

**Matrices for Linear Transformations** 

• Two representations of the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}^3$ 

(1) 
$$T(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, -x_1 + 3x_2 - 2x_3, 3x_2 + 4x_3)$$
  
(2)  $T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 

- Three reasons for matrix representation of a linear transformation:
  - It is simpler to write.
  - It is simpler to read.
  - It is more easily adapted for computer use.



• Theorem : (Standard matrix for a linear transformation)

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation such that

$$T(\boldsymbol{e_1}) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad T(\boldsymbol{e_2}) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \cdots, \quad T(\boldsymbol{e_n}) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix},$$

then the  $m \ge n$  matrix whose *n* columns correspond to  $T(e_i)$ 

$$A = \begin{bmatrix} T(\boldsymbol{e_1}) \mid T(\boldsymbol{e_2}) \mid \cdots \mid T(\boldsymbol{e_n}) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is such that T(v) = Av for every v in  $\mathbb{R}^n$ . A is called the standard matrix for T

• Ex : (Finding the standard matrix of a linear transformation) Find the standard matrix for the L.T.  $T: R^3 \rightarrow R^2$  defined by T(x,y,z) = (x - 2y, 2x + y)Sol:

جامعة



$$A = \begin{bmatrix} T(\boldsymbol{e}_1) \mid T(\boldsymbol{e}_2) \mid T(\boldsymbol{e}_3) \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

• Check:

$$A\begin{bmatrix} X\\ Y\\ Z\end{bmatrix} = \begin{bmatrix} 1 & -2 & 0\\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} X\\ Y\\ Z\end{bmatrix} = \begin{bmatrix} x-2y\\ 2x+y \end{bmatrix} \quad \text{i.e. } T(x,y,z) = (x-2y,2x+y)$$

- Notes:
  - (1) The standard matrix for the zero transformation from  $R^n$  into  $R^m$  is the  $m \times n$  zero matrix.
  - (2) The standard matrix for the identity transformation from  $R^n$  into  $R^n$  is the  $n \times n$  identity matrix  $I_n$



Matrices for General Linear Transformations:

*T*:  $V \to W$  a LT  $B = \{v_1, v_2, \dots, v_n\}$  a basis for *V* and  $B' = \{w_1, w_2, \dots, w_m\}$  a basis for *W* [**x**]<sub>B</sub> is the coordinate matrices for **x** in *V* 

 $[T(\mathbf{x})]_{B'}$  is the coordinate matrices for  $T(\mathbf{x})$  in W Goal: find an  $m_{\mathbf{x}}n$  matrix A such that multiplication by A maps the vector  $[\mathbf{x}]_B$  into the vector  $[T(\mathbf{x})]_{B'}$  for each  $\mathbf{x}$  in V





### Finding $T(\mathbf{x})$ Indirectly

Step 1. Compute the coordinate vector  $[x]_B$ Step 2. Multiply  $[x]_B$  on the left by *A* to produce  $[T(x)]_{B'}$ Step 3. Reconstruct T(x) from its coordinate vector  $[T(x)]_{B'}$ 

$$\begin{bmatrix} T(\mathbf{v}_{1}) \end{bmatrix}_{B'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad \begin{bmatrix} T(\mathbf{v}_{2}) \end{bmatrix}_{B'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \cdots, \begin{bmatrix} T(\mathbf{v}_{n}) \end{bmatrix}_{B'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Then the  $m \ge n$  matrix whose *n* columns correspond to  $[T(v_i)]_{B'}$ 

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$$

is such that  $[T(\mathbf{v})]_{B'} = A[(\mathbf{v})]_{B}$ for every  $\mathbf{v}$  in V

We call A the matrix for T relative to the bases B and B' and will denote it by the symbol  $[T]_{B', B}$ 



• Ex : (Finding a matrix relative to nonstandard bases)

Let the L. T.  $T: R^2 \to R^2$  defined by  $T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2)$ Find the matrix of *T* relative to the basis  $B = \{(1, 2), (-1, 1)\}$  and  $B' = \{(1, 0), (0, 1)\}$ Sol:

$$T(1, 2) = (3, 0) = 3(1, 0) + 0(0, 1), T(-1, 1) = (0, -3) = 0(1, 0) - 3(0, 1)$$
$$[T(1, 2)]_{B'} = \begin{bmatrix} 3\\0 \end{bmatrix}, [T(-1, 1)]_{B'} = \begin{bmatrix} 0\\-3 \end{bmatrix}$$

The matrix of T relative to the bases B and B':

$$A = \left[ \left[ T(1, 2) \right]_{B'} \left[ T(-1, 1) \right]_{B'} \right] = \left[ \begin{matrix} 3 & 0 \\ 0 & -3 \end{matrix} \right]$$



• Ex : (Matrix for a Linear Transformation)

Let the L. T.  $T: P_1 \rightarrow P_2$  defined by T(p(x)) = xp(x)Find the matrix of *T* relative to the standard bases  $B = \{1, x\}$  and  $B' = \{1, x, x^2\}$ Sol:

$$T(\mathbf{v}_{1}) = T(1) = \mathbf{x} = 0 \,\mathbf{w}_{1} + 1 \,\mathbf{w}_{2} + 0 \,\mathbf{w}_{3}$$

$$T(\mathbf{v}_{2}) = T(\mathbf{x}) = \mathbf{x}^{2} = 0 \,\mathbf{w}_{1} + 0 \,\mathbf{w}_{2} + 1 \,\mathbf{w}_{3}$$

$$\left[T(1)\right]_{B'} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \left[T(\mathbf{x})\right]_{B'} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \Rightarrow A = \left[\left[T(1)\right]_{B'}, \quad \left[T(\mathbf{x})\right]_{B'}\right] = \begin{bmatrix} 0&0\\1&0\\0&1 \end{bmatrix}$$

The matrix of T relative to the bases B and B'



The Three-Step Procedure

Step 1. The coordinate matrix for x = a + bx relative to the basis  $B = \{1, x\}$  is

$$\left[\boldsymbol{X}\right]_{B} = \begin{bmatrix} a \\ b \end{bmatrix}$$

Step 2. Multiply  $[x]_B$  on the left by A

$$A[\mathbf{x}]_{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix} = \begin{bmatrix} T(\mathbf{x}) \end{bmatrix}_{B}$$

Step 3. Reconstruction  $T(x) = T(a + bx) = 0 + ax + bx^2 = ax + bx^2$ 



## • Ex :

For the L. T.  $T: \mathbb{R}^2 \to \mathbb{R}^2$  given in example 2, use the matrix A to find T(v), where v = (2, 1)

### Sol:

$$\mathbf{v} = (2, 1) = 1(1, 2) - 1(-1, 1) \qquad B = \{(1, 2), (-1, 1)\}$$
  

$$\Rightarrow [\mathbf{v}]_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
  

$$\Rightarrow [T(\mathbf{v})]_{B'} = A[\mathbf{v}]_B = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
  

$$\Rightarrow T(\mathbf{v}) = 3(1, 0) + 3(0, 1) = (3, 3) \qquad B' = \{(1, 0), (0, 1)\}$$

• Check:

$$T(2, 1) = (2 + 1, 2(2) - 1) = (3, 3)$$



## • Notes:

- (1) For the special case where V = W and B = B', the matrix A is called the matrix of T relative to the basis B
- (2) If  $T: V \to V$  is the identity transformation, then the matrix of *T* relative to the basis  $B = \{v_1, v_2, \dots, v_n\}$  is the identity matrix  $I_n$
- Theorem : (Matrices of Compositions transformations)

If  $T_1: U \to V$  and  $T_2: V \to W$  are L. T., and if B, B'', and B' are bases for U, V, and W, respectively, and if  $A_1$  is the matrix of  $T_1$  relative to the basis  $B, B'', A_2$  is the matrix of  $T_2$  relative to the basis B', B', then

- (1) The composition  $T = T_2 \circ T_1 : U \to V$ , is a L. T.
- (2) The matrix A of T relative to the basis B, B' is given by  $A = A_2A_1$



• Ex : (The standard matrix of a composition)

Let  $T_1$  and  $T_2$  be L. T. from  $R^3$  into  $R^3$  such that

$$T_1(x,y,z) = (2x + y, 0, x + z), \quad T_2(x,y,z) = (x - y, z, y)$$

Find the matrices relative to the standard basis (standard matrices) for the compositions

$$T = T_2 \circ T_1$$
 and  $T' = T_1 \circ T_2$ 

Sol:

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
  
standard matrices for  $T_{1}$  standard matrices for  $T_{2}$ 



The standard matrix for  $T' = T_1 \circ T_2$ 

$$A' = A_1 A_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$



- Theorem : (Matrices of inverse transformations)
  - If  $T: V \rightarrow V$  is a linear operator, and if *B* is a bases for *V*, and if *A* is the matrix of *T* relative to the basis *B*, then following are equivalent
    - (a) T is one-to-one
    - (b) T is invertible
    - (c) T is isomorphism
    - (d) A is invertible
- Note:

If T is invertible with matrix A, then the standard matrix for  $T^{-1}$  is  $A^{-1}$ 



• Ex : (Finding the inverse of a linear transformation) The L. T.  $T: R^3 \rightarrow R^3$  defined by

 $T(x_1, x_2, x_3) = (2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + x_3, 2x_1 + 4x_2 + x_3)$ 

Show that T is invertible, and find its inverse

# Sol:

The standard matrix for T

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{bmatrix} \xleftarrow{\leftarrow} 2x_1 + 3x_2 + x_3 \\ \xleftarrow{\leftarrow} 3x_1 + 3x_2 + x_3 \\ \xleftarrow{\leftarrow} 2x_1 + 4x_2 + x_3 \\ \xleftarrow{\leftarrow} 2x_1 + 4x_2 + x_3 \\ \boxed{\begin{vmatrix} A & | I_3 \end{vmatrix}} = \begin{bmatrix} 2 & 3 & 1 & | 1 & 0 & 0 \\ 3 & 3 & 1 & | 0 & 1 & 0 \\ 2 & 4 & 1 & | 0 & 0 & 1 \end{bmatrix}$$

$$G.J. Elimination \begin{bmatrix} 1 & 0 & 0 & | & -1 & 1 & 0 \\ 0 & 1 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & 1 & | & 6 & -2 & -3 \end{bmatrix} = \begin{bmatrix} I & | A^{-1} \end{bmatrix}$$

Therefore T is invertible and the standard matrix for  $T^{-1}$  is  $A^{-1}$ .

-

$$A^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix}$$
$$T^{-1}(\mathbf{v}) = A^{-1}\mathbf{v} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ 6x_1 - 2x_2 - 3x_3 \end{bmatrix}$$

In other words  $T^{-1}(x_1, x_2, x_3) = (-x_1 + x_2, -x_1 + x_3, 6x_1 - 2x_2 - 3x_3)$ 



**Transition Matrices and Similarity** 

T:  $V \rightarrow V$  a linear transformation  $B = \{ \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \}$  a basis for V  $B' = \{ W_1, W_2, \cdots, W_m \}$  a basis for V  $A = \left| \left[ T(\mathbf{v}_1) \right]_B, \left[ T(\mathbf{v}_2) \right]_B, \cdots, \left[ T(\mathbf{v}_n) \right]_B \right|$ (matrix of *T* relative to *B*)  $A' = \left\lceil \left[ T(w_1) \right]_{B'}, \left[ T(w_2) \right]_{B'}, \cdots, \left[ T(w_n) \right]_{B'} \right\rceil$ (matrix of T relative to B')  $P = \left| \begin{bmatrix} \mathbf{W}_1 \end{bmatrix}_B, \begin{bmatrix} \mathbf{W}_2 \end{bmatrix}_B, \cdots, \begin{bmatrix} \mathbf{W}_n \end{bmatrix}_B \right|$ (transition matrix from B' to B)  $P^{-1} = \left\lceil \begin{bmatrix} \mathbf{v}_1 \end{bmatrix}_{B'}, \begin{bmatrix} \mathbf{v}_2 \end{bmatrix}_{B'}, \cdots, \begin{bmatrix} \mathbf{v}_n \end{bmatrix}_{B'} \right\rceil$ (transition matrix from B to B')



$$\Rightarrow \left[ \mathbf{V} \right]_{B} = P \left[ \mathbf{V} \right]_{B'}, \quad \left[ \mathbf{V} \right]_{B'} = P^{-1} \left[ \mathbf{V} \right]_{B}$$
$$\left[ T(\mathbf{V}) \right]_{B} = A \left[ \mathbf{V} \right]_{B}$$
$$\left[ T(\mathbf{V}) \right]_{B'} = A' \left[ \mathbf{V} \right]_{B'}$$

• Two ways to get from  $[\mathbf{v}]_{B'}$  to  $[T(\mathbf{v})]_{B'}$ : (1) (direct)  $A'[\mathbf{v}]_{B'} = [T(\mathbf{v})]_{B'}$ (2) (indirect)  $P^{-1}AP[\mathbf{v}]_{B'} = [T(\mathbf{v})]_{B'}$ 

$$\Rightarrow A' = P^{-1}AP$$



• Ex : (Finding a matrix for a linear transformation)

Find the matrix A for T:  $R^2 \to R^2$   $T(x_1, x_2) = (2x_1 - 2x_2, -x_1 + 3x_2)$ relative to the basis  $B' = \{(1, 0), (1, 1)\}$ 

Sol:

I) 
$$A' = \left[ \left[ T(1, 0) \right]_{B'} \left[ T(1, 1) \right]_{B'} \right]$$
  
 $T(1, 0) = (2, -1) = 3(1, 0) - 1(1, 1) \Rightarrow \left[ T(1, 0) \right]_{B'} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$   
 $T(1, 1) = (0, 2) = -2(1, 0) + 2(1, 1) \Rightarrow \left[ T(1, 1) \right]_{B'} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$   
 $\Rightarrow A' = \left[ \left[ T(1, 0) \right]_{B'} \left[ T(1, 1) \right]_{B'} \right] = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$ 



(II) Standard matrix for T (matrix of T relative to the basis  $B = \{(1, 0), (0, 1)\}$ )

$$A = \begin{bmatrix} T(1, 0) & T(0, 1) \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix}$$

Transition matrix from *B'* to *B*  $P = \left[ \left[ (1, 0) \right]_B \left[ (1, 1) \right]_B \right] = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ 

Transition matrix from *B* to *B'* 
$$P^{-1} = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix}$$

Matrix of T relative to B'

$$A' = P^{-1}AP = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$$



• Ex : (Finding a matrix for a linear transformation) Let  $B = \{(-3, 2), (4, -2)\}$  and  $B' = \{(-1, 2), (2, -2)\}$  be basis  $R^2$ , and let  $A = \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix}$ be the matrix for  $T: R^2 \to R^2$  relative to B

Find the matrix of T relative to B'

#### Sol:

Transition matrix from *B'* to *B*: 
$$P = \begin{bmatrix} [(-1, 2)]_B & [(2, -2)]_B \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$$
  
T.M. from *B* to *B'*:  $P^{-1} = \begin{bmatrix} [(-3, 2)]_{B'} & [(4, -2)]_{B'} \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$   
Matrix of *T* relative to *B'*:  $A' = P^{-1}AP = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$ 



- Ex : (Finding a matrix for a linear transformation)
  - For the linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  from Ex 2, find  $[v]_{B}$ ,  $[T(v)]_{B}$ , and  $[T(v)]_{B'}$  for the vector v whose coordinate matrix is  $[v]_{B'} = [-3 1]^T$ Sol:

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{B} = P \begin{bmatrix} \mathbf{v} \end{bmatrix}_{B'} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \end{bmatrix} = \begin{bmatrix} -7 \\ -5 \end{bmatrix}$$
$$\begin{bmatrix} T(\mathbf{v}) \end{bmatrix}_{B} = A \begin{bmatrix} \mathbf{v} \end{bmatrix}_{B} = \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} -7 \\ -5 \end{bmatrix} = \begin{bmatrix} -21 \\ -14 \end{bmatrix}$$
$$\begin{bmatrix} T(\mathbf{v}) \end{bmatrix}_{B'} = P^{-1} \begin{bmatrix} T(\mathbf{v}) \end{bmatrix}_{B} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -21 \\ -14 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \end{bmatrix}$$
or 
$$\begin{bmatrix} T(\mathbf{v}) \end{bmatrix}_{B'} = A' \begin{bmatrix} \mathbf{v} \end{bmatrix}_{B'} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \end{bmatrix}$$



# Similar matrix

For square matrices A and A' of order n, A' is said to be similar to A if there exist an invertible matrix P such that  $A' = P^{-1}AP$ 

• Theorem 6.15: (Properties of similar matrices)

Let A, B, and C be square matrices of order n. Then the following properties are true. (1) A is similar to A.

- (2) If A is similar to B, then B is similar to A.
- (3) If A is similar to B and B is similar to C, then A is similar to C.



• Ex : (Similar matrices)

(a) 
$$A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix}$$
 and  $A' = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$  are similar  
because  $A' = P^{-1}AP$ , where  $P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$   
(b)  $A = \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix}$  and  $A' = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$  are similar  
because  $A' = P^{-1}AP$ , where  $P = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$ 



• Ex : (A comparison of two matrices for a linear transformation)

Let 
$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
 be the matrix for  $T: \mathbb{R}^3 \to \mathbb{R}^3$  relative to the

standard basis. Find the matrix for *T* relative to the basis  $B' = \{(1, 1, 0), (1, -1, 0), (0, 0, 1)\}.$ 

## Sol:

The transition matrix from B' to the standard basis

$$P = \left[ \left[ (1, 1, 0) \right]_{B} \left[ (1, -1, 0) \right]_{B} \left[ (0, 0, 1) \right]_{B} \right] = \left[ \begin{matrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{matrix} \right]$$



$$\Rightarrow P^{-1} = \begin{bmatrix} 1/2 & 1/2 & 0\\ 1/2 & -1/2 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

matrix of *T* relative to *B*':

$$A' = P^{-1}AP = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$



Notes: Computational advantages of diagonal matrices:

(1) 
$$D^{k} = \begin{bmatrix} d_{1}^{k} & 0 & \cdots & 0 \\ 0 & d_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}^{k} \end{bmatrix}$$

(2) 
$$D^{T} = D$$
  
(3)  $D^{-1} = \begin{bmatrix} 1/d_{1} & 0 & \cdots & 0 \\ 0 & 1/d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/d_{n} \end{bmatrix}, \quad d_{i} \neq 0$ 

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

**Applications of Linear Transformations** 

• The Geometry of Linear Transformations In  $R^2$ 



جَـامعة المَـنارة







https://manara.edu.sy/



https://manara.edu.sy/









Rotation about the z-axis

60°.

x

v

$$A = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0\\ \sin 60^{\circ} & \cos 60^{\circ} & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0\\ \sqrt{3}/2 & 1/2 & 0\\ 0 & 0 & 1 \end{bmatrix}$$









https://manara.edu.sy/

