Lecture 5: Rigenvalues and Pigenvectors

CEDC102: Linear Algebra

Manara University
2023-2024

[^0]- Eigenvalues and Eigenvectors
- Diagonalization and Powers of A

حَــامعة
الـَــنارة
Introduction Eigenvalues and Eigenvectors

- Eigenvalue problem:

If A is an $n \times n$ matrix, do there exist nonzero vectors \boldsymbol{x} in R^{n} such that $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x} ?

- Eigenvalue and eigenvector:

A: an $n \times n$ matrix
λ : a scalar
\boldsymbol{x}. a nonzero vector in R^{n}
Eigenvalue \downarrow $A x=\lambda x$
Eigenvector \uparrow

- Geometrical Interpretation:

- Ex : (Verifying eigenvalues and eigenvectors)

$$
A=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right], \quad x_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Eigenvalue

$$
A X_{1}=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2 x_{1}
$$

Eigenvector
Eigenvalue

$$
A x_{2}=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=-1\left[\begin{array}{l}
0 \\
1
\end{array}\right]=(-1) x_{2}
$$

Eigenvector

- Theorem: (The eigenspace of A correspöding to λ)

If A is an $n \times n$ matrix with an eigenvalue λ, then the set of all eigenvectors of λ together with the zero vector is a subspace of R^{n}. This subspace is called the eigenspace of λ.

- Ex 2: (An example of eigenspaces in the plane)

Find the eigenvalues and corresponding eigenspaces of

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

Sol:

$$
\text { If } \boldsymbol{v}=(x, y) \text {, then } A \boldsymbol{v}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
$$

For a vector on the x-axis

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
0
\end{array}\right]=\left[\begin{array}{c}
-X \\
0
\end{array}\right]=-1\left[\begin{array}{l}
x \\
0
\end{array}\right]
$$

Eigenvalue $\lambda_{1}=-1$

For a vector on the y-axis

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
y
\end{array}\right]
$$

Eigenvalue $\lambda_{2}=1$

Geometrically, multiplying a vector (x, y) in R^{2} by the matrix A corresponds to a reflection in the y-axis.

The eigenspace corresponding to $\lambda_{1}=-1$ is the x-axis.
The eigenspace corresponding to $\lambda_{2}=1$ is the y-axis.

- Theorem : (Finding eigenvalues and eigenvectors of a matrix $A \in M_{n \times n}$)

Let A is an $n \times n$ matrix.
(1) An eigenvalue of A is a scalar λ such that that $\operatorname{det}(\lambda I-A)=0$
(2) The eigenvectors of A corresponding to λ are the nonzero solutions of $(\lambda I-A) \boldsymbol{x}=\mathbf{0}$

- Note:
$A \boldsymbol{x}=\lambda \boldsymbol{x} \Rightarrow(\lambda I-A) \boldsymbol{x}=\mathbf{0}$ (homogeneous system)

If $(\lambda I-A) \boldsymbol{x}=\mathbf{0}$ has nonzero solutions iff $\operatorname{det}(\lambda I-A)=0$

- Characteristic polynomial of $A \in M_{n \times n}$:

$$
\operatorname{det}(\lambda I-A)=|(\lambda I-A)|=\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}
$$

- Characteristic polynomial of $A \in M_{n}$:
$\operatorname{det}(\lambda I-A)=|(\lambda I-A)|=p_{A}(\lambda)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}$
- Properties of the characteristic polynomial:
$\lambda=0 \quad \Rightarrow \quad \operatorname{det}(-A)=c_{0} \quad \Rightarrow \quad c_{0}=(-1)^{n} \operatorname{det}(A)$
$c_{n-1}=-\operatorname{tr}(A)$
- Properties of the eigenvalues:
$\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$
$\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$
- Characteristic equation of $A: \operatorname{det}(\lambda I-A)=0$
- Ex: (Finding eigenvalues and eigenvectors)

$$
A=\left[\begin{array}{cc}
2 & -12 \\
1 & -5
\end{array}\right]
$$

Sol:
Characteristic equation:

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-2 & 12 \\
-1 & \lambda+5
\end{array}\right|=\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)=0 \\
& \Rightarrow \lambda=-1,-2
\end{aligned}
$$

Eigenvalues: $\lambda_{1}=-1, \lambda_{2}=-2$
(1) $\lambda_{1}=-1 \Rightarrow\left(\lambda_{1} I-A\right) \boldsymbol{X}=\left[\begin{array}{cc}-3 & 12 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\left[\begin{array}{cc}
-3 & 12 \\
-1 & 4
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -4 \\
0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
4 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
4 \\
1
\end{array}\right], t \neq 0
$$

(2) $\lambda_{2}=-2 \Rightarrow\left(\lambda_{2} I-A\right) \boldsymbol{x}=\left[\begin{array}{ll}-4 & 12 \\ -1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\left[\begin{array}{cc}
-4 & 12 \\
-1 & 3
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right], t \neq 0
$$

Check: $\boldsymbol{A x}=\lambda \boldsymbol{x}$

- Ex: (Finding eigenvalues and eigenvectors)

Find the eigenvalues and corresponding eigenvectors for the matrix A. What is the dimension of the eigenspace of each eigenvalue?

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Sol:
Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-2 & -1 & 0 \\
0 & \lambda-2 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-2)^{3}=0 \quad \text { Eigenvalue: } \lambda=2
$$

The eigenspace of A corresponding to $\bar{\lambda}=2$:

$$
\begin{aligned}
& (\lambda I-A) \boldsymbol{X}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
s \\
0 \\
t
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] s \text { and } t \text { not both zero }}
\end{aligned}
$$

$$
\left\{s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] s, t \in R\right\} \begin{aligned}
& \text { the eigenspace of } A \text { corresponding to } \lambda=2 \\
& \text { has two linearly independent eigenvectors }
\end{aligned}
$$

Thus, the dimension of its eigenspace is 2 .

- Notes:
(1) If an eigenvalue λ_{1} occurs as a multiple root (k times) for the characteristic polynomial, then λ_{1} has multiplicity k.
(2) The multiplicity of an eigenvalue is greater than or equal to the dimension of its eigenspace.
- Ex : Find the eigenvalues of the matrix A and find a basis for each of the corresponding eigenspaces.

Sol:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 5 & -10 \\
1 & 0 & 2 & 0 \\
1 & 0 & 0 & 3
\end{array}\right]
$$

Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{cccc}
\lambda-1 & 0 & 0 & 0 \\
0 & \lambda-1 & -5 & 10 \\
-1 & 0 & \lambda-2 & 0 \\
-1 & 0 & 0 & \lambda-3
\end{array}\right|=(\lambda-1)^{2}(\lambda-2)(\lambda-3)=0
$$

Eigenvalues: $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$

$$
\text { (1) } \lambda_{1}=1 \Rightarrow\left(\lambda_{1} I-A\right) \boldsymbol{X}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -5 & 10 \\
-1 & 0 & -1 & 0 \\
-1 & 0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -5 & 10 \\
-1 & 0 & -1 & 0 \\
-1 & 0 & 0 & -2
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
s \\
2 t \\
t
\end{array}\right]=s\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right] ; s, t \neq 0
$$

$$
\Rightarrow\left\{\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right]\right\} \text { is a basis for the eigenspace of } A \text { corresponding to } \lambda=1
$$

(2) $\lambda_{2}=2 \Rightarrow\left(\lambda_{2} I-A\right) \boldsymbol{X}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -5 & 10 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -5 & 10 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1\end{array}\right] \sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ 5 t \\ t \\ 0\end{array}\right]=t\left[\begin{array}{l}0 \\ 5 \\ 1 \\ 0\end{array}\right] ; t \neq 0$
$\Rightarrow\left\{\left[\begin{array}{l}0 \\ 5 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis for the eigenspace of A corresponding to $\lambda=2$
(3) $\lambda_{3}=3 \Rightarrow\left(\lambda_{3} I-A\right) \boldsymbol{X}=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & -5 & 10 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ X_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & -5 & 10 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ -5 t \\ 0 \\ t\end{array}\right]=t\left[\begin{array}{c}0 \\ -5 \\ 0 \\ 1\end{array}\right] ; t \neq 0$
$\Rightarrow\left\{\left[\begin{array}{c}0 \\ -5 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for the eigenspace of A corresponding to $\lambda=3$

- Theorem : (Eigenvalues of triangular mätrices)

If A is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.

- Ex: (Finding eigenvalues for diagonal and triangular matrices)

$$
\text { (a) } A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 1 & 0 \\
5 & 3 & -3
\end{array}\right], \quad \text { (b) } A=\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

Sol:

$$
\text { (a) }|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-2 & 0 & 0 \\
1 & \lambda-1 & 0 \\
-5 & -3 & \lambda+3
\end{array}\right|=\begin{aligned}
& (\lambda-2)(\lambda-1)(\lambda+3) \\
& \lambda_{1}=2, \lambda_{2}=1, \lambda_{3}=-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { جَــامعة } \\
& \text { الْمَارنارة } \\
& \text { (b) } \lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=0, \lambda_{4}=-4, \lambda_{5}=3
\end{aligned}
$$

- Theorem : (Eigenvalues and Invertibility)

A square matrix A is invertible iff $\lambda=0$ is not an eigenvalue of A

- Eigenvalues and eigenvectors of linear transformations:

A number λ is an eigenvalue of a linear transformation $T: V \rightarrow V$ when there is a nonzero vector \boldsymbol{x} such that $T(\boldsymbol{x})=\lambda \boldsymbol{x}$. The vector \boldsymbol{x} is an eigenvector of T corresponding to λ, and the set of all eigenvectors of λ (with the zero vector) is the eigenspace of λ.

- Ex. (Finding eigenvalues and eigenspace)
- Ex: (Finding eigenvalues and eigenspaces)

Find the eigenvalues and corresponding eigenspaces $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$
Sol:

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-1 & -3 & 0 \\
-3 & \lambda-1 & 0 \\
0 & 0 & \lambda+2
\end{array}\right|=(\lambda+2)^{2}(\lambda-4)
$$

Eigenvalues: $\lambda_{1}=4, \lambda_{2}=-2$
The eigenspaces for these two eigenvalues are as follows:
$\begin{array}{ll}B_{1}=\{(1,1,0)\} & \text { Basis for } \lambda_{1}=4 \\ B_{2}=\{(1,-1,0),(0,0,1)\} & \text { Basis for } \lambda_{2}=-2\end{array}$

- Notes:
(1) If $T: R^{3} \rightarrow R^{3}$ is the linear transformation whose standard matrix is A, and B^{\prime} is a basis for R^{3} made up of the three linearly independent eigenvectors corresponding to the eigenvalues of A, then the matrix A^{\prime} for T relative to the basis $B^{\prime \prime}$ is diagonal.

Nonstandard basis:

$$
B^{\prime}=\{(1,1,0),(1,-1,0),(0,0,1)\}
$$

(2) The main diagonal entries of the matrix A^{\prime} are the eigenvalues of A.

Diagonalization

- Diagonalization problem:

For a square matrix A, does there exist an invertible matrix P such that $P^{-1} A P$ is diagonal?

- Diagonalizable matrix:

A square matrix A is called diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. $\quad(P$ diagonalizes A)

- Note:

If there exists an invertible matrix P such that $B=P^{-1} A P$, then two square matrices A and B are called similar. and the transformation from A to $P^{-1} A P$ is called a similarity transformation

حَـامعة
الـَمَـنارة
Property that is preserved by a similarity transformation is called similarity invariant. Table below lists the most important similarity invariants

Property	Description
Determinant	A and $P^{-1} A P$ have the same determinant
Invertibility	A is invertible if and only if $P^{-1} A P$ is invertible
Rank	A and $P^{-1} A P$ have the same rank
Nullity	A and $P^{-1} A P$ have the same nullity
Trace	A and $P^{-1} A P$ have the same trace
Characteristic polynomial	A and $P^{-1} A P$ have the same characteristic polynomial
Eigenvalues	A and $P^{-1} A P$ have the same eigenvalues
Eigenspace dimension	A and $P^{-1} A P$ have the same dimension for the same λ

- Ex : (A diagonalizable matrix)

Sol: Characteristic equation:

$$
A=\left[\begin{array}{ccc}
1 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-1 & -3 & 0 \\
-3 & \lambda-1 & 0 \\
0 & 0 & \lambda+2
\end{array}\right|=\begin{aligned}
& (\lambda-4)(\lambda+2)^{2}=0 \\
& \quad \text { Eigenvalues: } \lambda_{1}=4, \lambda_{2}=-2, \lambda_{3}=-2
\end{aligned}
$$

(1) $\lambda_{1}=4 \Rightarrow$ Eigenvector: $p_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
(2) $\lambda_{2}=-2 \Rightarrow$ Eigenvectors: $p_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \quad p_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

$$
P=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow P^{-1} A P=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

- Notes:

$$
\begin{aligned}
& \text { (1) } P=\left[\begin{array}{lll}
p_{2} & p_{1} & p_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow P^{-1} A P=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right] \\
& \text { (2) } P=\left[\begin{array}{lll}
p_{2} & p_{3} & p_{1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \Rightarrow P^{-1} A P=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

- Theorem : (Condition for diagonalization)

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

- Note:

If n linearly independent vectors do not exist, then an $n \times n$ matrix A is not diagonalizable.

- Ex: (A matrix that is not diagonalizable)

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

Sol: Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{cc}
\lambda-1 & -2 \\
0 & \lambda-1
\end{array}\right|=(\lambda-1)^{2}=0 \quad \text { Eigenvalue: } \lambda_{1}=1
$$

$\lambda I-A=I-A=\left[\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right] \sim\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \quad \Rightarrow$ Eigenvector: $p_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
A does not have two ($n=2$) L. I. eigenvectors, so A is not diagonalizable

- Steps for diagonalizing an $n \times n$ square matrix:

Step 1: Find n linearly independent eigenvectors $p_{1}, p_{2}, \ldots p_{n}$ for A with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$

Step 2: Let $P=\left[p_{1}\left|p_{2}\right| \cdots \mid p_{n}\right]$
Step 3: Let $P^{-1} A P=D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$, where $A p_{i}=\lambda_{i} p_{i}, \quad i=1,2, \ldots, n$

- Note:

The order of the eigenvalues used to form P will determine the order in which the eigenvalues appear on the main diagonal of D.

- Ex : (Diagonalizing a matrix)

Find a matrix P such that is $P^{-1} A P$ diagonal

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]
$$

Sol: Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-1 & 1 & 1 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right|=(\lambda-2)(\lambda+2)(\lambda-3)=0
$$

Eigenvalues: $\lambda_{1}=2, \lambda_{2}=-2, \lambda_{3}=3$

$$
\begin{aligned}
& \text { (1) } \lambda_{1}=2 \quad \Rightarrow \lambda_{1} I-A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & -1 \\
3 & -1 & 3
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \Rightarrow \text { Eigenvector: } p_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& \text { (2) } \lambda_{2}=-2 \Rightarrow \lambda_{2} I-A=\left[\begin{array}{ccc}
-3 & 1 & 1 \\
-1 & -5 & -1 \\
3 & -1 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 / 4 \\
0 & 1 & 1 / 4 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
(1 / 4) t \\
-(1 / 4) t \\
t
\end{array}\right]=\frac{1}{4} t\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right] \Rightarrow \text { Eigenvector: } p_{2}=\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \lambda_{3}=3 \Rightarrow \lambda_{3} I-A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
3 & -1 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \Rightarrow \text { Eigenvector: } p_{3}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \\
& \text { Let } P=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & -1 & 1 \\
1 & 4 & 1
\end{array}\right] \\
& \Rightarrow P^{-1} A P=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

- Notes: k is a positive integer
(1) $D=\left[\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}\end{array}\right] \Rightarrow D^{k}=\left[\begin{array}{cccc}d_{1}^{k} & 0 & \cdots & 0 \\ 0 & d_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}^{k}\end{array}\right]$
(2) $D=P^{-1} A P \Rightarrow D^{k}=\left(P^{-1} A P\right)^{k}=P^{-1} A^{k} P \Rightarrow A^{k}=P D^{k} P^{-1}$
- Ex: (Powers of a Matrix)

Find A^{6}, where

$$
A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

Sol:

Eigenvalues: $\lambda_{1}=1, \lambda_{2}=2$ double $p_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], p_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], p_{3}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& P=\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right], \quad P^{-1}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right], \quad D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& A^{6}=P D^{6} P^{-1}=\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2^{6} & 0 & 0 \\
0 & 2^{6} & 0 \\
0 & 0 & 1^{6}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-62 & 0 & -126 \\
63 & 64 & 63 \\
63 & 0 & 127
\end{array}\right]
\end{aligned}
$$

- Theorem : (Sufficient conditions for diagonalization)

If an $n \times n$ matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and A is diagonalizable.

- Ex: (Determining whether a matrix is diagonalizable)

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 1 \\
0 & 0 & -3
\end{array}\right]
$$

Sol:
Because A is a triangular matrix, its eigenvalues are the main diagonal entries.

$$
\lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=-3
$$

These three values are distinct, so A is diagonalizable.

If λ_{0} is an eigenvalue of an $n \times n$ matrix A, then the dimension of the eigenspace corresponding to λ_{0} is called the geometric multiplicity of λ_{0}, and the number of times that $\lambda-\lambda_{0}$ appears as a factor in the characteristic polynomial of A is called the algebraic multiplicity of λ_{0}

- Theorem : (Geometric and Algebraic Multiplicity)

If A is a square matrix, then:
(a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.
(b) A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity

- Theorem : (Eigenvalues and Eigenvectors of Matrix Powers)

If k is a positive integer, λ is an eigenvalue of a matrix A, and \boldsymbol{x} is a corresponding eigenvector, then λ^{k} is an eigenvalue of A^{k} and \boldsymbol{x} is a corresponding eigenvector

- Ex : Find the eigenvalues and corresponding eigenvectors of A^{7}

Sol:
The eigenvalues of A are $\lambda_{1}=2, \lambda_{2}=-2, \lambda_{3}=3$

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]
$$

The eigenvalues of A^{7} are $\lambda_{1}=2^{7}=128, \lambda_{2}=(-2)^{7}=-128, \lambda_{3}=3^{7}=2187$
The Eigenvectors of A^{7} are: $p_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], p_{2}=\left[\begin{array}{c}1 \\ -1 \\ 4\end{array}\right], p_{3}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$

[^0]: https://manara.edu.sy/

