

Lecture 5: Eigenvalues and Eigenvectors

CEDC102: Linear Algebra

Manara University

2023-2024

https://manara.edu.sy/

- Eigenvalues and Eigenvectors
- Diagonalization and Powers of A

Introduction Eigenvalues and Eigenvectors

• Eigenvalue problem:

If A is an $n \times n$ matrix, do there exist <u>nonzero vectors</u> x in R^n such that Ax is a scalar multiple of x?

- Eigenvalue and eigenvector:
 - A: an $n \times n$ matrix
 - λ : a scalar
 - **x**: <u>a nonzero vector</u> in \mathbb{R}^n

Eigenvalue $Ax = \lambda x$ Eigenvector

Geometrical Interpretation:

جَامعة المَـنارة • Ex : (Verifying eigenvalues and eigenvectors)

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}, \quad X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$Ax_{1} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2x_{1}$$

Eigenvector
Eigenvalue

$$Ax_{2} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (-1)x_{2}$$

Eigenvector

https://manara.edu.sy/

• Theorem: (The eigenspace of A corresponding to λ)

If A is an $n \times n$ matrix with an eigenvalue λ , then the set of <u>all eigenvectors of λ </u> together with <u>the zero vector</u> is a subspace of R^n . This subspace is called the eigenspace of λ .

 $(0, y) \uparrow (0, y) (x, y)$

(-x, y)

-x.0

• Ex 2: (An example of eigenspaces in the plane)

Find the eigenvalues and corresponding eigenspaces of

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Sol:

If
$$\mathbf{v} = (x, y)$$
, then $A\mathbf{v} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$

For a vector on the x-axis

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} -x \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$$

Geometrically, multiplying a vector (x, y) in R^2 by the matrix A corresponds to a reflection in the y-axis.

The eigenspace corresponding to $\lambda_1 = -1$ is the *x*-axis.

The eigenspace corresponding to $\lambda_2 = 1$ is the *y*-axis.

- Theorem : (Finding eigenvalues and eigenvectors of a matrix $A \in M_{n \times n}$) Let A is an $n \times n$ matrix.
 - (1) An eigenvalue of A is a scalar λ such that $\det(\lambda I A) = 0$
 - (2) The eigenvectors of A corresponding to λ are the nonzero solutions of $(\lambda I A)\mathbf{x} = \mathbf{0}$
- Note:

 $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow (\lambda I - A)\mathbf{x} = \mathbf{0}$ (homogeneous system)

If $(\lambda I - A)\mathbf{x} = \mathbf{0}$ has nonzero solutions iff $det(\lambda I - A) = 0$

• Characteristic polynomial of $A \in M_{n \times n}$:

$$\det(\lambda I - A) = \left| (\lambda I - A) \right| = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$$

- Characteristic polynomial of $A \in M_n$: $\det(\lambda I - A) = |(\lambda I - A)| = p_A(\lambda) = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$
- Properties of the characteristic polynomial:

$$\lambda = 0 \implies \det(-A) = c_0 \implies c_0 = (-1)^n \det(A)$$

 $c_{n-1} = -\operatorname{tr}(A)$

• Properties of the eigenvalues:

 $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$ $tr(A) = a_{11} + a_{22} + \cdots + a_{nn} = \lambda_1 + \lambda_2 + \cdots + \lambda_n$

https://manara.edu.sy/

• Characteristic equation of A: $det(\lambda I - A) = 0$

• Ex : (Finding eigenvalues and eigenvectors)

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$$

Sol:

Characteristic equation:

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix} = \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) = 0$$

$$\Rightarrow \lambda = -1, -2$$

Eigenvalues: $\lambda_1 = -1$, $\lambda_2 = -2$

$$(1) \lambda_{1} = -1 \Rightarrow (\lambda_{1}I - A)\mathbf{x} = \begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 4t \\ t \end{bmatrix} = t \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \ t \neq 0$$
$$(2) \lambda_{2} = -2 \Rightarrow (\lambda_{2}I - A)\mathbf{x} = \begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 3t \\ t \end{bmatrix} = t \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ t \neq 0$$
Check: $A\mathbf{x} = \lambda \mathbf{x}$

• Ex : (Finding eigenvalues and eigenvectors)

Find the eigenvalues and corresponding eigenvectors for the matrix A. What is the dimension of the eigenspace of each eigenvalue?

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Sol:

Characteristic equation:

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$$
 Eigenvalue: $\lambda = 2$

$$(\lambda I - A)\mathbf{x} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad s \text{ and } t \text{ not both zero}$$
$$\begin{cases} s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} s, t \in R \\ \text{has two linearly independent eigenvectors} \end{cases} \quad \text{the eigenspace of } A \text{ corresponding to } \lambda = 2$$

Thus, the dimension of its eigenspace is 2.

• Notes:

- (1) If an eigenvalue λ_1 occurs as a multiple root (k times) for the characteristic polynomial, then λ_1 has multiplicity k.
- (2) The multiplicity of an eigenvalue is greater than or equal to the dimension of its eigenspace.

• Ex : Find the eigenvalues of the matrix A and find a basis for each of the corresponding eigenspaces. $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & -10 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$

Sol:

Characteristic equation:

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 0 & 0 & 0 \\ 0 & \lambda - 1 & -5 & 10 \\ -1 & 0 & \lambda - 2 & 0 \\ -1 & 0 & 0 & \lambda - 3 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)(\lambda - 3) = 0$$

Eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$

$$(1) \ \lambda_{1} = 1 \Rightarrow (\lambda_{1}I - A)\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -5 & 10 \\ -1 & 0 & -1 & 0 \\ -1 & 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -5 & 10 \\ -1 & 0 & -1 & 0 \\ -1 & 0 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} -2t \\ s \\ 2t \\ t \end{bmatrix} = s \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 2 \\ 1 \end{bmatrix}; s, t \neq 0$$

 $\Rightarrow \left\{ \begin{bmatrix} 0\\1\\0\\2 \end{bmatrix}, \begin{bmatrix} -2\\0\\2\\2 \end{bmatrix} \right\}$ is a basis for the eigenspace of *A* corresponding to $\lambda = 1$

https://manara.edu.sy/

$$(2) \lambda_{2} = 2 \Rightarrow (\lambda_{2}I - A)\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -5 & 10 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -5 & 10 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 5t \\ t \\ 0 \end{bmatrix} = t \begin{bmatrix} 0 \\ 51 \\ 0 \end{bmatrix}; \ t \neq 0$$
$$\Rightarrow \left\{ \begin{bmatrix} 0 \\ 5 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ is a basis for the eigenspace of } A \text{ corresponding to } \lambda = 0$$

https://manara.edu.sy/

2

$$(3) \lambda_{3} = 3 \Rightarrow (\lambda_{3}I - A)\mathbf{x} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & -5 & 10 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & -5 & 10 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ -5t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} 0 \\ -5 \\ 0 \\ 1 \end{bmatrix}; \ t \neq 0$$
$$\Rightarrow \left\{ \begin{bmatrix} 0 \\ -5 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ is a basis for the eigenspace of } A \text{ corresponding to } \lambda = 3 \end{bmatrix}$$

• Theorem : (Eigenvalues of triangular matrices)

If A is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.

• Ex: (Finding eigenvalues for diagonal and triangular matrices)

Sol:

(a)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & 0 \\ 1 & \lambda - 1 & 0 \\ -5 & -3 & \lambda + 3 \end{vmatrix} = (\lambda - 2)(\lambda - 1)(\lambda + 3)$$

 $\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -3$

b)
$$\lambda_1 = -1, \lambda_2 = 2, \lambda_3 = 0, \lambda_4 = -4, \lambda_5 = 3$$

Theorem : (Eigenvalues and Invertibility)

A square matrix A is invertible iff $\lambda = 0$ is not an eigenvalue of A

• Eigenvalues and eigenvectors of linear transformations:

A number λ is an eigenvalue of a linear transformation $T: V \to V$ when there is a nonzero vector x such that $T(x) = \lambda x$. The vector x is an eigenvector of T corresponding to λ , and the set of all eigenvectors of λ (with the zero vector) is the eigenspace of λ .

• Ex : (Finding eigenvalues and eigenspaces) Find the eigenvalues and corresponding eigenspaces $A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ Sol:

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -3 & 0 \\ -3 & \lambda - 1 & 0 \\ 0 & 0 & \lambda + 2 \end{vmatrix} = (\lambda + 2)^2 (\lambda - 4)$$

حافعة

Eigenvalues: $\lambda_1 = 4, \lambda_2 = -2$

The eigenspaces for these two eigenvalues are as follows: $B_1 = \{(1, 1, 0)\}$ Basis for $\lambda_1 = 4$ $B_2 = \{(1, -1, 0), (0, 0, 1)\}$ Basis for $\lambda_2 = -2$

Notes:

(1) If $T: R^3 \to R^3$ is the linear transformation whose standard matrix is A, and B' is a basis for R^3 made up of the three linearly independent eigenvectors corresponding to the eigenvalues of A, then the matrix A' for T relative to the basis B' is diagonal.

(2) The main diagonal entries of the matrix A' are the eigenvalues of A.

Diagonalization

Diagonalization problem:

For a square matrix A, does there exist an invertible matrix P such that $P^{-1}AP$ is diagonal?

• Diagonalizable matrix:

A square matrix A is called diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix. (*P* diagonalizes *A*)

• Note:

If there exists an invertible matrix *P* such that $B = P^{-1}AP$, then two square matrices *A* and *B* are called similar. and the transformation from *A* to $P^{-1}AP$ is called a similarity transformation

Property that is preserved by a similarity transformation is called similarity invariant. Table below lists the most important similarity invariants

Property	Description
Determinant	A and $P^{-1}AP$ have the same determinant
Invertibility	A is invertible if and only if $P^{-1}AP$ is invertible
Rank	A and P-1AP have the same rank
Nullity	A and P-1AP have the same nullity
Trace	A and P-1AP have the same trace
Characteristic polynomial	A and P-1AP have the same characteristic polynomial
Eigenvalues	A and $P^{-1}AP$ have the same eigenvalues
Eigenspace dimension	A and $P^{-1}AP$ have the same dimension for the same λ

• Ex : (A diagonalizable matrix)

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Sol: Characteristic equation:

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -3 & 0 \\ -3 & \lambda - 1 & 0 \\ 0 & 0 & \lambda + 2 \end{vmatrix} = (\lambda - 4)(\lambda + 2)^2 = 0$$

Eigenvalues: $\lambda_1 = 4, \lambda_2 = -2, \lambda_3 = -2$
(1) $\lambda_1 = 4 \Rightarrow$ Eigenvector: $p_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

$$(2) \lambda_{2} = -2 \Rightarrow \text{Eigenvectors:} \ p_{2} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ p_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$P = \begin{bmatrix} p_{1} & p_{2} & p_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies P^{-1}AP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
$$\textbf{Notes:}$$
$$(1) P = \begin{bmatrix} p_{2} & p_{1} & p_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies P^{-1}AP = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
$$(2) P = \begin{bmatrix} p_{2} & p_{3} & p_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \implies P^{-1}AP = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

• Theorem : (Condition for diagonalization)

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

• Note:

If *n* linearly independent vectors do not exist, then an $n \times n$ matrix A is not diagonalizable.

• Ex : (A matrix that is not diagonalizable)

 $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

Sol: Characteristic equation:

$$\left|\lambda I - A\right| = \begin{vmatrix}\lambda - 1 & -2\\0 & \lambda - 1\end{vmatrix} = (\lambda - 1)^2 = 0$$
 Eigenvalue: $\lambda_1 = 1$

$$\lambda I - A = I - A = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \implies \text{Eigenvector: } p_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

A does not have two (n=2) L. I. eigenvectors, so A is not diagonalizable

- Steps for diagonalizing an $n \times n$ square matrix:
 - Step 1: Find *n* linearly independent eigenvectors $p_1, p_2, \dots p_n$ for *A* with corresponding eigenvalues $\lambda_1, \lambda_2, \dots \lambda_n$

Step 2: Let
$$P = \begin{bmatrix} p_1 \mid p_2 \mid \cdots \mid p_n \end{bmatrix}$$

Step 3: Let $P^{-1}AP = D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$, where $Ap_i = \lambda_i p_i$, $i = 1, 2, \dots, n$

• Note:

The order of the eigenvalues used to form P will determine the order in which the eigenvalues appear on the main diagonal of D.

• Ex : (Diagonalizing a matrix)

Find a matrix P such that is $P^{-1}AP$ diagonal $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$

Sol: Characteristic equation:

 $\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 1 & 1 \\ -1 & \lambda - 3 & -1 \\ 3 & -1 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda + 2)(\lambda - 3) = 0$ Eigenvalues: $\lambda_1 = 2, \lambda_2 = -2, \lambda_3 = 3$

$$(1) \lambda_{1} = 2 \qquad \Rightarrow \lambda_{1}I - A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \\ 3 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \Rightarrow \text{Eigenvector: } P_{1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
$$(2) \lambda_{2} = -2 \Rightarrow \lambda_{2}I - A = \begin{bmatrix} -3 & 1 & 1 \\ -1 & -5 & -1 \\ 3 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 1 & 1/4 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} (1/4)t \\ t \\ t \end{bmatrix} = \frac{1}{4}t \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} \Rightarrow \text{Eigenvector: } P_{2} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$

https://manara.edu.sy/

$$(3) \lambda_{3} = 3 \implies \lambda_{3}I - A = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 3 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\implies \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ t \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \implies \text{Eigenvector: } P_{3} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
$$\text{Let } P = \begin{bmatrix} p_{1} & p_{2} & p_{3} \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 4 & 1 \end{bmatrix}$$
$$\implies P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

• Notes: k is a positive integer

$$(1) D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} \implies D^k = \begin{bmatrix} d_1^k & 0 & \cdots & 0 \\ 0 & d_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n^k \end{bmatrix}$$

(2) $D = P^{-1}AP \implies D^k = (P^{-1}AP)^k = P^{-1}A^kP \implies A^k = PD^kP^{-1}$

• Ex : (Powers of a Matrix)

Find A^6 , where

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Sol:

Eigenvalues:
$$\lambda_1 = 1$$
, $\lambda_2 = 2$ double $p_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $p_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $p_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$

$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A^{6} = PD^{6}P^{-1} = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2^{6} & 0 & 0 \\ 0 & 2^{6} & 0 \\ 0 & 0 & 1^{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -62 & 0 & -126 \\ 63 & 64 & 63 \\ 63 & 0 & 127 \end{bmatrix}$$

- Theorem : (Sufficient conditions for diagonalization)
 If an *n*×*n* matrix *A* has *n* distinct eigenvalues, then the corresponding eigenvectors are linearly independent and *A* is diagonalizable.
- Ex : (Determining whether a matrix is diagonalizable)

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

Sol:

Because A is a triangular matrix, its eigenvalues are the main diagonal entries. $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -3$

These three values are distinct, so A is diagonalizable.

If λ_0 is an eigenvalue of an $n \ge n$ matrix A, then the dimension of the eigenspace corresponding to λ_0 is called the geometric multiplicity of λ_0 , and the number of times that $\lambda - \lambda_0$ appears as a factor in the characteristic polynomial of A is called the algebraic multiplicity of λ_0

Theorem : (Geometric and Algebraic Multiplicity)

If A is a square matrix, then:

- (a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.
- (b) A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity

- Theorem : (Eigenvalues and Eigenvectors of Matrix Powers)
- If k is a positive integer, λ is an eigenvalue of a matrix A, and x is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and x is a corresponding eigenvector

 $A = \begin{vmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{vmatrix}$

• Ex : Find the eigenvalues and corresponding eigenvectors of A^7

Sol:

The eigenvalues of A are $\lambda_1 = 2, \lambda_2 = -2, \lambda_3 = 3$

The eigenvalues of A^7 are $\lambda_1 = 2^7 = 128$, $\lambda_2 = (-2)^7 = -128$, $\lambda_3 = 3^7 = 2187$

The Eigenvectors of
$$A^7$$
 are: $p_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $p_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, $p_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$