an orthonormal setp p p1 2 3
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 Theorem : (Properties of orthogonal matrices)

(a) The transpose of an orthogonal matrix is orthogonal.

(b) The inverse of an orthogonal matrix is orthogonal.

(c) A product of orthogonal matrices is orthogonal.

(d) If A is orthogonal, then det(A) = 1 or det(A) = 1.

 Theorem : (Orthogonal Matrices as Linear Operators)

If A is an n×n matrix, then the following are equivalent

(a) A is orthogonal

(b)                    for all x in Rn

(c) Ax . Ay = x . y for all x and y in Rn
A =x x
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Let A be an nn symmetric matrix, then Eigenvectors from different eigenspaces are

orthogonal.

 Theorem : (Properties of symmetric matrices)

 Ex : (Eigenvectors of a symmetric matrix)

Show that any two eigenvectors of

corresponding to distinct eigenvalues are orthogonal

Sol: Characteristic equation:

( )( )I A


  


 
 = =   =

 

3 1
2 4 0

1 3
Eigenvalues: 1 = 2, 2 = 4

A
 

=   

3 1

1 3

(1) ,   ~I A s s 
       

=   =  =            
1 1

1 1 1 1 1
2 0

1 1 0 0 1
x

1
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(2) ,   ~I A t t 
      

=   =  =           
2 2

1 1 1 1 1
4 0

1 1 0 0 1
x

2

 and  are orthogonal
s t

st st
s t

   
=  =  =    

   
0x x x x

1 2 1 2
.

 Theorem : (Fundamental theorem of symmetric matrices)

Let A be an nn matrix. Then A is orthogonally diagonalizable (and has real eigenvalues)

if and only if A is symmetric.

matrix A is orthogonally diagonalizable when there exists an orthogonal matrix P such

that P−1AP = D is diagonal

 Orthogonal Diagonalization
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 Orthogonal diagonalization of a symmetric matrix:

Let A be an nn symmetric matrix.

(1) Find all eigenvalues of A and determine the multiplicity of each.

(2) For each eigenvalue of multiplicity 1, choose a unit eigenvector.

(3) For each eigenvalue of multiplicity k  2, find a set of k linearly independent

eigenvectors. If this set is not orthonormal, apply Gram-Schmidt

orthonormalization process.

(4) The composite of steps 2 and 3 produces an orthonormal set of n eigenvectors. Use

these eigenvectors to form the columns of P. The matrix P1AP = PTAP = D will

be diagonal.
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 Ex : (Orthogonal diagonalization)

Find a matrix P that orthogonally diagonalizes A
 

 = 
   

2 2 2

2 1 4

2 4 1
Sol: Characteristic equation:

(1) ( ) ( )I A   =   =23 6 0

Eigenvalues: 1 = 6, 2 = 3 (has a multiplicity of 2)

(2) ,  ( , , ) ( , , ) =  =   = = 1

1 2 2
6 1 2 2

3 3 3

u
u v

u
1

1 1

1

( ) ,  ( , , ),  ( , , ) = = = 23 3 2 1 0 2 0 1u u
2 3

Linear Independent
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Gram-Schmidt Process: 

( , , ),  ( , , )= = =  =  2 4
5 3

2 1 0 1
u w

w u w u w
w w

3 2
2 2 3 3 2

2 2

.

.

( , , 0),   ( , , )= = = = 2 1 2 4 5

5 5 3 5 3 5 3 5

ww
v v

w w
32

2 3

2 3

 (4)   

0

TP p p p P AP P AP

   
   

= =   = =   
      

1 2 2
3 5 3 5

12 1 4
1 2 3 3 5 3 5

2 5
3 3 5

6 0 0

0 3 0

0 0 3
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 Spectral Decomposition

If A is a symmetric matrix that is orthogonally diagonalized by P = [u1 u2 ··· un]

and if λ1, λ2, ..., λn are the eigenvalues of A corresponding to the unit eigenvectors u1,

u2, ..., un, then we know that D = PTAP, where D is a diagonal matrix
T

T
T

n

T
n n

A PDP







  
  
 = =     
  
     

11

2 2
1 2

0 0

0 0

0 0

u

u
u u u

u

 

T

T
T T T

n n n n n

T
n

A      

 
 
 = =   
 
 
 

1

2
1 1 2 2 1 1 1 2 2 2

u

u
u u u u u u u u u

u
Spectral decomposition of A
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 Ex : (A Geometric Interpretation of a Spectral Decomposition)

A
 

=   

1 2

2 2
has eigenvalues λ1 = 3 and λ2 = 2 with corresponding eigenvectors:

,  ,  
      

= =  = = = =              

1 2

5 5
2 1

5 5

1 2

2 1

x x
x x u x

x x
1 2

1 2 1 2

1 2

 Note: 

The Equation is called the spectral decomposition

of A, because it involves only the spectrum of A and the corresponding unit

eigenvectors of A

T T T
n n nA   =   1 1 1 2 2 2u u u u u u
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( ) ( )T T 
    

=  =      
      

1 2 4 2
5 5 5 5

1 1 1 2 2 2 2 4 2 1
5 5 5 5

1 2
3 2

2 2
u u u u

 
=  

 

1

1
x

( ) ( )A
      

=        
       

1 2 4 2
5 5 5 5

2 4 2 1
5 5 5 5

1 1
3 2

1 1
x

A
     

= =          

1 2 1 3

2 2 1 0
x
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( ) ( )A
      

=        
       

1 2 4 2
5 5 5 5

2 4 2 1
5 5 5 5

1 1
3 2

1 1
x

( ) ( )A
   

=     
   

1 6
5 5

2 3
5 5

3 2x

A
     

=  =     
     

3 12
5 5

6 6
5 5

3

0
x
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Positive Definite Matrices
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 Theorem : (Singular Values)

If A is an m × n matrix, then:

(a) A and ATA have the same null space

(b) A and ATA have the same row space

(c) AT and ATA have the same column space

(d) A and ATA have the same rank

If A is an m × n matrix, then:

(a) ATA is orthogonally diagonalizable.

(b) The eigenvalues of ATA are nonnegative

 Theorem :

Singular Value Decomposition (SVD)
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If A is an m×n matrix, and if λ1, λ2, ..., λn are the eigenvalues of ATA, then the numbers

are called the singular values of A
, , , n n     = = =1 1 2 2

 Ex : (Singular Values)

Find the singular values of the matrix A

 
 

=  
  

1 1

0 1

1 0
Sol:

TA A

 
    

= =    
   

  

1 1
2 11 0 1 0 1
1 21 1 0 1 0

     =  2 4 3 ( 3)( 1)The characteristic polynomial of ATA is
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So the eigenvalues of ATA are: 1 = 3, 2 = 1, and the singular values of A are: 

, 1   = = = =1 1 2 23

We define the main diagonal of an m×n matrix to be the line of entries starts at the upper

left corner and extends diagonally as far as it can go

main diagonal of an m×n matrix 
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 Theorem : (Singular Value Decomposition (Brief Form))

If A is an m × n matrix of rank k, then A can be expressed in the form A = U SVT,

where S has size m×n and can be expressed in partitioned form as

( )

( ) ( ) ( )

k n k

m k k m k n k

D 0

0 0

 

    

 
S =  

  

in which D is a diagonal k×k matrix whose successive entries are the first k singular

values of A in nonincreasing order, U is an m×m orthogonal matrix, and V is an n×n
orthogonal matrix

T T T T
k k kA U V   = S =   1 1 1 2 2 2u v u v u v

 Note: 
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 Theorem : (Singular Value Decomposition (Expanded Form))

If A is an m × n matrix of rank k, then A can be factored as

A = U SVT

( )

( ) ( ) ( )

[ ]

T

T

k n k

T
k k

k k k m T
k

T
m k k m k n k k

T
n

0

0 0







 

 



     

  
  
  
  
  
  =
  
  
  
  
  
    

1 1

2 2

1 2 1 2

1

2

0 0

0 0

0 0

v

v

v
u u u u u u

v

v

v

in which U, S, and V have sizes m×m, m×n, and n×n, respectively, and:
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(a) V = [v1 v2 ··· vn] orthogonally diagonalizes ATA
(b) The nonzero diagonal entries of S are

where λ1, λ2, ..., λk are the nonzero eigenvalues of ATA corresponding to the column

vectors of V
(c) The column vectors of V are ordered so that σ1 ≥ σ2 ≥ · · · ≥ σk > 0

(d)

(e) {u1, u2, ..., uk} is an orthonormal basis for CS (A)

(f) {u1, u2, . . . , uk, uk1, uk2, ..., um} is an extension of {u1, u2, ..., uk} to an

orthonormal basis for Rm

, , , k k     = = =1 1 2 2

( , , , )i
i i

i i

A
A i k

A 
= = =

1
1 2

v
u v

v



https://manara.edu.sy/Eigenvalues and Eigenvectors 26/55

 Ex : (Singular Value Decomposition if A Is Not Square)

A

 
 

=  
  

1 1

0 1

1 0Sol:

Find a singular value decomposition of the matrix

The eigenvalues of ATA are: 1 = 3, 2 = 1, and the singular 

values of A are: , 1   = = = =1 1 2 23

The unit eigenvectors corresponding to λ1 and λ2 are

, V
     

= =  =     
           

2 2 2 2

2 2 2 2

1 2
2 2 2 2

2 2 2 2

v v

V orthogonally diagonalizes ATA
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( )

A

A





  
    

= = =    
         

  
    

= = =     
        

6

32

2 6
1 1 62

1 2 6

6

2

2 2
2 2 22

2 2 2

2

1 1
1 3

0 1
3

1 0

01 1
1

1 0 1

1 0

u v

u v

u1 and u2 are two of the three column

vectors of U

To extend the orthonormal set {u1, u2} to an orthonormal basis for R3

the vector u3 must be a solution of

x

y

z

 
    

=    
       

6 6 6

3 6 6

2 2

2 2

0

00
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x

y t

z

    
    

=  =     
          

1

3

1
3 3

1

3

1

1

1

u

0 3 0

0

0 0

    
      
 =      
       
      

6 1
3 3 2 2

2 26 2 1
6 2 3 2 2

2 26 2 1
6 2 3

1 1

0 1 1

1 0

A = U S VT
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 Ex : (Singular Value Decomposition)

A

 
 

=  
 
 

0 1 1

2 2 0

0 1 1Sol:

Find a singular value decomposition of the matrix

The eigenvalues of ATA are: 1 = 8, 2 = 2, and 3 = 0

The singular values of A are: ,   = = = =1 1 2 22 2 2

The eigenvectors corresponding to λ1, λ2, and λ3 are

     , , , ,0, , , ,= =  = 1 3 1 1 2 1 1 1
1 2 3 2 26 2 3 2 3 3 6 2

v v v

TA A

     
     

= =     
     
     

0 2 0 0 1 1 2 2 2 0

1 2 1 2 2 0 2 2 6 2

1 0 1 0 1 1 0 2 2
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0V

 
 

=  
 
  

1 1 1

6 3 2

3 1
2 2

1 2 1
3 22 3

V orthogonally diagonalizes ATA

2 2

2

A

A





     
     

= = =     
     

       

    
    

= = =     
    

         

1 1
6 6

3 2
1 1 2 6

1 1 1
2 3 6

1 1

3 3

1
2 2 3

2 12
3 3

0 1 1
1 1

2 2 0

0 1 1

0 1 1
1 1

2 2 0 0

0 1 1

u v

u v
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{u1 , u2 , u3} to an orthonormal basis for R3 ⇒ 

 
 

=  
 
 

1

2

3

1

2

0u

2 2 0 0

0 0 2 0 0

0 0 0

     
     
 =      
     

            

31 11 1 1
26 2 36 3 2

2 1 1 2
36 3 3

1 1 1 1 1 1
2 26 3 2 2

0 1 1

2 2 0

0 1 1

A = U S VT
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 Jordan Canonical Form (JCF)

Let A an n×n matrix, with either real (complex) entries. Let λ1, λ2, ..., λk denote the

distinct eigenvalues of A (k < n)
A Jordan chain of length j for A is a sequence of non-zero vectors v1, v2, ..., vj ϵ Kn that

satisfies: Av1 = λv1, Avi = λvi  vi1, i = 1, 2, …, j where λ is an eigenvalue of A
A Jordan chain associated with a zero eigenvalue is called a null Jordan chain, and

satisfies: Av1 = 0, Avi = vi1, i = 1, 2, …, j

The initial vector v1 in a Jordan chain is a genuine eigenvector, and so Jordan chains

exist only when λ is an eigenvalue

 Note: 

Jordan Decomposition
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 Note: The rest, v2, ..., vj, are generalized eigenvectors

A nonzero vector v such that (A − λI )k v = 0 for some k > 0 and λ ϵ K is called a

generalized eigenvector of the matrix A

(1) Every ordinary eigenvector is automatically a generalized eigenvector, since we can

just take k = 1

 Notes: 

 Ex 12:
A

 
 =
 
 

2 0 1

1 2 0

0 0 2The only eigenvalue is λ = 2 

(2) The minimal value of k for which (A − λI )k v = 0 is called the index of the

generalized eigenvector



https://manara.edu.sy/Eigenvalues and Eigenvectors 34/55

A I
 
  =
 
 

0 0 1

2 1 0 0

0 0 0

ker( )

x z
A I y x

z

       
          = =
       
       

1

0 0 1 0

2 1 0 0 0

0 0 0 0 0

v

 
 =
 
 

1

0
1
0

v is a genuine eigenvector

( ) ( ) ( )A A I A I A I=    =   =  =2

2 2 1 2 1 2 12 2 2 2v v v v v v v 0

( )A I
 
  =
 
 

2

0 0 0

2 0 0 1

0 0 0

ker( )A I   2

2 2v

( )

x z

A I y y

z

       
        =  = =
       
       

2 1

0 0 1 0

2 1 0 0 1

0 0 0 0 0

v v

 
 =
 
 

2

1

0

0

v is a generalized eigenvector of index 2
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( ) ( ) ( )A A I A I A I=    =   =  =3 2

3 3 2 3 2 3 22 2 2 2v v v v v v v 0

( )A I
 
  =
 
 

3

0 0 0

2 0 0 0

0 0 0

 
 =
 
 

3

0

0

1

v is a generalized eigenvector of index 3

( )

x z

A I y y

z

       
        =  = =
       
       

3 2

0 0 1 1

2 1 0 0 0

0 0 0 0 0

v v

v1, v2, v3 is called a Jordan basis for the matrix A
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Every n×n matrix admits a Jordan basis of Cn. The first elements of the Jordan chains

form a maximal set of linearly independent eigenvectors. Moreover, the number of

generalized eigenvectors in the Jordan basis that belong to the Jordan chains associated

with the eigenvalue λ is the same as the eigenvalue’s multiplicity.

 Theorem : (Jordan basis)

 Ex 13:

A

 
 
  

=   
  
  

1 0 1 0 0

2 2 4 1 1

1 0 3 0 0

4 1 3 1 0

4 0 2 1 0

Find a Jordan basis for the matrix

Sol:

Characteristic equation:

( ) ( )I A   =   =3 21 2 0
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A has two eigenvalues: λ1 = 1 (triple eigenvalue), and λ2 = 2 (double)

A has only two eigenvectors: v1 = (0, 0, 0, 1, 1)T for λ1 = 1 and, v4 = (1, 1, 1, 2, 0)T

for λ2 = −2

A has 2 linearly independent eigenvectors, the Jordan basis will contain two Jordan

chains of length 3 and 2

A =  2 2 1v v v v2 = (0, 1, 0, 0, 1)T

A =  3 3 2v v v v3 = (0, 0, 0, 1, 0)T

A =   5 5 42v v v v5 = (1, 0, 0, 2, 1)T

v1, v2, v3, v4, v5 is a Jordan basis for the matrix A



https://manara.edu.sy/Eigenvalues and Eigenvectors 38/55

An k×k matrix of the form

,kJ 









 
 
 

=
 
 
  

1 0 0

0 1

0 0

0 1

0 0 0

in which λ is a real or complex number, is known as a Jordan block

A Jordan matrix is a square matrix of block diagonal form

diag( , , , )

,

,
, , ,

,

k k

k k

n

n
n n n

n

J

J
J J J J

J




  



 
 
 = =
 
  

1 1

2 2

1 1 2 2

0 0

0

0

0 0
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 Ex :

 
 
 
 
 
 
  

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 2 0

0 0 0 0 0 1

 
 
 

 
 

 
  

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 1

0 0 0 0 0 1

 
 
 
 
 
 
  

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 2 1

0 0 0 0 0 2

6 distinct 1x1 

Jordan blocks

4x4 Jordan block followed 

by a 2x2 Jordan block

Three 2x2 Jordan blocks 

with respective diagonal 

entries 0, 1, 2
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 
 
 
 

 
 
 
 
 

2 1 0 0 0 0 0

0 2 1 0 0 0 0

0 0 2 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 4 1

0 0 0 0 0 0 4

4 Jordan blocks, 3 different eigenvalues

The algebraic multiplicity for  = 2 is 3, geometric multiplicity is 1

The algebraic multiplicity for  = 1 is 1, geometric multiplicity is 1

The algebraic multiplicity for  = 4 is 3, geometric multiplicity is 2



https://manara.edu.sy/Eigenvalues and Eigenvectors 41/55

 Notes: 

(1) The diagonal entries of the similar Jordan matrix J are the eigenvalues of A
(2) A is diagonalizable if and only if every Jordan block is of size 1×1

 Theorem : (Jordan canonical form)

Let A be an n×n real or complex matrix. Let S = (v1, v2, ..., vn) be a matrix whose

columns form a Jordan basis of A. Then S places A into the Jordan canonical form:

S1AS = , or, equivalently, A = SJS1diag( , , , ), , ,k kn n nJ J J J  =
1 1 2 2
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,S J S AS

    
   
   

= = =
   
      
       

1

0 0 0 1 1 1 1 0 0 0

0 1 0 1 0 0 1 1 0 0

0 0 0 1 0 0 0 1 0 0

1 0 1 2 2 0 0 0 2 1

1 1 0 0 1 0 0 0 0 2

 Ex :

A

 
 
  

=   
  
  

1 0 1 0 0

2 2 4 1 1

1 0 3 0 0

4 1 3 1 0

4 0 2 1 0
Sol


