Matrices for Linear Transformations

- Two representations of the linear transformation $T: R^{3} \rightarrow R^{3}$
(1) $T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}-x_{3},-x_{1}+3 x_{2}-2 x_{3}, 3 x_{2}+4 x_{3}\right)$
(2) $T(\boldsymbol{x})=A \boldsymbol{x}=\left[\begin{array}{ccc}2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
- Three reasons for matrix representation of a linear transformation:
- It is simpler to write.
- It is simpler to read.
- It is more easily adapted for computer use.

- Theorem : (Standard matrix for a linear transformation)

Let $T: R^{n} \rightarrow R^{m}$ be a linear transformation such that

$$
T\left(\boldsymbol{e}_{1}\right)=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \quad T\left(\boldsymbol{e}_{2}\right)=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \cdots, \quad T\left(\boldsymbol{e}_{n}\right)=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right],
$$

then the mxn matrix whose n columns correspond to $T\left(\boldsymbol{e}_{i}\right)$

$$
A=\left[T\left(\boldsymbol{e}_{\mathbf{1}}\right)\left|T\left(\boldsymbol{e}_{\mathbf{2}}\right)\right| \cdots \mid T\left(\boldsymbol{e}_{\boldsymbol{n}}\right)\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is such that $T(\boldsymbol{v})=A \boldsymbol{v}$ for every \boldsymbol{v} in $R^{n} . A$ is called the standard matrix for T

- Ex: (Finding the standard matrix of a linear transformation)

Find the standard matrix for the L.T. $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(x-2 y, 2 x+y)$ Sol:

$$
\begin{array}{cl}
\text { Vector Notation } & \text { Matrix Notation } \\
T\left(\boldsymbol{e}_{1}\right)=T(1,0,0)=(1,2) & T\left(\boldsymbol{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
T\left(\boldsymbol{e}_{2}\right)=T(0,1,0)=(-2,1) & T\left(\boldsymbol{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
T\left(\boldsymbol{e}_{3}\right)=T(0,0,1)=(0,0) & T\left(e_{3}\right)=T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{array}
$$

$$
A=\left[T\left(\boldsymbol{e}_{1}\right)\left|T\left(\boldsymbol{e}_{2}\right)\right| T\left(\boldsymbol{e}_{3}\right)\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 0
\end{array}\right]
$$

- Check:

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x-2 y \\
2 x+y
\end{array}\right] \quad \text { i.e. } T(x, y, z)=(x-2 y, 2 x+y)
$$

- Notes:
(1) The standard matrix for the zero transformation from R^{n} into R^{m} is the $m \times n$ zero matrix.
(2) The standard matrix for the identity transformation from R^{n} into R^{n} is the $n \times n$ identity matrix I_{n}

جَــامعة
الـَمَـنارة

- Matrices for General Linear Transformations:
$T: V \rightarrow W$ a LT $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ a basis for V and $B^{\prime}=\left\{\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \cdots, \boldsymbol{W}_{m}\right\}$ a basis for W $[x]_{B}$ is the coordinate matrices for x in V
$[T(\boldsymbol{x})]_{B^{\prime}}$ is the coordinate matrices for $T(\boldsymbol{x})$ in W
Goal: find an $m_{\mathrm{x}} n$ matrix A such that multiplication by A maps the vector $[\boldsymbol{x}]_{B}$ into the vector $[T(\boldsymbol{x})]_{B^{\prime}}$ for each \boldsymbol{x} in V

Finding $T(\boldsymbol{x})$ Indirectly
Step 1. Compute the coordinate vector $[\boldsymbol{x}]_{B}$
Step 2. Multiply $[\boldsymbol{x}]_{B}$ on the left by A to produce $[T(\boldsymbol{x})]_{B^{\prime}}$
Step 3. Reconstruct $T(\boldsymbol{x})$ from its coordinate vector $[T(\boldsymbol{x})]_{B^{\prime}}$

$$
\left[T\left(\boldsymbol{v}_{\mathbf{1}}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \quad\left[T\left(\boldsymbol{v}_{2}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \cdots,\left[T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]
$$

Then the $m \times n$ matrix whose n columns correspond to $\left[T\left(\boldsymbol{v}_{i}\right)\right]_{B^{\prime}}$

$$
\begin{aligned}
& T\left(\boldsymbol{v}_{1}\right) T\left(\boldsymbol{v}_{2}\right) \ldots T\left(\boldsymbol{v}_{n}\right) \\
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots
\end{array}\right] \begin{array}{cl}
\boldsymbol{W}_{1} & \text { is such that }[T(\boldsymbol{v})]_{B^{\prime}}=A[(\boldsymbol{v})]_{B} \\
\vdots & \text { for every } \boldsymbol{v} \text { in } V
\end{array}
\end{aligned}
$$

We call A the matrix for T relative to the bases B and B^{\prime} and will denote it by the symbol $[T]_{B^{\prime}, B}$

- Ex: (Finding a matrix relative to nonstandard bases)

Let the L. T. $T: R^{2} \rightarrow R^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 2 x_{1}-x_{2}\right)$
Find the matrix of T relative to the basis $B=\{(1,2),(-1,1)\}$ and $B^{\prime}=\{(1,0),(0,1)\}$
Sol:

$$
\begin{aligned}
& T(1,2)=(3,0)=3(1,0)+0(0,1), T(-1,1)=(0,-3)=0(1,0)-3(0,1) \\
& {[T(1,2)]_{B^{\prime}}=\left[\begin{array}{l}
3 \\
0
\end{array}\right], \quad[T(-1,1)]_{B^{\prime}}=\left[\begin{array}{c}
0 \\
-3
\end{array}\right]}
\end{aligned}
$$

The matrix of T relative to the bases B and B^{\prime} :

$$
A=\left[[T(1,2)]_{B^{\prime}}[T(-1,1)]_{B^{\prime}}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -3
\end{array}\right]
$$

- Ex: (Matrix for a Linear Transformation)

Let the L. T. T: $P_{1} \rightarrow P_{2}$ defined by $T(p(x))=x p(x)$
Find the matrix of T relative to the standard bases $B=\{1, x\}$ and $B^{\prime}=\left\{1, x, x^{2}\right\}$
Sol:

$$
\begin{aligned}
& T\left(\boldsymbol{v}_{1}\right)=T(1)=x=0 \boldsymbol{W}_{1}+1 \boldsymbol{w}_{2}+0 \boldsymbol{W}_{3} \\
& T\left(\boldsymbol{v}_{2}\right)=T(x)=x^{2}=0 \boldsymbol{W}_{1}+0 \boldsymbol{W}_{2}+1 \boldsymbol{w}_{3} \\
& {[T(1)]_{B^{\prime}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad[T(x)]_{B^{\prime}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \Rightarrow A=\left[[T(1)]_{B^{\prime}}[T(\boldsymbol{x})]_{B^{\prime}}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

The matrix of T relative to the bases B and B^{\prime}

The Three-Step Procedure

Step 1. The coordinate matrix for $\boldsymbol{x}=a+b x$ relative to the basis $B=\{1, x\}$ is

$$
[\boldsymbol{x}]_{B}=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Step 2. Multiply $[\boldsymbol{x}]_{B}$ on the left by A

$$
A[\boldsymbol{x}]_{B}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
a \\
b
\end{array}\right]=[T(\boldsymbol{x})]_{B^{\prime}}
$$

Step 3. Reconstruction $T(\boldsymbol{x})=T(a+b x)=0+a x+b x^{2}=a x+b x^{2}$

- Ex :

For the L. T. $T: R^{2} \rightarrow R^{2}$ given in example 2, use the matrix A to find $T(v)$, where

$$
\boldsymbol{v}=(2,1)
$$

Sol:

$$
\begin{array}{ll}
\boldsymbol{v}=(2,1)=1(1,2)-1(-1,1) & B=\{(1,2),(-1,1)\} \\
\Rightarrow[\boldsymbol{v}]_{B}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] & \\
\Rightarrow[T(\boldsymbol{v})]_{B^{\prime}}=A[\boldsymbol{v}]_{B}=\left[\begin{array}{cc}
3 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] & \\
\Rightarrow T(\boldsymbol{v})=3(1,0)+3(0,1)=(3,3) & B^{\prime}=\{(1,0),(0,1)\}
\end{array}
$$

- Check:

$$
T(2,1)=(2+1,2(2)-1)=(3,3)
$$

- Notes:
(1) For the special case where $V=W$ and $B=B^{\prime}$, the matrix A is called the matrix of T relative to the basis B
(2) If $T: V \rightarrow V$ is the identity transformation, then the matrix of T relative to the basis $B=\left\{\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{V}_{2}, \cdots, \boldsymbol{V}_{\boldsymbol{n}}\right\}$ is the identity matrix I_{n}
- Theorem : (Matrices of Compositions transformations)

If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are L. T., and if $B, B^{\prime \prime}$, and B^{\prime} are bases for U, V, and W, respectively, and if A_{1} is the matrix of T_{1} relative to the basis $B, B^{\prime \prime}, A_{2}$ is the matrix of T_{2} relative to the basis $B^{\prime \prime}, B^{\prime \prime}$, then
(1) The composition $T=T_{2} \circ T_{1}: U \rightarrow V$, is a L. T.
(2) The matrix A of T relative to the basis B, B^{\prime} is given by $A=A_{2} A_{1}$

- Ex: (The standard matrix of a composition)

Let T_{1} and T_{2} be L. T. from R^{3} into R^{3} such that

$$
T_{1}(x, y, z)=(2 x+y, 0, x+z), \quad T_{2}(x, y, z)=(x-y, z, y)
$$

Find the matrices relative to the standard basis (standard matrices) for the compositions

$$
T=T_{2} \circ T_{1} \text { and } T^{\prime}=T_{1} \circ T_{2}
$$

Sol:

$$
A_{1}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

standard matrices for $T_{1} \quad$ standard matrices for T_{2}

The standard matrix for $T=T_{2} \circ T_{1}$

$$
A=A_{2} A_{1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The standard matrix for $T^{\prime}=T_{1} \circ T_{2}$

$$
A^{\prime}=A_{1} A_{2}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

- Theorem : (Matrices of inverse transformations)

If $T: V \rightarrow V$ is a linear operator, and if B is a bases for V, and if A is the matrix of T relative to the basis B, then following are equivalent
(a) T is one-to-one
(b) T is invertible
(c) T is isomorphism
(d) A is invertible

- Note:

If T is invertible with matrix A, then the standard matrix for T^{-1} is A^{-1}

- Ex: (Finding the inverse of a linear transformation)

The L. T. T: $R^{3} \rightarrow R^{3}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+3 x_{2}+x_{3}, 3 x_{1}+3 x_{2}+x_{3}, 2 x_{1}+4 x_{2}+x_{3}\right)
$$

Show that T is invertible, and find its inverse
Sol:
The standard matrix for T

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 3 & 1 \\
2 & 4 & 1
\end{array}\right] \begin{array}{l}
\leftarrow 2 x_{1}+3 x_{2}+x_{3} \\
\leftarrow 3 x_{1}+3 x_{2}+x_{3} \\
\leftarrow 2 x_{1}+4 x_{2}+x_{3}
\end{array} \\
{\left[A \mid I_{3}\right]=\left[\begin{array}{lll|lll}
2 & 3 & 1 & 1 & 0 & 0 \\
3 & 3 & 1 & 0 & 1 & 0 \\
2 & 4 & 1 & 0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

$\xrightarrow{\text { G.J. Elimination }}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 6 & -2 & -3\end{array}\right]=\left[I \mid A^{-1}\right]$
Therefore T is invertible and the standard matrix for T^{-1} is A^{-1}.

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right] \\
T^{-1}(\boldsymbol{v})=A^{-1} \boldsymbol{v}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-x_{1}+x_{2} \\
-x_{1}+x_{3} \\
6 x_{1}-2 x_{2}-3 x_{3}
\end{array}\right]
\end{gathered}
$$

In other words $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)=\left(-x_{1}+x_{2},-x_{1}+x_{3}, 6 x_{1}-2 x_{2}-3 x_{3}\right)$

Transition Matrices and Similarity
$T: V \rightarrow V$ a linear transformation

$$
\begin{aligned}
B= & \left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \quad \text { a basis for } V \\
B^{\prime}= & \left\{\boldsymbol{W}_{\mathbf{1}}, \boldsymbol{W}_{2}, \cdots, \boldsymbol{W}_{\boldsymbol{m}}\right\} \text { a basis for } V \\
A= & {\left[\left[T\left(\boldsymbol{v}_{\mathbf{1}}\right)\right]_{B},\left[T\left(\boldsymbol{v}_{2}\right)\right]_{B}, \cdots,\left[T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right]_{B}\right] } \\
& (\text { matrix of } T \text { relative to } B)
\end{aligned}
$$

$$
A^{\prime}=\left[\left[T\left(\boldsymbol{W}_{\mathbf{1}}\right)\right]_{B^{\prime}},\left[T\left(\boldsymbol{W}_{2}\right)\right]_{B^{\prime}}, \cdots,\left[T\left(\boldsymbol{W}_{\boldsymbol{n}}\right)\right]_{B^{\prime}}\right]
$$

$$
\text { (matrix of } T \text { relative to } B^{\prime} \text {) }
$$

$$
P=\left[\left[\boldsymbol{W}_{1}\right]_{B},\left[\boldsymbol{W}_{\mathbf{2}}\right]_{B}, \cdots,\left[\boldsymbol{W}_{\boldsymbol{n}}\right]_{B}\right] \quad \text { (transition matrix from } B^{\prime} \text { to } B \text {) }
$$

$$
P^{-1}=\left[\left[\boldsymbol{v}_{\mathbf{1}}\right]_{B^{\prime}},\left[\boldsymbol{v}_{\mathbf{2}}\right]_{B^{\prime}}, \cdots,\left[\boldsymbol{v}_{\boldsymbol{n}}\right]_{B^{\prime}}\right] \quad \text { (transition matrix from } B \text { to } B^{\prime} \text {) }
$$

$$
\Rightarrow[\boldsymbol{v}]_{B}=P[\boldsymbol{V}]_{B^{\prime}}, \quad[\boldsymbol{v}]_{B^{\prime}}=P^{-1}[\boldsymbol{v}]_{B}
$$

$$
[T(\boldsymbol{v})]_{B}=A[\boldsymbol{v}]_{B}
$$

$$
[T(\boldsymbol{v})]_{B^{\prime}}=A^{\prime}[\boldsymbol{v}]_{B^{\prime}}
$$

- Two ways to get from $[\boldsymbol{V}]_{B^{\prime}}$ to $[T(\boldsymbol{v})]_{B^{\prime}}$:
(1) (direct) $A^{\prime}[\boldsymbol{v}]_{B^{\prime}}=[T(\boldsymbol{v})]_{B^{\prime}}$
(2) (indirect) $P^{-1} A P[\boldsymbol{V}]_{B^{\prime}}=[T(\boldsymbol{v})]_{B^{\prime}}$

$$
\Rightarrow A^{\prime}=P^{-1} A P
$$

- Ex: (Finding a matrix for a linear transformation)

Find the matrix A for $T: R^{2} \rightarrow R^{2} \quad T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-2 x_{2},-x_{1}+3 x_{2}\right)$
relative to the basis $B^{\prime}=\{(1,0),(1,1)\}$
Sol:

$$
\text { (I) } \begin{aligned}
& A^{\prime}=\left[[T(1,0)]_{B^{\prime}}[T(1,1)]_{B^{\prime}}\right] \\
& T(1,0)=(2,-1)=3(1,0)-1(1,1) \Rightarrow[T(1,0)]_{B^{\prime}}=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] \\
& T(1,1)=(0,2)=-2(1,0)+2(1,1) \Rightarrow[T(1,1)]_{B^{\prime}}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right] \\
& \Rightarrow A^{\prime}=\left[[T(1,0)]_{B^{\prime}}[T(1,1)]_{B^{\prime}}\right]=\left[\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

(II) Standard matrix for T (matrix of T relative to the basis $B=\{(1,0),(0,1)\}$)

$$
A=\left[\begin{array}{ll}
T(1,0) & T(0,1)
\end{array}\right]=\left[\begin{array}{cc}
2 & -2 \\
-1 & 3
\end{array}\right]
$$

Transition matrix from B^{\prime} to $B \quad P=\left[[(1,0)]_{B} \quad[(1,1)]_{B}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
Transition matrix from B to $B^{\prime} \quad P^{-1}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
Matrix of T relative to B^{\prime}

$$
A^{\prime}=P^{-1} A P=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right]
$$

- Ex: (Finding a matrix for a linear transformation)

Let $B=\{(-3,2),(4,-2)\}$ and $B^{\prime}=\{(-1,2),(2,-2)\}$ be basis R^{2}, and let $A=\left[\begin{array}{ll}-2 & 7 \\ -3 & 7\end{array}\right]$ be the matrix for $T: R^{2} \rightarrow R^{2}$ relative to B
Find the matrix of T relative to B^{\prime}
Sol:
Transition matrix from B^{\prime} to $B: P=\left[[(-1,2)]_{B}[(2,-2)]_{B}\right]=\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]$
T.M. from B to $B^{\prime}: \quad P^{-1}=\left[[(-3,2)]_{B^{\prime}}[(4,-2)]_{B^{\prime}}\right]=\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right]$

Matrix of T relative to $B^{\prime}: A^{\prime}=P^{-1} A P=\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right]\left[\begin{array}{ll}-2 & 7 \\ -3 & 7\end{array}\right]\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$

- Ex: (Finding a matrix for a linear transformation)

For the linear transformation $T: R^{2} \rightarrow R^{2}$ from Ex 2, find $[v]_{B},[T(v)]_{B}$, and $[T(v)]_{B^{\prime}}$ for the vector \boldsymbol{v} whose coordinate matrix is $[\boldsymbol{v}]_{B^{\prime}}=[-3-1]^{T}$
Sol:

$$
\begin{aligned}
& {[\boldsymbol{v}]_{B}=P[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
-3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-7 \\
-5
\end{array}\right]} \\
& {[T(\boldsymbol{v})]_{B}=A[\boldsymbol{v}]_{B}=\left[\begin{array}{ll}
-2 & 7 \\
-3 & 7
\end{array}\right]\left[\begin{array}{l}
-7 \\
-5
\end{array}\right]=\left[\begin{array}{l}
-21 \\
-14
\end{array}\right]} \\
& {[T(\boldsymbol{v})]_{B^{\prime}}=P^{-1}[T(\boldsymbol{v})]_{B}=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
-21 \\
-14
\end{array}\right]=\left[\begin{array}{c}
-7 \\
0
\end{array}\right]} \\
& \text { or }[T(\boldsymbol{v})]_{B^{\prime}}=A^{\prime}[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
-3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-7 \\
0
\end{array}\right]
\end{aligned}
$$

- Similar matrix

For square matrices A and A^{\prime} of order n, A^{\prime} is said to be similar to A if there exist an invertible matrix P such that $A^{\prime}=P^{-1} A P$

- Theorem 6.15: (Properties of similar matrices)

Let A, B, and C be square matrices of order n. Then the following properties are true.
(1) A is similar to A.
(2) If A is similar to B, then B is similar to A.
(3) If A is similar to B and B is similar to C, then A is similar to C.

- Ex: (Similar matrices)
(a) $A=\left[\begin{array}{cc}2 & -2 \\ -1 & 3\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]$ are similar
because $A^{\prime}=P^{-1} A P$, where $P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}-2 & 7 \\ -3 & 7\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$ are similar
because $A^{\prime}=P^{-1} A P$, where $P=\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]$
- Ex: (A comparison of two matrices for linear transformation)

Let $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$ be the matrix for $T: R^{3} \rightarrow R^{3}$ relative to the
standard basis. Find the matrix for T relative to the basis $B^{\prime}=\{(1,1,0),(1,-1,0)$, $(0,0,1)\}$.

Sol:
The transition matrix from B^{\prime} to the standard basis

$$
P=\left[[(1,1,0)]_{B}[(1,-1,0)]_{B}[(0,0,1)]_{B}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\Rightarrow P^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

matrix of T relative to B^{\prime} :

$$
\begin{aligned}
A^{\prime} & =P^{-1} A P=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

- Notes: Computational advantages of diagonal matrices:
(1) $D^{k}=\left[\begin{array}{cccc}d_{1}^{k} & 0 & \cdots & 0 \\ 0 & d_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}^{k}\end{array}\right]$

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right]
$$

(2) $D^{T}=D$
(3) $D^{-1}=\left[\begin{array}{cccc}1 / d_{1} & 0 & \cdots & 0 \\ 0 & 1 / d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 / d_{n}\end{array}\right], \quad d_{i} \neq 0$

Applications of Linear Transformations

- The Geometry of Linear Transformations In R^{2}
(a) Reflection in y-axis $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-x \\ y\end{array}\right]$

$$
T(x, y)=(-x, y)
$$

(b) Reflection in x-axis

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
-y
\end{array}\right]
$$

$$
T(x, y)=(x,-y)
$$

(c) Reflection in line $y=x$

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
x
\end{array}\right]
$$

(d) Horizontal expansions and contractions $\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}k x \\ y\end{array}\right]$
$T(x, y)=(k x, y)$

$$
T(x, y)=(k x, y)
$$

(d) Vertical expansions and contractions $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ k y\end{array}\right]$

$$
T(x, y)=(x, k y)
$$

(e) Horizontal shear

$$
\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+k y \\
y
\end{array}\right]
$$

(f) Vertical shear

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
k x+y
\end{array}\right]
$$

Rotation by 90°

Reflection about x -axis

Reflection about $y=x$

Horizontal shear

Vertical projection on x -axis

- Rotation In R^{3}

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta \\
z
\end{array}\right]
$$

Rotation about the z-axis

$$
A=\left[\begin{array}{ccc}
\cos 60^{\circ} & -\sin 60^{\circ} & 0 \\
\sin 60^{\circ} & \cos 60^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation about the x-axis Rotation about the y-axis

> خَــامعة

الـَمــنارة
Rotation about the z-axis

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation about x-axis

Rotation about y-axis

Rotation about z-axis

Rotation of 90° about the x-axis النَمـنـارة meraseswomeity

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

Rotation of 90° about the y-axis

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

