

# **Lecture 8: Linear Transformations**

CEDC102: Linear Algebra

Manara University

2023-2024

https://manara.edu.sy/



Introduction to Linear Transformations The Kernel and Range of a Linear Transformation Matrices for Linear Transformations Transition Matrices and Similarity Applications of Linear Transformations



Introduction to Linear Transformations

Images And Preimages of Functions:

Function T that maps a vector space V into a vector space W

T: V Mapping W, V, W: vector spaces

V: the domain of T

W: the codomain of T

• Image of v under T:

If v is in V and w is in W such that: T(v) = wThen w is called the image of v under T





- Images And Preimages of Functions:
- The range of T: The set of all images of vectors in V.
- The preimage of w. The set of all v in V such that T(v) = w.
- Ex : (A function from  $R^2$  into  $R^2$ )

 $T: \mathbb{R}^2 \to \mathbb{R}^2 \quad \mathbf{v} = (v_1, v_2) \in \mathbb{R}^2$  $T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$ 

(a) Find the image of v = (-1, 2). (b) Find the preimage of w = (-1, 11)

(a) 
$$\mathbf{v} = (-1, 2) \Rightarrow T(\mathbf{v}) = T(-1, 2) = (-1 - 2, -1 + 2(2)) = (-3, 3)$$

$$(b) T(\mathbf{v}) = \mathbf{w} = (-1, 11) \Rightarrow T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2) = (-1, 11)$$
$$\Rightarrow v_1 - v_2 = -1$$
$$v_1 + 2v_2 = 11$$
$$\Rightarrow v_1 = 3, v_2 = 4$$

Thus  $\{(3, 4)\}$  is the preimage of w = (-1, 11).

- Linear Transformation (L.T.):
  - *V*, *W*: vector spaces
  - T:  $V \rightarrow W$ : Linear Transformation

(1) 
$$T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v}), \quad \forall \boldsymbol{u}, \boldsymbol{v} \in V$$

(2)  $T(c\mathbf{u}) = cT(\mathbf{u}), \quad \forall c \in R$ 



### Notes

(1)



(2) A linear transformation  $T: V \rightarrow V$  from a vector space into itself is called a linear operator





• Ex : (A Linear Transformation from  $P_n$  to  $P_{n+1}$ )

 $p = p(x) = c_0 + c_1 x + \ldots + c_n x^n \in P_n$ 

 $T: P_n \to P_{n+1}: \quad T(p) = T(p(x)) = xp(x) = c_0 x + c_1 x^2 + \dots + c_n x^{n+1}$ 

- Ex : (A Linear Transformation from  $P_n$  to  $P_{n-1}$   $n \ge 1$ )  $T: P_n \to P_{n-1}: T(\mathbf{p}) = T(p(x)) = p'(x)$  derivative
- Ex : (A Linear Transformation from  $P_{\infty}$  to R)

$$T: P_{\infty} \to R: \quad T(\mathbf{p}) = T(p(x)) = \int_{a}^{b} p(x) dx$$



• Ex : (Functions that are not linear transformations)

(a)  $T(x) = \sin x$   $T: R \to R$  $\sin(x_1 + x_2) \neq \sin(x_1) + \sin(x_2)$ (b)  $T(x) = x^2$   $T: R \to R$  $(X_1 + X_2)^2 \neq X_1^2 + X_2^2$ (c) T(x) = x + 1  $T: R \to R$ (d) T(x, y) = x + y + 1  $T: R^2 \rightarrow R$ (e)  $T(A) = \det(A)$   $T: M_n(R) \to R$ 



- Notes: Two uses of the term "linear"
  - (1) f(x) = x + 1 is called a linear function because its graph is a line.
  - (2) f(x) = x + 1 is not a linear transformation from a vector space R into R because it preserves neither vector addition nor scalar multiplication
- Zero transformation:
  - $T: V \to W \qquad T(v) = \mathbf{0}, \quad \forall v \in V$
- Identity transformation:

 $T: V \to V \qquad T(v) = v, \quad \forall v \in V$ 



• Theorem : (Properties of linear transformations)

- $T: V \to W, \quad \boldsymbol{u}, \ \boldsymbol{v} \in V$ 
  - (1) T(0) = 0

(2) 
$$T(-\mathbf{v}) = -T(\mathbf{v})$$

(3) 
$$T(\boldsymbol{u} - \boldsymbol{v}) = T(\boldsymbol{u}) - T(\boldsymbol{v})$$

(4) If 
$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$
 then  
 $T(\mathbf{v}) = T(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n)$   
 $= c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_n T(\mathbf{v}_n)$ 



• Ex : (Linear transformations and bases)

Let  $T: R^3 \to R^3$  be a linear transformation such that  $T(1,0,0) = (2, -1,4), \quad T(0,1,0) = (1,5, -2), \quad T(0,0,1) = (0,3,1)$ Find T(2, 3, -2)

$$(2,3,-2) = 2(1,0,0) + 3(0,1,0) - 2(0,0,1)$$
$$T(2,3,-2) = 2T(1,0,0) + 3T(0,1,0) - 2T(0,0,1)$$
$$= 2(2,-1,4) + 3(1,5,-2) - 2T(0,3,1)$$
$$= (7,7,0)$$





- Theorem: (The linear transformation given by a matrix)
  - Let A be an  $m \times n$  matrix. The function T defined by T(v) = Av is a linear transformation from  $R^n$  into  $R^m$ .



https://manara.edu.sy/



## • Ex : (Rotation in the plane)

Show that the L.T.  $T: R^2 \to R^2$  given by the matrix  $A = \begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix}$ 

has the property that it rotates every vector in  $R^2$  counterclockwise about the origin through the angle  $\theta$ .

#### Sol:

 $v = (x, y) = (r \cos \alpha, r \sin \alpha)$  (polar coordinates)

*r*: the length of *v α*: the angle from the positive *x*-axis counterclockwise to the vector *v*



$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} r\cos\alpha \\ r\sin\alpha \end{bmatrix}$$
$$= \begin{bmatrix} r\cos\theta\cos\alpha - r\sin\theta\sin\alpha \\ r\sin\theta\cos\alpha + r\cos\theta\sin\alpha \end{bmatrix}$$
$$= \begin{bmatrix} r\cos(\theta + \alpha) \\ r\sin(\theta + \alpha) \end{bmatrix}$$

r. the length of T(v)

 $\theta + \alpha$ : the angle from the positive x-axis counterclockwise to the vector  $T(\mathbf{v})$ 

Thus, T(v) is the vector that results from rotating the vector v counterclockwise through the angle  $\theta$ .



# • Ex : (A projection in $R^3$ )

Ex : (A projection in  $R^3$ ) The linear transformation  $T: R^3 \rightarrow R^3$  is given by the matrix  $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is called a projection in  $R^3$ is called a projection in  $R^3$ .

If  $\mathbf{v} = (x, y, z)$  is a vector in  $\mathbb{R}^3$ , then T(v) = (x, y, 0).



Projection onto xy-plane

https://manara.edu.sy/

- كَامِعَة الْمَارَة • Ex : (A linear transformation from  $M_{m \times n}$  into  $M_{n \times m}$ )

$$T(A) = A^T \quad (T: M_{m \times n} \to M_{n \times m})$$

Show that T is a linear transformation.

## Sol:

 $A, B \in M_{m \times n}$  $T(A + B) = (A + B)^{T} = A^{T} + B^{T} = T(A) + T(B)$  $T(cA) = (cA)^{T} = cA^{T} = cT(A)$ 

Therefore, T is a linear transformation from  $M_{m \times n}$  into  $M_{n \times m}$ .



The Kernel and Range of a Linear Transformation

• Kernel of a linear transformation T:

Let  $T: V \to W$  be a linear transformation. Then the set of all vectors v in V that satisfy T(v) = 0 is called the kernel of T and is denoted by ker(T).

 $\ker(T) = \{ v | T(v) = \mathbf{0}, \forall v \in V \}$ 

• Ex 1: (Finding the kernel of a linear transformation)

 $T(A) = A^{T} \quad (T: M_{3\times 2} \to M_{2\times 3})$ Sol:  $\ker(T) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ 



- Ex : (The kernel of the zero and identity transformations)
  - (a)  $T(\mathbf{v}) = \mathbf{0}$  (the zero transformation  $T: V \to W$ ) ker(T) = V
  - (b)  $T(\mathbf{v}) = \mathbf{v}$  (the identity transformation  $T: V \to V$ ) ker $(T) = \{\mathbf{0}\}$
- Ex : (Finding the kernel of a L.T.)

 $T(\mathbf{v}) = (x, y, 0) \qquad T: R^3 \to R^3$ ker(T) = ?

#### Sol:

 $ker(T) = \{(0, 0, z) | z \text{ is a real number}\}$ 





• Ex : (Finding the kernel of a linear transformation)

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \qquad (T: \mathbb{R}^3 \to \mathbb{R}^2)$$

$$\ker(T) = 2$$

 $\ker(T) = ?$ 

$$\ker(T) = \{ (x_1, x_2, x_3) | T(x_1, x_2, x_3) = (0, 0), \ \mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 \}$$
$$T(x_1, x_2, x_3) = (0, 0)$$
$$\begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$



• Theorem : (The kernel is a subspace of V)

The kernel of a linear transformation  $T: V \rightarrow W$  is a subspace of the domain V

• Note: The kernel of T is sometimes called the nullspace of T



• Ex : (Finding the kernel of a linear transformation)

$$T: P_n \to P_{n+1}: \qquad T(p) = T(p(x)) = xp(x) = c_0 x + c_1 x^2 + \ldots + c_n x^{n+1}$$

Sol:

$$T(p(x)) = xp(x) = c_0 x + c_1 x^2 + \dots + c_n x^{n+1} = \mathbf{0} \Rightarrow c_i = 0, \ 0 \le i \le n$$
  
ker(T) = {**0**}

• Ex : (Finding the kernel of a linear transformation  $n \ge 1$ )

$$T: P_n \to P_{n-1}: T(\mathbf{p}) = T(p(x)) = p'(x)$$
Sol:

 $\ker(T) = \operatorname{span}\{1\}$ 



• Ex : (Finding a basis for the kernel)

Let  $T: \mathbb{R}^5 \to \mathbb{R}^4$  be defined by  $T(\mathbf{x}) = A\mathbf{x}$ , where  $\mathbf{x}$  is in  $\mathbb{R}^5$  and

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$$

Find a basis for ker(T) as a subspace of  $R^5$ 

$$\begin{bmatrix} A \mid 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 & 0 \\ 2 & 1 & 3 & 1 & 0 & 0 \\ -1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 8 & 0 \end{bmatrix} \xrightarrow{\textbf{G.J.Elimination}} \begin{bmatrix} 1 & 0 & 2 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \begin{bmatrix} -2s+t \\ s+2t \\ s \\ -4t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

 $B = \{(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)\}$ : one basis for the kernel of T

### • Corollary :

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be the L.T. given by  $T(\mathbf{x}) = A\mathbf{x}$ . Then the kernel of T is equal to the solution space of  $A\mathbf{x} = \mathbf{0}$ 

$$T(\mathbf{x}) = A\mathbf{x} \text{ (a linear transformation } T: \mathbb{R}^n \to \mathbb{R}^m)$$
  
$$\Rightarrow \ker(T) = NS(A) = \left\{ \mathbf{x} | A\mathbf{x} = \mathbf{0}, \forall \mathbf{x} \in \mathbb{R}^n \right\} \text{ (Subspace of } \mathbb{R}^n)$$



• Range of a linear transformation T:

Let  $T: V \rightarrow W$  be a L.T.

Then the set of all vectors w in W that are images of vectors in V is called the range of T and is denoted by range(T)

 $\operatorname{range}(T) = R(T) = \{ T(v) | \forall v \in V \}$ 

• Theorem : (The range of T is a subspace of W)

The range of a linear transformation  $T: V \rightarrow W$  is a subspace of the W

• Ex : (The range of the zero and identity transformations)

(a)  $T(\mathbf{v}) = \mathbf{0}$  (the zero transformation  $T: V \to W$ ) range(T) = {**0**}

(b) T(v) = v (the identity transformation  $T: V \to V$ )

range(T) = {**U**} range(T) = V



## • Notes:

- T:  $V \rightarrow W$ : is Linear Transformation
- (1) ker(T) is a subspace of V
- (2) Range(T) is a subspace of W



## • Corollary :

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be the L.T. given by  $T(\mathbf{x}) = A\mathbf{x}$ . Then the range of T is equal to the columns space of A.  $\Rightarrow \operatorname{range}(T) = CS(A)$ 



• Ex: (Finding a basis for the range of a linear transformation)

Let  $T: \mathbb{R}^5 \to \mathbb{R}^4$  be defined by  $T(\mathbf{x}) = A\mathbf{x}$ , where  $\mathbf{x}$  is in  $\mathbb{R}^5$  and

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$$
Find a basis for the range of T





 $\Rightarrow \{w_1, w_2, w_4\} \text{ is a basis for } CS(B) \\ \{c_1, c_2, c_4\} \text{ is a basis for } CS(A) \\ \Rightarrow \{(1, 2, -1, 0), (2, 1, 0, 0), (1, 1, 0, 2)\} \text{ is a basis for the range of } T$ 

• Ex : (range of a linear transformation)

 $T: P_n \to P_{n+1}: \quad T(\mathbf{p}) = T(p(x)) = xp(x) = c_0 x + c_1 x^2 + \dots + c_n x^{n+1}$ range(T) = span{x, x<sup>2</sup>, ..., x^{n+1}}

• Ex : (range of a linear transformation  $n \ge 1$ )

 $T: P_n \to P_{n-1}: T(\mathbf{p}) = T(\mathbf{p}(x)) = \mathbf{p}'(x)$ range(T) = span{1, x, ..., x<sup>n-1</sup>}



• Rank of a linear transformation  $T: V \rightarrow W:$ 

rank(T) = the dimension of the range of T

- Nullity of a linear transformation  $T: V \rightarrow W$ : nullity(T) = the dimension of the kernel of T
- Note:

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be the L.T. given by  $T(\mathbf{x}) = A\mathbf{x}$ . Then  $\Rightarrow \operatorname{rank}(T) = \operatorname{rank}(A)$ ,  $\operatorname{nullity}(T) = \operatorname{nullity}(A)$ 



• Theorem : (Sum of rank and nullity)

Let  $T: V \rightarrow W$  be a L.T. from an *n*-dimensional vector space V into a vector space W. Then

 $\operatorname{rank}(T) + \operatorname{nullity}(T) = n$ 

dim(range of T) + dim(kernel of T) = dim(domain of T)

• Ex : (Finding rank and nullity of a linear transformation) Find the rank and nullity of the L.T.  $T: R^3 \rightarrow R^3$  defined by  $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ 

```
rank(T) = rank(A) = 2
nullity(T) = dim(domain of T) - rank(T) = 3 - 2 = 1
```



• Ex : (Finding rank and nullity of a linear transformation)

Let  $T: \mathbb{R}^5 \to \mathbb{R}^7$  be a linear transformation

(a) Find the dimension of the kernel of T if the dimension of the range is 2

(b) Find the rank of T if the nullity of T is 4

(c) Find the rank of T if ker(T) =  $\{0\}$ 

## Sol:

(a) dim(domain of T) = 5

dim(ker of T) = n - dim(range of T) = 5 - 2 = 3

```
(b) rank(T) = n – nullity(T) = 5 – 4 = 1
```

```
(c) rank(T) = n - \text{nullity}(T) = 5 - 0 = 5
```



#### • One-to-one:

A function T:  $V \rightarrow W$  is one-to-one when the preimage of every w in the range consists of a single vector

T is one-to-one if and only if, for all  $\boldsymbol{u}$  and  $\boldsymbol{v}$  in V,  $T(\boldsymbol{u}) = T(\boldsymbol{v})$  implies  $\boldsymbol{u} = \boldsymbol{v}$ .



https://manara.edu.sy/



#### • Onto:

A function  $T: V \rightarrow W$  is onto when every element in W has a preimage in V. (T is onto W when W is equal to the range of T)

• Theorem : (One-to-one linear transformation)

Let T:  $V \rightarrow W$  be a linear transformation. Then T is one-to-one iff ker(T) =  $\{0\}$ 

- Ex : (One-to-one and not one-to-one linear transformation)
  - (a) The linear transformation  $T: M_{3x2}(R) \to M_{2x3}(R)$  given by  $T(A) = A^T$  is one-toone because its kernel consists of only the  $m \ge n$  zero matrix



- (b) The zero transformation  $T: \mathbb{R}^3 \to \mathbb{R}^3$  is not one-to-one because its kernel is all of  $\mathbb{R}^3$
- Ex : (One-to-one and onto linear transformation)
  - (a) The L. T. T:  $P_3 \rightarrow R^4$  given by  $T(a + bx + cx^2 + dx^3) = (a, b, c, d)$
  - (b) The L. T. T:  $M_{2x2}(R) \rightarrow R^4$  given by

$$T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = (a, b, c, d)$$

- Ex : (One-to-one and not onto linear transformation)
  - $T: P_n \to P_{n+1}: T(\mathbf{p}) = T(\mathbf{p}(x)) = x\mathbf{p}(x)$



• Theorem : (Onto linear transformation)

Let  $T: V \to W$  be a linear transformation, where W is finite dimensional Then T is onto iff the rank of T is equal to the dimension of W.

• Theorem : (One-to-one and onto linear transformation)

Let  $T: V \to W$  be a linear transformation, with vector space V and W both of dimension *n*. Then T is one-to-one iff it is onto.



### • Ex :

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a L.T. given by  $T(\mathbf{x}) = A\mathbf{x}$ . Find the nullity and rank of T to determine whether T is one-to-one, onto, or neither

$$(a) A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, (b) A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, (c) A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}, (b) A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

| $T: \mathbb{R}^n \to \mathbb{R}^m \text{ dim}(\text{domain of } T)$ |   | rank(T) | nullity( <i>T</i> ) | one-to-one | onto |
|---------------------------------------------------------------------|---|---------|---------------------|------------|------|
| (a) $T: \mathbb{R}^3 \to \mathbb{R}^3$                              | 3 | 3       | 0                   | Yes        | Yes  |
| (b) $T: \mathbb{R}^2 \to \mathbb{R}^3$                              | 2 | 2       | 0                   | Yes        | No   |
| (c) $T: \mathbb{R}^3 \to \mathbb{R}^2$                              | 3 | 2       | 1                   | No         | Yes  |
| (d) $T: \mathbb{R}^3 \to \mathbb{R}^3$                              | 3 | 2       | 1                   | No         | No   |



Composition of linear transformations :



If  $T_1: U \to V$  and  $T_2: V \to W$  are L. T., then the composition of  $T_2$  with  $T_1$ , denoted by  $T_2 \circ T_1$ , is the function defined by the formula

 $(T_2 \circ T_1)(u) = T_2(T_1(u))$ 

where  $\boldsymbol{u}$  is a vector in U

Note:

This definition requires that the domain of  $T_2$  (which is V) contain the range of  $T_1$ 



- Theorem : (Composition of linear transformations)
  - If  $T_1: U \to V$  and  $T_2: V \to W$  are L. T., then  $(T_2 \circ T_1): U \to W$  is also a linear transformation
- Ex : (Composition of linear transformations)
  - Let  $T_1: P_2 \to P_3$  and  $T_2: P_3 \to P_2$  be the linear transformations given by  $T_1(p(x)) = xp(x)$  and  $T_2(p(x)) = p'(x)$
  - $(T_2 \circ T_1) \colon P_2 \to P_2$
  - $(T_2 \circ T_1)(p(x)) = (T_2(T_1(p(x))) = T_2(ax + bx^2 + cx^3) = a + 2bx + 3cx^2$
  - $(T_1 \circ T_2): P_2 \rightarrow P_2$
  - $(T_1 \circ T_2)(p(x)) = (T_1(T_2(p(x))) = T_1(b + 2cx) = bx + 2cx^2$   $T_2 \circ T_1 \neq T_1 \circ T_2$



- Note:  $T_2 \circ T_1 \neq T_1 \circ T_2$
- Composition with the Identity Operator

If  $T: V \to V$  is any linear operator, and if  $I: V \to V$  is the identity, then for all vectors v in V, we have

$$(T \circ I)(\mathbf{v}) = T(I(\mathbf{v})) = T(\mathbf{v})$$
$$(I \circ T)(\mathbf{v}) = I(T(\mathbf{v})) = T(\mathbf{v})$$

Inverse Linear Transformations

If  $T: V \to W$  is a one-to-one L.T, then  $T^{-1}: R(T) \to V$  $T^{-1}(T(v)) = v$  and  $T(T^{-1}(w)) = w$ 







• Ex : (An Inverse Transformation)

 $T: P_n \to P_{n+1}: T(\mathbf{p}) = T(p(x)) = xp(x) = c_0 x + c_1 x^2 + \dots + c_n x^{n+1}$ is a one-to-one L.T  $\Rightarrow T^{-1}(c_0 x + c_1 x^2 + \dots + c_n x^{n+1}) = c_0 + c_1 x + \dots + c_n x^n$ 

• Ex : (An Inverse Transformation)

Let  $T: R^2 \rightarrow R^2$  be the linear operator defined by T(x, y) = (2x + 3y, x + y)Determine whether *T* is one-to-one; if so, find  $T^{-1}(x, y)$ 

$$2x + 3y = 0, x + y = 0 \Rightarrow x = y = 0 \Rightarrow \ker(T) = \{0\} \Rightarrow T \text{ is one-to-one}$$
  
 $T(x, y) = (x', y') = (2x + 3y, x + y) \Rightarrow (x, y) = (-x' + 3y', x' - 2y')$   
 $T^{-1}(x, y) = (-x + 3y, x - 2y)$ 



- Theorem : (Composition of One-to-One Linear Transformations)
  - If  $T_1: U \to V$  and  $T_2: V \to W$  are one-to-one L. T., then
  - (a)  $(T_2 \circ T_1)$  is one-to-one
  - (b)  $(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}$

## Isomorphism:

A linear transformation  $T: V \to W$  that is one to one and onto is called an isomorphism. Moreover, if V and W are vector spaces such that there exists an isomorphism from V to W, then V and W are said to be isomorphic to each other



• Theorem : (Isomorphic spaces and dimension)

Two finite-dimensional vector space V and W are isomorphic if and only if they are of the same dimension

• Ex : (Isomorphic vector spaces)

The following vector spaces are isomorphic to each other

(a) 
$$R^4 = 4 - \text{space}$$

(b) 
$$M_{4\times 1}$$
 = space of all  $4 \times 1$  matrices

(c) 
$$M_{2\times 2}$$
 = space of all 2 × 2 matrices

(d)  $P_3(x)$  = space of all polynomials of degree 3 or less

(e)  $V = \{(x_1, x_2, x_3, x_4, 0), x_i \text{ is a real number}\}$  (subspace of  $R^5$ )