Lecture 8: linear Transiormations

CEDC102: Linear Algebra

Manara University
2023-2024

Introduction to Linear Transformations
The Kernel and Range of a Linear Transformation
Matrices for Linear Transformations
Transition Matrices and Similarity
Applications of Linear Transformations

جَــامعة
الـَمــنارة
Introduction to Linear Transformations

- Images And Preimages of Functions:

Function T that maps a vector space V into a vector space W
$T: V \xrightarrow{\text { Mapping }} W, \quad V, W:$ vector spaces
V : the domain of T
W : the codomain of T

- Image of v under T :

If \boldsymbol{v} is in V and \boldsymbol{w} is in W such that: $T(\boldsymbol{v})=\boldsymbol{w}$ Then \boldsymbol{w} is called the image of \boldsymbol{v} under T
V : Domain

- Images And Preimages of Functions:
- The range of T : The set of all images of vectors in V.
- The preimage of \boldsymbol{w}. The set of all \boldsymbol{v} in V such that $T(\boldsymbol{v})=\boldsymbol{w}$.
- Ex: (A function from R^{2} into R^{2})

$$
\begin{aligned}
& T: R^{2} \rightarrow R^{2} \quad \boldsymbol{V}=\left(v_{1}, v_{2}\right) \in R^{2} \\
& T\left(v_{1}, v_{2}\right)=\left(v_{1}-v_{2}, v_{1}+2 v_{2}\right)
\end{aligned}
$$

(a) Find the image of $\boldsymbol{v}=(-1,2)$. (b) Find the preimage of $\boldsymbol{w}=(-1,11)$

Sol:

$$
\text { (a) } \boldsymbol{v}=(-1,2) \Rightarrow T(\boldsymbol{v})=T(-1,2)=(-1-2,-1+2(2))=(-3,3)
$$

$$
\text { (b) } \begin{aligned}
& T(\boldsymbol{v})=\boldsymbol{W}=(-1,11) \Rightarrow T\left(v_{1}, v_{2}\right)=\left(v_{1}-v_{2}, v_{1}+2 v_{2}\right)=(-1,11) \\
& \Rightarrow v_{1}-v_{2}=-1 \\
& v_{1}+2 v_{2}=11 \\
& \Rightarrow v_{1}=3, \quad v_{2}=4
\end{aligned}
$$

Thus $\{(3,4)\}$ is the preimage of $\boldsymbol{w}=(-1,11)$.

- Linear Transformation (L.T.):
V, W vector spaces
$T: V \rightarrow W$: Linear Transformation
(1) $T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v}), \quad \forall \boldsymbol{u}, \boldsymbol{v} \in V$
(2) $T(c \boldsymbol{u})=c T(\boldsymbol{u}), \quad \forall c \in R$
- Notes
(1)

(2) A linear transformation $T: V \rightarrow V$ from a vector space into itself is called a linear operator
- Ex: (Verifying a linear transformation T from R^{2} into R^{2})

$$
T\left(v_{1}, v_{2}\right)=\left(v_{1}-v_{2}, v_{1}+2 v_{2}\right)
$$

Sol:

$$
\begin{aligned}
& \boldsymbol{u}=\left(u_{1}, u_{2}\right), \boldsymbol{V}=\left(v_{1}, v_{2}\right) \quad \text { vectors in } R^{2}, c \text { any real } \\
& T(\boldsymbol{u}+\boldsymbol{v})=T\left(u_{1}+v_{1}, u_{2}+v_{2}\right) \\
& \quad=\left(\left(u_{1}+v_{1}\right)-\left(u_{2}+v_{2}\right),\left(u_{1}+v_{1}\right)+2\left(u_{2}+v_{2}\right)\right) \\
& \quad=\left(\left(u_{1}-u_{2}\right)+\left(v_{1}-v_{2}\right),\left(u_{1}+2 u_{2}\right)+\left(v_{1}+2 v_{2}\right)\right) \\
& \quad=\left(u_{1}-u_{2}, u_{1}+2 u_{2}\right)+\left(v_{1}-v_{2}, v_{1}+2 v_{2}\right)=T(\boldsymbol{u})+T(\boldsymbol{v}) \\
& T(c \boldsymbol{u})=T\left(c u_{1}, c u_{2}\right)=\left(c u_{1}-c u_{2}, c u_{1}+2 c u_{2}\right) \\
& \quad=c\left(u_{1}-u_{2}, u_{1}+2 u_{2}\right)=c T(\boldsymbol{u})
\end{aligned}
$$

Therefore, T is a linear transformation

- Ex : (A Linear Transformation from P_{n} to P_{n+1})

$$
\boldsymbol{p}=p(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n} \in P_{n}
$$

$$
T: P_{n} \rightarrow P_{n+1}: T(\boldsymbol{p})=T(p(x))=x p(x)=c_{0} x+c_{1} x^{2}+\ldots+c_{n} x^{n+1}
$$

- Ex: (A Linear Transformation from P_{n} to $\left.P_{n-1} n \geq 1\right)$
$T: P_{n} \rightarrow P_{n-1}: T(\boldsymbol{p})=T(p(x))=p^{\prime}(x) \quad$ derivative
- Ex : (A Linear Transformation from P_{∞} to R)

$$
T: P_{\infty} \rightarrow R: \quad T(\boldsymbol{p})=T(p(x))=\int_{a}^{b} p(x) d x
$$

- Ex: (Functions that are not linear transformations)
(a) $T(x)=\sin x \quad$ T: $R \rightarrow R$

$$
\sin \left(x_{1}+x_{2}\right) \neq \sin \left(x_{1}\right)+\sin \left(x_{2}\right)
$$

(b) $T(x)=x^{2} \quad T: R \rightarrow R$

$$
\left(x_{1}+x_{2}\right)^{2} \neq x_{1}^{2}+x_{2}^{2}
$$

(c) $T(x)=x+1 \quad T: R \rightarrow R$
(d) $T(x, y)=x+y+1 \quad T: R^{2} \rightarrow R$
(e) $T(A)=\operatorname{det}(A) \quad T: M_{n}(R) \rightarrow R$

- Notes: Two uses of the term "linear"
(1) $f(x)=x+1$ is called a linear function because its graph is a line.
(2) $f(x)=x+1$ is not a linear transformation from a vector space R into R because it preserves neither vector addition nor scalar multiplication
- Zero transformation:
$T: V \rightarrow W \quad T(\boldsymbol{v})=\mathbf{0}, \quad \forall \boldsymbol{v} \in V$
- Identity transformation:
$T: V \rightarrow V \quad T(\boldsymbol{v})=\boldsymbol{V}, \quad \forall \boldsymbol{V} \in V$
- Theorem : (Properties of linear transformations)
$T: V \rightarrow W, \quad \boldsymbol{u}, \boldsymbol{v} \in V$
(1) $T(\mathbf{0})=\mathbf{0}$
(2) $T(-\boldsymbol{v})=-T(\boldsymbol{v})$
(3) $T(\boldsymbol{u}-\boldsymbol{v})=T(\boldsymbol{u})-T(\boldsymbol{v})$
(4) If $\boldsymbol{v}=c_{1} \boldsymbol{V}_{\mathbf{1}}+c_{2} \boldsymbol{V}_{\mathbf{2}}+\cdots+c_{n} \boldsymbol{V}_{\boldsymbol{n}}$ then

$$
\begin{aligned}
T(\boldsymbol{v}) & =T\left(c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}\right) \\
& =c_{1} T\left(\boldsymbol{v}_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n} T\left(\boldsymbol{v}_{n}\right)
\end{aligned}
$$

- Ex : (Linear transformations and bases)

Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation such that

$$
T(1,0,0)=(2,-1,4), \quad T(0,1,0)=(1,5,-2), \quad T(0,0,1)=(0,3,1)
$$

Find $T(2,3,-2)$
Sol:

$$
\begin{aligned}
(2,3,-2) & =2(1,0,0)+3(0,1,0)-2(0,0,1) \\
T(2,3,-2) & =2 T(1,0,0)+3 T(0,1,0)-2 T(0,0,1) \\
& =2(2,-1,4)+3(1,5,-2)-2 T(0,3,1) \\
& =(7,7,0)
\end{aligned}
$$

- Ex : (A linear transformation defined by a matrix)

The function $T: R^{2} \rightarrow R^{3}$ is defined as
(a) Find $T(v)$, where $\boldsymbol{v}=(2,-1)$

$$
T(\boldsymbol{v})=A \boldsymbol{v}=\left[\begin{array}{cc}
3 & 0 \\
2 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

(b) Show that T is a linear transformation from R^{2} into R^{3}

Sol:
R^{2} vector R^{3} vector
(a) $\boldsymbol{v}=(2,-1) \quad T(\boldsymbol{v})=A \boldsymbol{v}=\left[\begin{array}{cc}3 & 0 \\ 2 & 1 \\ -1 & -2\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{c}6 \\ 3 \\ 0\end{array}\right] \Rightarrow T(2,-1)=(6,3,0)$
(b) $T(\boldsymbol{u}+\boldsymbol{v})=A(\boldsymbol{u}+\boldsymbol{v})=A \boldsymbol{u}+A \boldsymbol{v}=T(\boldsymbol{u})+T(\boldsymbol{v})$ $T(c \boldsymbol{u})=A(c \boldsymbol{u})=c(A \boldsymbol{u})=c T(\boldsymbol{u})$
(vector addition) (scalar multiplication)

- Theorem: (The linear transformation given by a matrix)

Let A be an $m \times n$ matrix. The function T defined by $T(\boldsymbol{v})=A \boldsymbol{v}$ is a linear transformation from R^{n} into R^{m}.

- Note:

$$
\begin{gathered}
R^{n} \text { vector } \\
R^{m} \text { vector } \\
A \boldsymbol{V}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
v_{2} \\
\vdots \\
V_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} V_{1}+a_{12} V_{2}+\cdots+a_{1 n} V_{n} \\
a_{21} V_{1}+a_{22} V_{2}+\cdots+a_{2 n} v_{n} \\
\vdots \\
a_{m 1} V_{1}+a_{m 2} V_{2}+\cdots+a_{m n} V_{n}
\end{array}\right] \\
T(\boldsymbol{v})=A \boldsymbol{v} \\
T: R^{n} \rightarrow R^{m}
\end{gathered}
$$

- Ex: (Rotation in the plane)

Show that the L.T. T: $R^{2} \rightarrow R^{2}$ given by the matrix $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
has the property that it rotates every vector in R^{2} counterclockwise about the origin through the angle θ.

Sol:

$$
\boldsymbol{v}=(x, y)=(r \cos \alpha, r \sin \alpha) \quad \text { (polar coordinates) }
$$

r. the length of v
α : the angle from the positive x-axis counterclockwise to the vector \boldsymbol{v}

$$
\begin{aligned}
T(\boldsymbol{v})=A \boldsymbol{v} & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
r \cos \alpha \\
r \sin \alpha
\end{array}\right] \\
& =\left[\begin{array}{c}
r \cos \theta \cos \alpha-r \sin \theta \sin \alpha \\
r \sin \theta \cos \alpha+r \cos \theta \sin \alpha
\end{array}\right] \\
& =\left[\begin{array}{c}
r \cos (\theta+\alpha) \\
r \sin (\theta+\alpha)
\end{array}\right]
\end{aligned}
$$

r : the length of $T(v)$
$\theta+\alpha$: the angle from the positive x-axis counterclockwise to the vector $T(v)$
Thus, $T(\boldsymbol{v})$ is the vector that results from rotating the vector v counterclockwise through the angle θ.

- Ex: (A projection in R^{3})

The linear transformation $T: R^{3} \rightarrow R^{3}$ is given by the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
is called a projection in R^{3}.
If $\boldsymbol{v}=(x, y, z)$ is a vector in R^{3}, then
$T(\boldsymbol{v})=(x, y, 0)$.

Projection onto $x y$-plane

- Ex: (A linear transformation from $M_{n \times n}$ into $M_{n \times m}$)
$T(A)=A^{T} \quad\left(T: M_{m \times n} \rightarrow M_{n \times m}\right)$
Show that T is a linear transformation.
Sol:

$$
\begin{aligned}
& A, B \in M_{m \times n} \\
& T(A+B)=(A+B)^{T}=A^{T}+B^{T}=T(A)+T(B) \\
& T(c A)=(c A)^{T}=c A^{T}=c T(A)
\end{aligned}
$$

Therefore, T is a linear transformation from $M_{m \times n}$ into $M_{n \times m}$.

The Kernel and Range of a Linear Transformation

- Kernel of a linear transformation T :

Let $T: V \rightarrow W$ be a linear transformation. Then the set of all vectors v in V that satisfy $T(\boldsymbol{v})=\mathbf{0}$ is called the kernel of T and is denoted by $\operatorname{ker}(T)$.

$$
\operatorname{ker}(T)=\{\boldsymbol{v} \mid T(\boldsymbol{v})=\mathbf{0}, \forall \boldsymbol{v} \in V\}
$$

- Ex 1: (Finding the kernel of a linear transformation)

$$
T(A)=A^{T} \quad\left(T: M_{3 \times 2} \rightarrow M_{2 \times 3}\right)
$$

Sol:

$$
\operatorname{ker}(T)=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\right\}
$$

- Ex: (The kernel of the zero and identity transformations)
(a) $T(\boldsymbol{v})=\mathbf{0}$ (the zero transformation $T: V \rightarrow W$) $\operatorname{ker}(T)=V$
(b) $T(\boldsymbol{v})=\boldsymbol{v}$ (the identity transformation $T: V \rightarrow V$)

$$
\operatorname{ker}(T)=\{\mathbf{0}\}
$$

- Ex: (Finding the kernel of a L.T.) $T(v)=(x, y, 0) \quad T: R^{3} \rightarrow R^{3}$ $\operatorname{ker}(T)=$?

Sol:

$$
\operatorname{ker}(T)=\{(0,0, z) \mid z \text { is a real number }\}
$$

- Ex : (Finding the kernel of a linear transformation)
$T(\boldsymbol{x})=A \boldsymbol{x}=\left[\begin{array}{ccc}1 & -1 & -2 \\ -1 & 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ X_{2} \\ x_{3}\end{array}\right] \quad\left(T: R^{3} \rightarrow R^{2}\right)$
$\operatorname{ker}(T)=?$
Sol:

$$
\operatorname{ker}(T)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid T\left(x_{1}, x_{2}, x_{3}\right)=(0,0), \quad \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}\right\}
$$

$$
T\left(x_{1}, x_{2}, x_{3}\right)=(0,0)
$$

$$
\left[\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\left[\begin{array}{cccc}1 & -1 & -2 & 0 \\ -1 & 2 & 3 & 0\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}t \\ -t \\ t\end{array}\right]=t\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
$\Rightarrow \operatorname{ker}(T)=\{t(1,-1,1) \mid t$ is a real number $\}=\operatorname{span}\{(1,-1,1)$

- Theorem : (The kernel is a subspace of V)

The kernel of a linear transformation $T: V \rightarrow W$ is a subspace of the domain V

- Note: The kernel of T is sometimes called the nullspace of T
- Ex: (Finding the kernel of a linear transformation)

$$
T: P_{n} \rightarrow P_{n+1}: \quad T(\boldsymbol{p})=T(p(x))=x p(x)=c_{0} x+c_{1} x^{2}+\ldots+c_{n} x^{n+1}
$$

Sol:

$$
T(p(x))=x p(x)=c_{0} x+c_{1} x^{2}+\ldots+c_{n} x^{n+1}=\mathbf{0} \Rightarrow c_{i}=0,0 \leq i \leq n
$$

$$
\operatorname{ker}(T)=\{\mathbf{0}\}
$$

- Ex: (Finding the kernel of a linear transformation $n \geq 1$)
$T: P_{n} \rightarrow P_{n-1}: T(\boldsymbol{p})=T(p(x))=p^{\prime}(x)$
Sol:

$$
\operatorname{ker}(T)=\operatorname{span}\{1\}
$$

- Ex : (Finding a basis for the kernel)

Let $T: R^{5} \rightarrow R^{4}$ be defined by $T(\boldsymbol{x})=A \boldsymbol{x}$, where \boldsymbol{x} is in R^{5} and

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 1 & -1 \\
2 & 1 & 3 & 1 & 0 \\
-1 & 0 & -2 & 0 & 1 \\
0 & 0 & 0 & 2 & 8
\end{array}\right]
$$

Find a basis for $\operatorname{ker}(T)$ as a subspace of R^{5}
Sol:

$$
[A \mid 0]=\left[\begin{array}{cccccc}
1 & 2 & 0 & 1 & -1 & 0 \\
2 & 1 & 3 & 1 & 0 & 0 \\
-1 & 0 & -2 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 8 & 0
\end{array}\right] \xrightarrow{\text { G. J. Elimination }}\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 s+t \\
s+2 t \\
s \\
-4 t \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
2 \\
0 \\
-4 \\
1
\end{array}\right]
$$

$B=\{(-2,1,1,0,0),(1,2,0,-4,1)\}:$ one basis for the kernel of T

- Corollary :

Let $T: R^{n} \rightarrow R^{m}$ be the L.T. given by $T(\boldsymbol{x})=A \boldsymbol{x}$. Then the kernel of T is equal to the solution space of $A \boldsymbol{x}=\mathbf{0}$
$T(\boldsymbol{x})=A \boldsymbol{x}\left(\right.$ a linear transformation $\left.T: R^{n} \rightarrow R^{m}\right)$
$\Rightarrow \operatorname{ker}(T)=N S(A)=\left\{\boldsymbol{x} \mid A \boldsymbol{x}=\mathbf{0}, \forall \boldsymbol{x} \in R^{n}\right\}$
(Subspace of R^{I})

- Range of a linear transformation T :

Let $T: V \rightarrow W$ be a L.T.
Then the set of all vectors \boldsymbol{w} in W that are images of vectors in V is called the range of T and is denoted by range (T)

$$
\operatorname{range}(T)=R(T)=\{T(\boldsymbol{v}) \mid \forall \boldsymbol{v} \in V\}
$$

- Theorem : (The range of T is a subspace of W)

The range of a linear transformation $T: V \rightarrow W$ is a subspace of the W

- Ex: (The range of the zero and identity transformations)
(a) $T(v)=\mathbf{0}$ (the zero transformation $T: V \rightarrow W)$
$\operatorname{range}(T)=\{\mathbf{0}\}$
(b) $T(\boldsymbol{v})=\boldsymbol{v}$ (the identity transformation $T: V \rightarrow V$) range $(T)=V$
- Notes:
$T: V \rightarrow W$: is Linear Transformation
(1) $\operatorname{ker}(T)$ is a subspace of V
(2) Range (T) is a subspace of W

D
جَـامعة
الـَــنـارة
numumur

- Corollary :

Let $T: R^{n} \rightarrow R^{m}$ be the L.T. given by $T(\boldsymbol{x})=A \boldsymbol{x}$. Then the range of T is equal to the columns space of A.
$\Rightarrow \operatorname{range}(T)=C S(A)$

- Ex: (Finding a basis for the range of a linear transformation)

Let $T: R^{5} \rightarrow R^{4}$ be defined by $T(\boldsymbol{x})=A \boldsymbol{x}$, where \boldsymbol{x} is in R^{5} and

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 1 & -1 \\
2 & 1 & 3 & 1 & 0 \\
-1 & 0 & -2 & 0 & 1 \\
0 & 0 & 0 & 2 & 8
\end{array}\right] \quad \text { Find a basis for the range of } T
$$

Sol:

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
1 & 2 & 0 & 1 & -1 \\
2 & 1 & 3 & 1 & 0 \\
-1 & 0 & -2 & 0 & 1 \\
0 & 0 & 0 & 2 & 8
\end{array}\right]} \\
\text { G. J. Elimination }
\end{array} \begin{array}{ccccc}
1 & 0 & 2 & 0 & -1 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\Rightarrow & \left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}}, \boldsymbol{w}_{\mathbf{4}}\right\} \text { is a basis for } \operatorname{CS}(B) \\
& \left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}, \boldsymbol{c}_{\mathbf{4}}\right\} \text { is a basis for } \operatorname{CS}(A) \\
\Rightarrow & \{(1,2,-1,0),(2,1,0,0),(1,1,0,2)\} \text { is a basis for the range of } T
\end{aligned}
$$

- Ex: (range of a linear transformation)
$T: P_{n} \rightarrow P_{n+1}: \quad T(\boldsymbol{p})=T(p(x))=x p(x)=c_{0} x+c_{1} x^{2}+\ldots+c_{n} x^{n+1}$ $\operatorname{range}(T)=\operatorname{span}\left\{x, x^{2}, \ldots, x^{n+1}\right\}$
- Ex: (range of a linear transformation $n \geq 1$)

T: $P_{n} \rightarrow P_{n-1}: T(\boldsymbol{p})=T(p(x))=p^{\prime}(x)$
$\operatorname{range}(T)=\operatorname{span}\left\{1, x, \ldots, x^{n-1}\right\}$

- Rank of a linear transformation $T: V \rightarrow W$: $\operatorname{rank}(T)=$ the dimension of the range of T
- Nullity of a linear transformation $T: V \rightarrow W:$ $\operatorname{nullity}(T)=$ the dimension of the kernel of T
- Note:

Let $T: R^{n} \rightarrow R^{m}$ be the L.T. given by $T(\boldsymbol{x})=A \boldsymbol{x}$. Then
$\Rightarrow \operatorname{rank}(T)=\operatorname{rank}(A), \quad \operatorname{nullity}(T)=\operatorname{nullity}(A)$

- Theorem : (Sum of rank and nullity)

Let $T: V \rightarrow W$ be a L.T. from an n-dimensional vector space V into a vector space W. Then
$\operatorname{rank}(T)+\operatorname{nullity}(T)=n$
$\operatorname{dim}($ range of $T)+\operatorname{dim}($ kernel of $T)=\operatorname{dim}(\operatorname{domain}$ of $T)$

- Ex : (Finding rank and nullity of a linear transformation)

Find the rank and nullity of the L.T. $T: R^{3} \rightarrow R^{3}$ defined by $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
Sol:

$$
\begin{aligned}
& \operatorname{rank}(T)=\operatorname{rank}(A)=2 \\
& \operatorname{nullity}(T)=\operatorname{dim}(\text { domain of } T)-\operatorname{rank}(T)=3-2=1
\end{aligned}
$$

- Ex: (Finding rank and nullity of a linear transformation)

Let $T: R^{5} \rightarrow R^{7}$ be a linear transformation
(a) Find the dimension of the kernel of T if the dimension of the range is 2
(b) Find the rank of T if the nullity of T is 4
(c) Find the rank of T if $\operatorname{ker}(T)=\{\mathbf{0}\}$

Sol:
(a) $\operatorname{dim}($ domain of $T)=5$
$\operatorname{dim}(\operatorname{ker}$ of $T)=n-\operatorname{dim}($ range of $T)=5-2=3$
(b) $\operatorname{rank}(T)=n-\operatorname{nullity}(T)=5-4=1$
(c) $\operatorname{rank}(T)=n-\operatorname{nullity}(T)=5-0=5$

- One-to-one:

A function $T: V \rightarrow W$ is one-to-one when the preimage of every \boldsymbol{w} in the range consists of a single vector
T is one-to-one if and only if, for all \boldsymbol{u} and \boldsymbol{v} in $V, T(\boldsymbol{u})=T(\boldsymbol{v})$ implies $\boldsymbol{u}=\boldsymbol{v}$.

- Onto:

A function $T: V \rightarrow W$ is onto when every element in W has a preimage in V. (T is onto W when W is equal to the range of T)

- Theorem : (One-to-one linear transformation)

Let $T: V \rightarrow W$ be a linear transformation. Then T is one-to-one iff $\operatorname{ker}(T)=\{\mathbf{0}\}$

- Ex : (One-to-one and not one-to-one linear transformation)
(a) The linear transformation $T: M_{3 \times 2}(R) \rightarrow M_{2 \times 3}(R)$ given by $T(A)=A^{T}$ is one-toone because its kernel consists of only the $m \times n$ zero matrix
(b) The zero transformation $T: R^{3} \rightarrow \overline{R^{3}}$ is not one-to-one because its kernel is all of R^{3}
- Ex: (One-to-one and onto linear transformation)
(a) The L. T. $T: P_{3} \rightarrow R^{4}$ given by $T\left(a+b x+c x^{2}+d x^{3}\right)=(a, b, c, d)$
(b) The L. T. T: $M_{2 \times 2}(R) \rightarrow R^{4}$ given by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a, b, c, d)
$$

- Ex: (One-to-one and not onto linear transformation)

$$
T: P_{n} \rightarrow P_{n+1}: T(\boldsymbol{p})=T(p(x))=x p(x)
$$

- Theorem : (Onto linear transformation)

Let $T: V \rightarrow W$ be a linear transformation, where W is finite dimensional Then T is onto iff the rank of T is equal to the dimension of W.

- Theorem : (One-to-one and onto linear transformation)

Let $T: V \rightarrow W$ be a linear transformation, with vector space V and W both of dimension n. Then T is one-to-one iff it is onto.

- Ex :

Let $T: R^{n} \rightarrow R^{m}$ be a L.T. given by $T(\boldsymbol{x})=A \boldsymbol{x}$. Find the nullity and rank of T to determine whether T is one-to-one, onto, or neither

Sol:

$$
\text { (a) } A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \text {, (b) } A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right] \text {, (c) } A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1
\end{array}\right] \text {, (b) } A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$T: R^{n} \rightarrow R^{m} \operatorname{dim}(\operatorname{domain}$ of $T) \quad \operatorname{rank}(T) \quad \operatorname{nullity}(T) \quad$ one-to-one onto
(a) $T: R^{3} \rightarrow R^{3} \quad 3$
(b) $T: R^{2} \rightarrow R^{3} \quad 2$
(c) $T: R^{3} \rightarrow R^{2} \quad 3$
(d) $T: R^{3} \rightarrow R^{3}$ 3

2
2
2
0
Yes
Yes
Yes No
No
Yes
No No

- Composition of linear transformations :

If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are L. T., then the composition of T_{2} with T_{1}, denoted by $T_{2} \circ T_{1}$, is the function defined by the formula

$$
\left(T_{2} \circ T_{1}\right)(\boldsymbol{u})=T_{2}\left(T_{1}(\boldsymbol{u})\right)
$$

where \boldsymbol{u} is a vector in U

- Note:

This definition requires that the domain of T_{2} (which is V) contain the range of T_{1}

- Theorem : (Composition of linear transformations)

If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are L. T., then $\left(T_{2} \circ T_{1}\right): U \rightarrow W$ is also a linear transformation

- Ex : (Composition of linear transformations)

Let $T_{1}: P_{2} \rightarrow P_{3}$ and $T_{2}: P_{3} \rightarrow P_{2}$ be the linear transformations given by $T_{1}(p(x))=x p(x)$ and $T_{2}(p(x))=p^{\prime}(x)$

$$
\left(T_{2} \circ T_{1}\right): P_{2} \rightarrow P_{2}
$$

$$
\left(T_{2} \circ T_{1}\right)(p(x))=\left(T _ { 2 } \left(T_{1}(p(x))=T_{2}\left(a x+b x^{2}+c x^{3}\right)=a+2 b x+3 c x^{2}\right.\right.
$$

$$
\left(T_{1} \circ T_{2}\right): P_{2} \rightarrow P_{2}
$$

$$
\left(T_{1} \circ T_{2}\right)(p(x))=\left(T _ { 1 } \left(T_{2}(p(x))=T_{1}(b+2 c x)=b x+2 c x^{2} \quad T_{2} \circ T_{1} \neq T_{1} \circ T_{2}\right.\right.
$$

- Note: $T_{2} \circ T_{1} \neq T_{1} \circ T_{2}$
- Composition with the Identity Operator

If $T: V \rightarrow V$ is any linear operator, and if $I: V \rightarrow V$ is the identity, then for all vectors v in V, we have
$(T \circ I)(\boldsymbol{v})=T(I(\boldsymbol{v}))=T(\boldsymbol{v})$
$(I \circ T)(\boldsymbol{v})=I(T(\boldsymbol{v}))=T(\boldsymbol{v})$

$$
T \circ I=T \text { and } I \circ T=T
$$

- Inverse Linear Transformations

If $T: V \rightarrow W$ is a one-to-one L.T, then
$T^{-1}: R(T) \rightarrow V$

$T^{-1}(T(\boldsymbol{v}))=\boldsymbol{v}$ and $T\left(T^{-1}(\boldsymbol{w})\right)=\boldsymbol{w}$
$T \circ T^{-1}=T^{-1} \circ T=I$

- Ex: (An Inverse Transformation)

$T: P_{n} \rightarrow P_{n+1}: T(\boldsymbol{p})=T(p(x))=x p(x)=c_{0} x+c_{1} x^{2}+\ldots+c_{n} x^{n+1}$
is a one-to-one L.T $\Rightarrow T^{-1}\left(c_{0} x+c_{1} x^{2}+\ldots+c_{n} x^{n+1}\right)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$

- Ex: (An Inverse Transformation)

Let $T: R^{2} \rightarrow R^{2}$ be the linear operator defined by $T(x, y)=(2 x+3 y, x+y)$ Determine whether T is one-to-one; if so, find $T^{-1}(x, y)$

Sol:

$$
\begin{aligned}
& 2 x+3 y=0, x+y=0 \Rightarrow x=y=0 \Rightarrow \operatorname{ker}(T)=\{0\} \Rightarrow T \text { is one-to-one } \\
& T(x, y)=\left(x^{\prime}, y^{\prime}\right)=(2 x+3 y, x+y) \Rightarrow(x, y)=\left(-x^{\prime}+3 y^{\prime}, x^{\prime}-2 y^{\prime}\right) \\
& T^{-1}(x, y)=(-x+3 y, x-2 y)
\end{aligned}
$$

- Theorem : (Composition of One-to-One Linear Transformations)

If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are one-to-one L. T., then
(a) $\left(T_{2} \circ T_{1}\right)$ is one-to-one
(b) $\left(T_{2} \circ T_{1}\right)^{-1}=T_{1}^{-1} \circ T_{2}^{-1}$

- Isomorphism:

A linear transformation $T: V \rightarrow W$ that is one to one and onto is called an isomorphism. Moreover, if V and W are vector spaces such that there exists an isomorphism from V to W, then V and W are said to be isomorphic to each other

- Theorem : (Isomorphic spaces and dimension)

Two finite-dimensional vector space V and W are isomorphic if and only if they are of the same dimension

- Ex : (Isomorphic vector spaces)

The following vector spaces are isomorphic to each other
(a) $R^{4}=4-$ space
(b) $M_{4 \times 1}=$ space of all 4×1 matrices
(c) $M_{2 \times 2}=$ space of all 2×2 matrices
(d) $P_{3}(x)=$ space of all polynomials of degree 3 or less
(e) $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, 0\right), x_{i}\right.$ is a real number $\} \quad$ (subspace of R^{5})

