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Introduction to Linear Transformations

 Images And Preimages of Functions:

V: the domain of T
W: the codomain of T

Function T that maps a vector space V into a vector space W

T:V W, V, W: vector spacesMapping

 Image of v under T:

If v is in V and w is in W such that: T(v) = w
Then w is called the image of v under T
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 Images And Preimages of Functions:

 The range of  T: The set of all images of vectors in V.

 The preimage of  w: The set of all v in V such that T(v) = w.

 Ex : (A function from R2 into R2 )

(a) Find the image of v = (-1, 2).  (b) Find the preimage of w = (-1, 11)

Sol:

: ( , )

( , ) ( , )

T R R v v R

T v v v v v v

 = 

= - 

2 2 2

1 2

1 2 1 2 1 22

v

( ) ( , ) ( ) ( , ) ( , ( )) (  ),a T T= -  = - = - - -  = -1 2 1 2 1 2 1 2 2 3 3v v
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Thus {(3, 4)} is the preimage of w = (-1, 11).

( ) ( ) ( , ) ( , ) ( , ) (  ),b T T v v v v v v= = -  = -  = -1 2 1 2 1 21 11 2 1 11v w

 

     

,  

v v

v v

v v

 - = -

 =

 = =

1 2

1 2

1 2

1

2 11

3 4

 Linear Transformation (L.T.):

V, W: vector spaces

T: V → W: Linear Transformation

(1)  ( ) ( ) ( ),    ,T T T V =   u v u v u v

(2)  ( ) ( ),    T c cT c R=  u u
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(1)

Addition 

in W

Addition 

in V

Scalar 

multiplication 

in V

Scalar 

multiplication 

in W

(2) A linear transformation T: V → V from a vector space into itself is called a linear

operator

 Notes

T(u  v) = T(u)  T(v) T(cu) = cT(u)
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 Ex : (Verifying a linear transformation T from R2 into R2)

( , ) ( , )T v v v v v v= - 1 2 1 2 1 22

Sol:

( , ),  ( , )u u v v= =1 2 1 2u v vectors in R2, c: any real

( ) ( , )

(( ) ( ),( ) ( ))

(( ) ( ),( ) ( ))

( , ) ( , ) ( ) ( )

T T u v u v

u v u v u v u v

u u v v u u v v

u u u u v v v v T T

 =  

=  -    

= -  -   

= -   -  = 

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2

2 2

2 2

u v

u v

( ) ( , ) ( , )

( , ) ( )

T c T cu cu cu cu cu cu

c u u u u cT

= = - 

= -  =

1 2 1 2 1 2

1 2 1 2

2

2

u

u

Therefore, T is a linear transformation
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 Ex : (A Linear Transformation from Pn to Pn1)

p = p(x) = c0  c1x  … cnxn ϵ Pn

T: Pn → Pn1: T(p) = T(p(x)) = xp(x) = c0x  c1x2  … cnxn1

 Ex : (A Linear Transformation from Pn to Pn-1 n ≥ 1)

T: Pn → Pn-1: T(p) = T(p(x)) = p' (x) derivative

 Ex : (A Linear Transformation from P∞ to R)

T: P∞ → R: T(p) = T(p(x)) = ( )
b

a
p x dx
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 Ex : (Functions that are not linear transformations)

( ) ( ) sina T x x=

sin( ) sin( ) sin( )x x x x  1 2 1 2

( ) ( )b T x x= 2

( )x x x x  2 2 2

1 2 1 2

( ) ( )c T x x=  1

T: R → R

T: R → R

T: R → R

( ) ( , )d T x y x y=   1 T: R2 → R

( ) ( ) det( )e T A A= T: Mn(R) → R
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(1) f(x) = x + 1 is called a linear function because its graph is a line.

(2) f(x) = x + 1 is not a linear transformation from a vector space R into R because it

preserves neither vector addition nor scalar multiplication

 Notes: Two uses of the term “linear”

 Identity transformation:

 Zero transformation:

: ( ) ,   T V W T V =  v v0

: ( ) ,   T V V T V =  v v v
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 Theorem : (Properties of linear transformations)

: , ,T V W V u v

(1) ( )T =0 0

(2) ( ) ( )T T- = -v v

(3) ( ) ( ) ( )T T T- = -u v u v

(4) If   then

     ( )

              ( ) ( ) ( )

( )
n

n

n

c c c

T T c c c

c T c T v c T

=   

=   

=   

1 2

1 2

1 2 2

n

n

n

v v v v

v v v v

v v

1 2

1 2

1
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Let T: R3 →R3 be a linear transformation such that

Sol:

Find T(2, 3, -2)

 Ex : (Linear transformations and bases)

( , , ) ( , , ), ( , , ) ( , , ), ( , , ) ( , , )T T T= - = - =1 0 0 2 1 4 0 1 0 1 5 2 0 0 1 0 3 1

( , , ) ( , , ) ( , , ) ( , , )- =  -2 3 2 2 1 0 0 3 0 1 0 2 0 0 1

( , , ) ( , , ) ( , , ) ( , , )

                ( , , ) ( , , ) ( , , )

                ( , , )

T T T T

T

- =  -

= -  - -

=

2 3 2 2 1 0 0 3 0 1 0 2 0 0 1

2 2 1 4 3 1 5 2 2 0 3 1

7 7 0
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The function T: R2 →R3 is defined as

Sol:

(vector addition)

(scalar multiplication)

 Ex : (A linear transformation defined by a matrix)

( )
v

T A
v

 
  = =
    - - 

1

2

3 0

2 1

1 2

v v

(a) Find T(v), where v = (2, -1)

(b) Show that T is a linear transformation from R2 into R3

(a) v = (2, -1) ( )T A
   

    = = = -    - -   

3 0 6
2

2 1 3
1

1 2 0

v v

R3 vectorR2 vector

⇒ T(2,-1) = (6, 3, 0)

(b) T(u  v) = A(u  v) = Au  Av = T(u)  T(v)

T(cu) = A(cu) = c(Au) = cT(u)
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 Theorem: (The linear transformation given by a matrix)

Let A be an mn matrix. The function T defined by T(v) = Av is a linear transformation

from Rn into Rm.

 Note:

n nn

n nn

n m m mn nm m mn

v a v a v a va a a
v a v a v a va a a

A

v a v a v a va a a

       
       

= =     
            

1 11 1 12 2 111 12 1

2 21 1 22 2 221 22 2

1 1 2 21 2

v

Rm vectorRn vector

T(v) = Av
T: Rn →Rm
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 Ex : (Rotation in the plane)

Show that the L.T. T: R2 →R2 given by the matrix

has the property that it rotates every vector in R2 counterclockwise about the origin

through the angle .

Sol:

(polar coordinates)

r: the length of v
: the angle from the positive x-axis 

counterclockwise to the vector v

cos sin

sin cos
A

 
 

- 
=   

v = (x, y) = (r cos , r sin )
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r: the length of T(v)

  : the angle from the positive x-axis counterclockwise to the vector T(v)

Thus, T(v) is the vector that results from rotating the vector v counterclockwise

through the angle .

cos sin cos sin cos
( )

sin cos sin cos sin

cos cos sin sin
 

sin cos cos sin

cos( )
                 

sin( )

x r
T A

y r

r r
r r

r
r

    
    

   
   

 
 

- -       
= = =              

- 
=   

 
=   

v v
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is called a projection in R3.

The linear transformation T: R3 →R3 is given by the matrix

 Ex : (A projection in R3)

A
 
 =
 
 

1 0 0

0 1 0

0 0 0

If v = (x, y, z) is a vector in R3, then

T(v) = (x, y, 0).
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 Ex : (A linear transformation from Mmn into Mnm )

Show that T is a linear transformation.

Sol:

Therefore, T is a linear transformation from Mmn into Mnm.

( )     ( : )T
m n n mT A A T M M = 

, m nA B M 

( ) ( ) ( ) ( )T T TT A B A B A B T A T B =  =  = 

( ) ( ) ( )T TT cA cA cA cT A= = =
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The Kernel and Range of a Linear Transformation

 Kernel of a linear transformation T:

Let T: V → W be a linear transformation. Then the set of all vectors v in V that satisfy

T(v) = 0 is called the kernel of T and is denoted by ker(T).

ker( ) { | ( ) , }T T V= =  v v v0

( )     ( : )TT A A T M M = 3 2 2 3

 Ex 1: (Finding the kernel of a linear transformation)

Sol:

ker( )T

  
  =  

    

0 0

0 0

0 0
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 Ex : (The kernel of the zero and identity transformations)

(a) T(v) = 0 (the zero transformation T: V → W )

ker(T) = V

(b) T(v) = v (the identity transformation T: V → V )

ker(T) = {0}

 Ex : (Finding the kernel of a L.T.)

T(v) = (x, y, 0) T: R3 →R3

ker(T) = ?

Sol:

ker(T) = {(0, 0, z)| z is a real number}
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 Ex : (Finding the kernel of a linear transformation)

Sol:

( ) ( : )
x

T A x T R R
x

 
- -   = =  -   

 

1
3 2

2

3

1 1 2

1 2 3
x x

ker(T) = ?

ker( ) {( , , )| , , ) ( , ), ( ) }( , ,T x x x T x x x x x x R= = =  3

1 2 3 1 2 3 1 2 30 0 x

, , ) ( , )(T x x x =1 2 3 0 0

x
x
x

 
- -     =   -    

 

1

2

3

1 1 2 0

1 2 3 0
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1 1 2 0

1 2 3 0

- - 
 - 

Gauss-Jordan Elimination 1 0 1 0

0 1 1 0

- 
 
 

1

2

3

1

1

1

x t

x t t

x t

     
      = - = -
     
     

⇒ ker(T) = {t(1, -1, 1)|t is a real number} = span{(1, -1, 1)

 Theorem : (The kernel is a subspace of V)

The kernel of a linear transformation T: V → W is a subspace of the domain V
 Note: The kernel of T is sometimes called the nullspace of T
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 Ex : (Finding the kernel of a linear transformation)

T: Pn → Pn1: T(p) = T(p(x)) = xp(x) = c0x  c1x2  … cnxn1

Sol:

T(p(x)) = xp(x) = c0x  c1x2  … cnxn1 = 0 ⇒ ci = 0, 0 ≤ i ≤ n
ker(T) = {0}

 Ex : (Finding the kernel of a linear transformation n ≥ 1)

T: Pn → Pn-1: T(p) = T(p(x)) = p' (x)

Sol:

ker(T) = span{1}
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Find a basis for ker(T) as a subspace of R5

Let T: R5 → R4 be defined by T(x) = Ax, where x is in R5 and

1 2 0 1 1

2 1 3 1 0

1 0 2 0 1

0 0 0 2 8

A

- 
 

=  
- -

 
  

Sol:
1 2 0 1 1 0

2 1 3 1 0 0
0

1 0 2 0 1 0

0 0 0 2 8 0

A

- 
 

=     - -
 
  

G. J. Elimination

1 0 2 0 1 0

0 1 1 0 2 0

0 0 0 1 4 0

0 0 0 0 0 0

- 
 - -
 
 
  s t

 Ex : (Finding a basis for the kernel)
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1

2

3

4

5

2 2 1

2 1 2

1 0

4 0 4

0 1

s tx
s tx

x sx s t
x t
x t

-  -      
      
      = = = 
       - -
      

       

B ={(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)}: one basis for the kernel of T

 Corollary :

Let T: Rn → Rm be the L.T. given by T(x) = Ax. Then the kernel of T is equal to

the solution space of Ax = 0

T(x) = Ax (a linear transformation T: Rn → Rm)
{ ker( ) ( ) | , nT NS A A R = = =  x x x0 (Subspace of Rn)
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 Range of a linear transformation T:

Let T: V → W be a L.T.

Then the set of all vectors w in W that are images of vectors in V is called the range of

T and is denoted by range(T)

range( ) ( ) { ( )| }T R T T V= =  v v

 Theorem : (The range of T is a subspace of W)

The range of a linear transformation T: V → W is a subspace of the W

(a) T(v) = 0 (the zero transformation T: V → W ) range(T) = {0}

(b) T(v) = v (the identity transformation T: V → V ) range(T) = V

 Ex : (The range of the zero and identity transformations)
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 Notes:

T: V → W: is Linear Transformation

(1) ker(T) is a subspace of V
(2) Range(T) is a subspace of W

 Corollary :

Let T: Rn → Rm be the L.T. given by T(x) = Ax. Then the range of T is equal to the

columns space of A.
⇒ range(T) = CS (A)



https://manara.edu.sy/Linear Transformations 28/43

 Ex: (Finding a basis for the range of a linear transformation)

Find a basis for the range of T

Let T: R5 → R4 be defined by T(x) = Ax, where x is in R5 and

1 2 0 1 1

2 1 3 1 0

1 0 2 0 1

0 0 0 2 8

A

- 
 

=  
- -

 
  

Sol:

1 2 0 1 1

2 1 3 1 0

1 0 2 0 1

0 0 0 2 8

- 
 
 
- -

 
  

G. J. Elimination

c1, c2, c3, c4, c5 w1,w2,w3,w4,w5

1 0 2 0 1

0 1 1 0 2

0 0 0 1 4

0 0 0 0 0

- 
 -
 
 
  
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⇒ {w1,w2,w4} is a basis for CS (B)

{c1,c2,c4} is a basis for CS (A)

⇒ {(1, 2, -1, 0), (2, 1, 0, 0), (1, 1, 0, 2)} is a basis for the range of T

 Ex : (range of a linear transformation)

T: Pn → Pn1: T(p) = T(p(x)) = xp(x) = c0x  c1x2  … cnxn1

range(T) = span{x, x2, …, xn1}

 Ex : (range of a linear transformation n ≥ 1)

T: Pn → Pn-1: T(p) = T(p(x)) = p' (x)

range(T) = span{1, x, …, xn-1}
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 Rank of a linear transformation T: V → W:

rank(T) = the dimension of the range of T

 Nullity of a linear transformation T: V → W:

nullity(T) = the dimension of the kernel of T

 Note:

Let T: Rn → Rm be the L.T. given by T(x) = Ax. Then

⇒ rank(T) = rank(A), nullity(T) = nullity(A)
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 Theorem : (Sum of rank and nullity)

Let T: V → W be a L.T. from an n-dimensional vector space V into a vector space

W. Then

rank(T)  nullity(T) = n
dim(range of T)  dim(kernel of T) = dim(domain of T)

Sol:

 Ex : (Finding rank and nullity of a linear transformation)

Find the rank and nullity of the L.T. T: R3 → R3 defined by 

1 0 2

0 1 1

0 0 0

A

- 
 =
 
 

rank(T) = rank(A) = 2

nullity(T) = dim(domain of T) - rank(T) = 3 - 2 = 1
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 Ex : (Finding rank and nullity of a linear transformation)

Let T: R5 → R7 be a linear transformation

(a) Find the dimension of the kernel of T if the dimension of the range is 2

(b) Find the rank of T if the nullity of T is 4

(c) Find the rank of T if ker(T) = {0}

Sol:

(a) dim(domain of T) = 5

dim(ker of T) = n - dim(range of T) = 5 - 2 = 3

(b) rank(T) = n - nullity(T) = 5 – 4 = 1

(c) rank(T) = n - nullity(T) = 5 – 0 = 5
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 One-to-one:

A function T: V → W is one-to-one when the preimage of every w in the range

consists of a single vector

T is one-to-one if and only if, for all u and v in V, T(u) = T(v) implies u = v.
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 Onto:

A function T: V → W is onto when every element in W has a preimage in V. (T is onto

W when W is equal to the range of T)

 Theorem : (One-to-one linear transformation)

Let T: V → W be a linear transformation. Then T is one-to-one iff ker(T) = {0}

 Ex : (One-to-one and not one-to-one linear transformation)

(a) The linear transformation T: M3x2(R) → M2x3(R) given by T(A) = AT is one-to-

one because its kernel consists of only the mxn zero matrix
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(b) The zero transformation T: R3 → R3 is not one-to-one because its kernel is all of

R3

 Ex : (One-to-one and onto linear transformation)

(a) The L. T. T: P3 → R4 given by T(a  bx  cx2  dx3) = (a, b, c, d)
(b) The L. T. T: M2x2(R) → R4 given by

( , , , )
a b

T a b c d
c d

  
=  

  

 Ex : (One-to-one and not onto linear transformation)

T: Pn → Pn1: T(p) = T(p(x)) = xp(x)



https://manara.edu.sy/Linear Transformations 36/43

Let T: V → W be a linear transformation, where W is finite dimensional Then T is

onto iff the rank of T is equal to the dimension of W.

 Theorem : (Onto linear transformation)

 Theorem : (One-to-one and onto linear transformation)

Let T: V → W be a linear transformation, with vector space V and W both of

dimension n. Then T is one-to-one iff it is onto.
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 Ex :

Let T: Rn → Rm be a L.T. given by T(x) = Ax. Find the nullity and rank of T to

determine whether T is one-to-one, onto, or neither

1 2 0 1 2 1 2 0
1 2 0

( ) 0 1 1 , ( ) 0 1 , ( ) , ( ) 0 1 1
0 1 1

0 0 1 0 0 0 0 0

a A b A c A b A
     

      = = = = -      
     

Sol:

T: Rn → Rm dim(domain of T) rank(T) nullity(T) one-to-one onto

(a) T: R3 → R3 3 3 0 Yes Yes

(b) T: R2 → R3 2 2 0 Yes No

(c) T: R3 → R2 3 2 1 No Yes

(d) T: R3 → R3 3 2 1 No No
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 Composition of linear transformations :

 Note:

If T1: U → V and T2: V → W are L. T., then the composition of T2 with T1, denoted

by T2 ∘ T1, is the function defined by the formula

(T2 ∘ T1)(u) = T2(T1(u))

where u is a vector in U

This definition requires that the domain of T2 (which is V ) contain the range of T1
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 Theorem : (Composition of linear transformations)

If T1: U → V and T2: V → W are L. T., then (T2 ∘ T1):U → W is also a linear

transformation

 Ex : (Composition of linear transformations)

Let T1: P2 → P3 and T2: P3 → P2 be the linear transformations given by

T1(p(x)) = xp(x) and T2(p(x)) = p' (x)

(T2 ∘T1): P2 → P2

(T2 ∘ T1)(p(x)) = (T2(T1(p(x)) = T2(ax  bx2  cx3) = a  2bx  3cx2

(T1 ∘T2): P2 → P2

(T1 ∘ T2)(p(x)) = (T1(T2(p(x)) = T1(b  2cx) = bx  2cx2 T2 ∘T1 ≠ T1 ∘T2
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 Note: T2 ∘T1 ≠ T1 ∘T2

 Composition with the Identity Operator

If T: V → V is any linear operator, and if I: V → V is the identity, then for all vectors v
in V, we have

(T ∘ I)(v) = T(I (v)) = T(v)

(I ∘ T)(v) = I (T(v)) = T(v) T ∘ I = T and I ∘ T = T

 Inverse Linear Transformations

If T: V → W is a one-to-one L.T, then

T-1: R(T ) → V
T-1(T(v)) = v and T(T-1(w)) = w T ∘ T-1 = T-1 ∘ T = I
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 Ex : (An Inverse Transformation)

T: Pn → Pn1: T(p) = T(p(x)) = xp(x) = c0x  c1x2  … cnxn1

is a one-to-one L.T ⇒ T-1(c0x  c1x2  … cnxn1 ) = c0  c1x  … cnxn

 Ex : (An Inverse Transformation)

Let T: R2 →R2 be the linear operator defined by T(x, y) = (2x  3y, x  y)

Determine whether T is one-to-one; if so, find T-1(x, y)

Sol:

2x  3y = 0, x  y = 0 ⇒ x = y = 0 ⇒ ker(T) = {0} ⇒ T is one-to-one

T(x, y) = (x', y' ) = (2x  3y, x  y) ⇒ (x, y) = (-x'  3y', x' -2y' )

T-1(x, y) = (-x  3y, x -2y )
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 Theorem : (Composition of One-to-One Linear Transformations)

If T1: U → V and T2: V → W are one-to-one L. T., then

(a) (T2 ∘ T1) is one-to-one

(b) (T2 ∘ T1)
-1 =

1 1

1 2T T- -

 Isomorphism:

A linear transformation T: V → W that is one to one and onto is called an

isomorphism. Moreover, if V and W are vector spaces such that there exists an

isomorphism from V to W, then V and W are said to be isomorphic to each other
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 Ex : (Isomorphic vector spaces)

The following vector spaces are isomorphic to each other
4

4 1

2 2

3

5

1 2 3 4

( ) 4 space

( )  space of all 4 1 matrices

( )  space of all 2 2 matrices

( ) ( )  space of all polynomials of degree 3 or less

( ) {( , , , , 0 ,  is a real number} (subspace of )) i

a R

b M

c M

d P x

e V x x x x x R





= -

= 

= 

=

=

 Theorem : (Isomorphic spaces and dimension)

Two finite-dimensional vector space V and W are isomorphic if and only if they are of

the same dimension


