

Lecture 7: Complex Matrices, Pseudo inverses

CEDC102: Linear Algebra

Manara University

2023-2024

https://manara.edu.sy/

Complex Matrices

Conjugate of a matrix:

$$A \in M_{m \times n}(C) = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n} \quad \Rightarrow \quad \overline{A} \in M_{m \times n}(C) = \begin{bmatrix} \overline{a_{ij}} \end{bmatrix}_{m \times n}$$

Ex:
$$A = \begin{pmatrix} 1+i & 1 \\ i & 1-i \end{pmatrix} \quad \Rightarrow \quad \overline{A} = \begin{pmatrix} 1-i & 1 \\ -i & 1+i \end{pmatrix}$$

Properties of the conjugate of a matrix:

(1) $\overline{A} = A$ (2) $\overline{A \pm B} = \overline{A} \pm \overline{B}$ (3) $\overline{AB} = \overline{AB}$ (4) $\overline{cA} = \overline{cA}$, $c \in C$ (5) $(\overline{A})^T = \overline{A^T}$ (6) If A is invertible, then $(\overline{A})^{-1} = \overline{A^{-1}}$

Conjugate transpose of a matrix:

$$A \in M_{m \times n}(C) \implies A^* = \overline{A^T} \in M_{n \times m}(C)$$

• Ex :

$$A = \begin{pmatrix} 1+i & -i & 0 \\ 2 & 3-2i & i \end{pmatrix} \implies A^* = \overline{A^T} = \begin{pmatrix} 1-i & 2 \\ i & 3+2i \\ 0 & -i \end{pmatrix}$$

Properties of the conjugate transpose:

(1)
$$(A^*)^* = A$$

(2) $(A \pm B)^* = A^* \pm B^*$
(3) $(AB)^* = B^*A^*$
(4) $(cA)^* = \bar{c}A^*, \quad c \in C$

• Hermitian matrix:

A square matrix $A \in M_n(C)$ is Hermitian if $A^* = A$

• Ex:
$$A = \begin{pmatrix} 2 & 2+i & 4 \\ 2-i & 3 & i \\ 4 & -i & 1 \end{pmatrix} = A^*$$

• Anti-Hermitian (Skew-Hermitian) matrix:

A square matrix $A \in M_n(C)$ is skew-Hermitian if $A^* = -A$

• Ex 4:
$$A = \begin{pmatrix} -i & 2+i \\ -2+i & 0 \end{pmatrix} = -A^*$$

Notes:

- (1) Diagonal entries of an Hermitian matrix are real
- (2) Diagonal entries of a Skew-Hermitian matrix are purely imaginary or zero
- (3) Every square matrix $A \in M_n(C)$ can be expressed as the sum of a Hermitian matrix B and a skew-Hermitian matrix C

$$B = \frac{1}{2}(A + A^*), \quad C = \frac{1}{2}(A - A^*)$$

Hermitian Matrices and Unitary Diagonalization

- Hermitian matrix: A square matrix $A \in M_n(C)$ is Hermitian if $A^* = A$
- Unitary matrix: A square matrix $A \in M_n(C)$ is Unitary if $A^* = A^{-1}$
- Theorem : (Properties of Hermitian matrices)

If A is a Hermitian matrix, then:

(a) The eigenvalues of A are all real numbers.

(b) Eigenvalues from different eigenspaces are orthogonal

• Ex:
$$A = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix}$$
$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & -1-i \\ -1+i & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 4) = 0 \implies \lambda = 1, 4 \text{ (real numbers)}$$

$$\lambda_{1} = 1; \quad \mathbf{v}_{1} = \begin{bmatrix} -1 - i \\ 1 \end{bmatrix}, \quad \lambda_{2} = 4; \quad \mathbf{v}_{2} = \begin{bmatrix} \frac{1}{2}(1+i) \\ 1 \end{bmatrix}$$
$$\mathbf{v}_{1} \cdot \mathbf{v}_{2} = (-1-i)\left(\frac{1}{2}(1+i)\right) + (1)(1) = \frac{1}{2}(-1-i)(-1+i) + 1 = 0 \quad \Rightarrow \text{ orthogonal}$$

• Theorem : (Unitary matrix)

If A is an $n \times n$ complex matrix, then the following are equivalent

- (a) A is unitary
- (b) $||A\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in C^n
- (c) Ax. Ay = x. y for all x and y in C^n
- (e) The column vectors (row) of A form an orthonormal set in C^n with respect to the complex Euclidean inner product

• Ex : (Unitary matrix)

Show that A is unitary, and then find A^{-1}

$$A = \begin{bmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(1+i) \\ \frac{1}{2}(1-i) & \frac{1}{2}(-1+i) \end{bmatrix}$$

Sol:

Row vectors
$$\mathbf{r}_{1} = [\frac{1}{2}(1+i) \quad \frac{1}{2}(1+i)], \quad \mathbf{r}_{2} = [\frac{1}{2}(1-i) \quad \frac{1}{2}(-1+i)]$$

 $\mathbf{r}_{1} \cdot \mathbf{r}_{2} = (\frac{1}{2}(1+i))(\frac{1}{2}(1-i)) + (\frac{1}{2}(1+i))(\frac{1}{2}(-1+i)) = 0$
 $\|\mathbf{r}_{1}\| = \sqrt{|\frac{1}{2}(1+i)|^{2} + |\frac{1}{2}(1+i)|^{2}} = 1, \quad \|\mathbf{r}_{2}\| = \sqrt{|\frac{1}{2}(1-i)|^{2} + |\frac{1}{2}(-1+i)|^{2}} = 1$

are orthonormal

So A is unitary
$$\Rightarrow A^{-1} = A^* = \begin{bmatrix} \frac{1}{2}(1-i) & \frac{1}{2}(1+i) \\ \frac{1}{2}(1-i) & \frac{1}{2}(-1-i) \end{bmatrix}$$

Unitary diagonalization

A square complex matrix A is said to be unitarily diagonalizable if there is a unitary matrix P such that $P^*AP = D$ is a complex diagonal matrix. Any such matrix P is said to unitarily diagonalize A

• Theorem : (Unitary diagonalization)

Every $n \times n$ Hermitian matrix A has an orthonormal set of n eigenvectors and is unitarily diagonalized by any $n \times n$ matrix P whose column vectors form an orthonormal set of eigenvectors of A

- Unitary diagonalization of a Hermitian matrix
 - Let A be an $n \times n$ Hermitian matrix.
 - Step 1: Find a basis for each eigenspace of A
 - Step 2: Apply the Gram–Schmidt process to each of these bases to obtain orthonormal bases for the eigenspaces.
 - Step 3: Form the matrix P whose column vectors are the basis vectors obtained in Step 2. This will be a unitary matrix and will unitarily diagonalize A
- Ex : (Unitary diagonalization of a Hermitian matrix)

Find a matrix P that unitarily diagonalizes the Hermitian matrix

 $A = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix}$

Sol:

$$\lambda_1 = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} -1 - i \\ 1 \end{bmatrix}$, $\lambda_2 = 4$: $\mathbf{v}_2 = \begin{bmatrix} \frac{1}{2}(1+i) \\ 1 \end{bmatrix}$

Gram-Schmidt Process:

$$\boldsymbol{p}_{1} = \frac{\boldsymbol{v}_{1}}{\|\boldsymbol{v}_{1}\|} = \begin{bmatrix} \frac{-1-i}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \quad \boldsymbol{p}_{2} = \frac{\boldsymbol{v}_{2}}{\|\boldsymbol{v}_{2}\|} = \begin{bmatrix} \frac{1+i}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{bmatrix} \qquad P = \begin{bmatrix} \frac{-1-i}{\sqrt{3}} & \frac{1+i}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{bmatrix}$$
$$D = P^{*}AP = \begin{bmatrix} \frac{-1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1-i}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix} \begin{bmatrix} \frac{-1-i}{\sqrt{3}} & \frac{1+i}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

Normal matrices

A square complex matrix A is said to be normal if it commutes with its conjugate transpose: $A^*A = AA^*$

Normal matrices include: the Hermitian, skew-Hermitian, and unitary matrices in the complex case and the symmetric, skew-symmetric, and orthogonal matrices in the real case.

• Note:

The nonzero skew-symmetric matrices are examples of real matrices that are not orthogonally diagonalizable but are unitarily diagonalizable

• Ex : (Normal matrix)

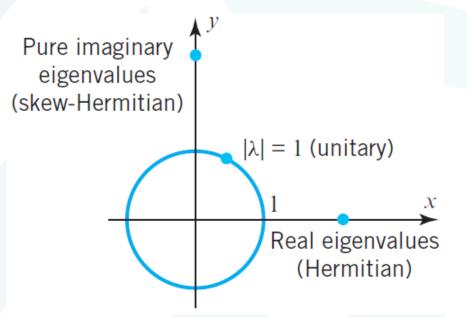
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad (A^*A = AA^*)$$

Notes:

Hermitian matrices have real eigenvalues

Skew-Hermitian matrices have eigenvalues either zero or purely imaginary

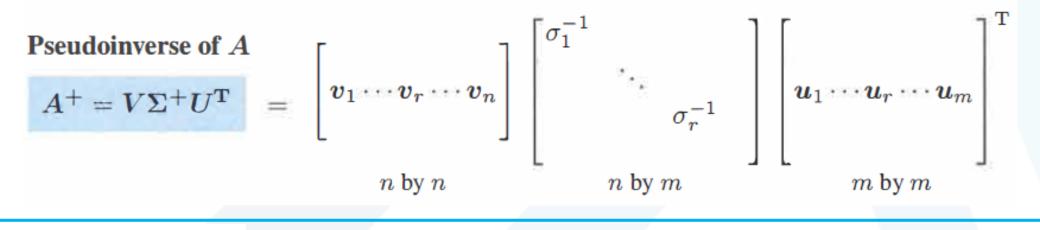
Unitary matrices have eigenvalues of modulus 1



The Pseudoinverse A^+

By choosing good bases, A multiplies v_i in the row space to give $\sigma_i u_i$ in the column space. A^{-1} must do the opposite! If $Av = \sigma u$ then $A^{-1}u = v/\sigma$. The singular values of A^{-1} are $1/\sigma$, just as the eigenvalues of A^{-1} are $1/\lambda$. The bases are reversed. The u's are in the row space of A^{-1} , the v's are in the column space.

Until this moment we would have added "if A^{-1} exists." Now we don't. A matrix that multiplies u_i to produce v_i/σ_i does exist. It is the pseudoinverse A^+ :



The *pseudoinverse* A^+ is an *n* by *m* matrix. If A^{-1} exists (we said it again), then A^+ is the same as A^{-1} . In that case m = n = r and we are inverting $U\Sigma V^T$ to get $V\Sigma^{-1}U^T$. The new symbol A^+ is needed when r < m or r < n. Then A has no two-sided inverse, but it has a *pseudo* inverse A^+ with that same rank r:

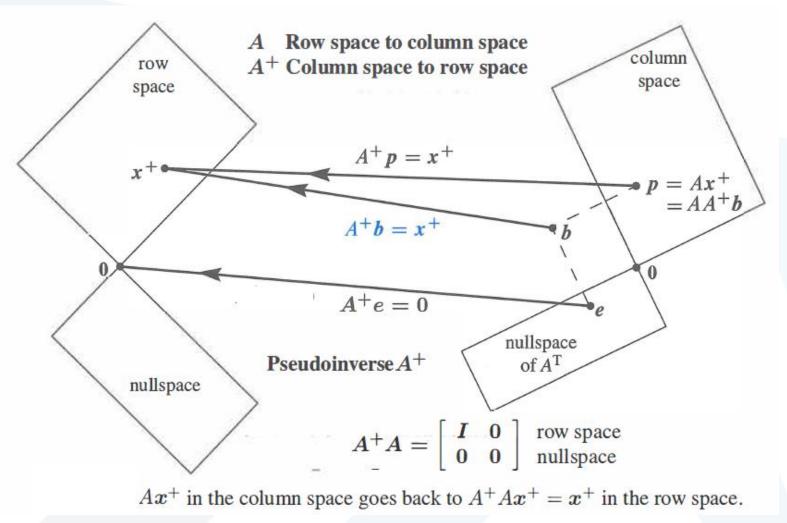
$$A^+ u_i = \frac{1}{\sigma_i} v_i$$
 for $i \le r$ and $A^+ u_i = 0$ for $i > r$.

The vectors u_1, \ldots, u_r in the column space of A go back to v_1, \ldots, v_r in the row space. The other vectors u_{r+1}, \ldots, u_m are in the left nullspace, and A^+ sends them to zero. When we know what happens to all those basis vectors, we know A^+ .

Notice the pseudoinverse of the diagonal matrix Σ . Each σ in Σ is replaced by σ^{-1} in Σ^+ . The product $\Sigma^+\Sigma$ is as near to the identity as we can get. It is a projection matrix, $\Sigma^+\Sigma$ is partly I and otherwise zero. We can invert the σ 's, but we can't do anything about the zero rows and columns. This example has $\sigma_1 = 2$ and $\sigma_2 = 3$:

$$\Sigma^{+}\Sigma = \begin{bmatrix} \mathbf{1/2} & 0 & 0 \\ 0 & \mathbf{1/3} & 0 \\ 0 & 0 & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{2} & 0 & 0 \\ 0 & \mathbf{3} & 0 \\ 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & 0 \\ 0 & \mathbf{1} \\ 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & 0 \\ 0 & \mathbf{0} \end{bmatrix}.$$

The pseudoinverse A^+ is the *n* by *m* matrix that makes AA^+ and A^+A into projections.



https://manara.edu.sy/

Trying for
 $AA^{-1} = A^{-1}A = I$ $AA^+ =$ projection matrix onto the column space of A
 $A^+A =$ projection matrix onto the row space of A

Example 3 Every rank one matrix is a column times a row. With unit vectors \boldsymbol{u} and \boldsymbol{v} , that is $A = \sigma \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$. Its pseudoinverse is $A^{+} = \boldsymbol{v} \boldsymbol{u}^{\mathrm{T}} / \sigma$. The product AA^{+} is $\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}$, the projection onto the line through \boldsymbol{u} . The product $A^{+}A$ is $\boldsymbol{v}\boldsymbol{v}^{\mathrm{T}}$.

Example 4 Find the pseudoinverse of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. This matrix is not invertible. The rank is 1. The only singular value is $\sigma_1 = 2$. That is inverted to 1/2 in Σ^+ (also rank 1).

$$A^{+} = V\Sigma^{+}U^{\mathrm{T}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1/2 & 0\\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}.$$

 A^+ also has rank 1. Its column space is always the row space of A.