CREIC301: Engineering Nathematics
 Lecture Notes 4: Series and Residues: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

حَــامعة
الـَمَـنارة
Chapter 3

Series and Residues

1. Sequences and Series
2. Taylor Series
3. Laurent Series
4. Zeros and Poles

5. Residues and Residue Theorem

6. Evaluation of Real Integrals

1. Sequences and Series

Sequences

- A sequence $\left\{z_{n}\right\}$ is a function whose domain is the set of positive integers; in other words, to each integer $n=1,2,3, \ldots$, we assign a complex number z_{n}. For example, the sequence $\left\{1+i^{n}\right\}$ is

$1+i$,	0,	$1-i$,	2,	$1+i, \ldots$
\uparrow	$\uparrow \uparrow$			
$n=1$,	$n=2$,	$n=3$,	$n=4$,	$n=5, \ldots$

- If $\lim _{n \rightarrow \infty} z_{n}=L$ we say the sequence $\left\{z_{n}\right\}$ is convergent.
$\left\{z_{n}\right\}$ converges to the number L if, for each positive number ε, an N can be found such that $\left|z_{n}-L\right|<\varepsilon$ whenever $n>N$. The sequence $\left\{1+i^{n}\right\}$ is divergent.

- Example 1: A Convergent Sequence

The sequence $\left\{\frac{i^{n+1}}{n}\right\}$ converges, since $\lim _{n \rightarrow \infty} \frac{i^{n+1}}{n}=0$

$$
-1,-\frac{i}{2}, \frac{1}{3}, \frac{i}{4},-\frac{1}{5}, \ldots
$$

- Theorem 1 (Criterion for Convergence): A sequence $\left\{z_{n}\right\}$ converges to a complex number L if and only if $\operatorname{Re}\left(z_{n}\right)$ converges to $\operatorname{Re}(L)$ and $\operatorname{Im}\left(z_{n}\right)$ converges to $\operatorname{Im}(L)$.
- Example 2: The sequence $\left\{\frac{n i}{n+2 i}\right\}$ converges to i. since $\operatorname{Re}\left(z_{n}\right)=2 n /\left(n^{2}+4\right) \rightarrow 0$ and $\operatorname{Im}\left(z_{n}\right)=n^{2} /\left(n^{2}+4\right) \rightarrow 1$ as $n \rightarrow \infty$

Series

- An infinite series of complex numbers

$$
\sum_{k=1}^{\infty} z_{k}=z_{1}+z_{2}+z_{3}+\cdots+z_{n}+\cdots
$$

is convergent if the sequence of partial sums $\left\{S_{n}\right\}$, where

$$
S_{n}=z_{1}+z_{2}+z_{3}+\cdots+z_{n}
$$

converges. If $S_{n} \rightarrow L$ as $n \rightarrow \infty$, we say that the sum of the series is L.

Geometric Series

$$
\begin{gathered}
\sum_{k=0}^{\infty} a z^{k}=a+a z+a z^{2}+\cdots+a z^{n-1}+\cdots \\
S_{n}=a+a z+a z^{2}+\cdots+a z^{n-1}=\frac{a\left(1-z^{n}\right)}{1-z} \underset{n \rightarrow \infty}{\rightarrow} \frac{a}{1-z} \text { when }|z|<1
\end{gathered}
$$

$\sum_{k=1}^{\infty} a z^{k}$ converges when $|z|<1$, and diverges when $|z|>1$.
$1 /(1-z)=1+z+z^{2}+z^{3}+\cdots, \quad 1 /(1+z)=1-z+z^{2}-z^{3}+\cdots$ valid for $|z|<1$
$\left(1-z^{n}\right) /(1-z)=1+z+z^{2}+z^{3}+\cdots+z^{n-1}$

- Example 3: Convergent Geometric Series
$\sum_{k=1}^{\infty} \frac{(1+2 i)^{k}}{5^{k}}=\frac{1+2 i}{5}+\frac{(1+2 i)^{2}}{5^{2}}+\frac{(1+2 i)^{3}}{5^{3}}+\cdots$
is a geometric series with $a=(1+2 i) / 5$ and $z=(1+2 i) / 5$.
$|z|=\sqrt{5} / 5<1 \Rightarrow$ the series converges $\sum_{k=1}^{\infty} \frac{(1+2 i)^{k}}{5^{k}}=\frac{\frac{1+2 i}{5}}{1-\frac{1+2 i}{5}}=\frac{i}{2}$
- Theorem 2 (Necessary Condition for Convergence): If $\sum_{k=1}^{\infty} z_{k}$ converges, then:

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

- Theorem 3 (The nth Term Test for Divergence): If $\lim _{n \rightarrow \infty} z_{n} \neq 0$, then the series: $\sum_{k=1}^{\infty} z_{k}$ diverges.
For example, the series $\sum_{k=1}^{\infty} \frac{k+5 i}{k}$ diverges since $z_{n}=(n+5 i) / n \rightarrow 1$ as $n \rightarrow \infty$
- Definition: An infinite series $\sum_{k=1}^{\infty} z_{k}$ is absolutely convergent if $\sum_{k=1}^{\infty}\left|z_{k}\right|$ converges. For example, the series $\sum_{k=1}^{\infty}\left(i^{k}\right) / k^{2}$ is absolutely convergent $\quad\left|\left(i^{k}\right) / k^{2}\right|=1 / k^{2}$
- Note: Absolute convergence implies convergence.
$\sum_{k=1}^{\infty}\left(i^{k}\right) / k^{2}$ is convergent
- Theorem 4 (Ratio Test): Suppose $\sum_{k=1}^{\infty} z_{k}$ is a series of nonzero complex terms such that

$$
\lim _{n \rightarrow \infty}\left|\frac{z_{n+1}}{z_{n}}\right|=L
$$

(i) If $L<1$, then the series converges absolutely.
(ii) If $L>1$ or $L=\infty$, then the series diverges.
(iii) If $L=1$, the test is inconclusive.

- Theorem 5 (Root Test): Suppose $\sum_{k=1}^{\infty} z_{k}$ is a series of complex terms such that:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|z_{n}\right|}=L
$$

(i) If $L<1$, then the series converges absolutely.
(ii) If $L>1$ or $L=\infty$, then the series diverges.
(iii) If $L=1$, the test is inconclusive.

Power Series

$$
\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots
$$

where the coefficients a_{k} are complex constants, is called a power series in $z-z_{0}$, centered at z_{0},

Circle of Convergence

- Every complex power series has radius of convergence R, where R is a real number.
- When $0<R<\infty$, a complex power series has a circle of convergence defined by $\left|z-z_{0}\right|=R$.

- The power series converges absolutely for all z satisfying $\left|z-z_{0}\right|<R$ and diverges for $\left|z-z_{0}\right|>R$. The radius R of convergence can be:
(i) zero (the power series converges at only $z=z_{0}$),
(ii) a finite number (the power series converges at all interior points of the circle $\left|z-z_{0}\right|=R$), or
(iii) ∞ (the power series converges for all z).
- Example 4: Circle of Convergence

Consider the power series $\sum_{k=1}^{\infty} \frac{z^{k+1}}{k}$. By the ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{z^{n+2}}{n+1}}{\frac{z^{n+1}}{n}}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1}|z|=|z| \begin{aligned}
& \text { Thus the series converges absolutely for } \\
& |z|<1 . \text { The circle of convergence is }|z|=1 \\
& \text { and the radius of convergence is } R=1 .
\end{aligned}
$$

On the circle of convergence, the series does not converge absolutely.
It can be shown that the series converges at all points on the circle $|z|=1$ except at $z=1$.

- Note: the radius of convergence is $R=1 / L . \quad L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ or $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$
- Example 5: Radius of Convergence

Consider the power series $\sum_{k=1}^{\infty}\left(\frac{6 k+1}{2 k+5}\right)^{k}(z-2 i)^{k}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{6 n+1}{2 n+5}=3 & \text { The radius of convergence of the series is } \\
& R=1 / 3 . \text { The circle of convergence is }|z-2 i|=1 / 3, \\
& \text { the series converges absolutely for }|z-2 i|<1 / 3 .
\end{aligned}
$$

2. Taylor Series

- A power series defines or represents a function f; for a specified z within the circle of convergence, the number L to which the power series converges is defined to be the value of f at z; that is, $f(z)=L$.
- Theorem 6 (Continuity): A power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ represents a continuous function f within its circle of convergence $\left|z-z_{0}\right|=R, R \neq 0$.
- Theorem 7 (Term-by-Term Integration): A power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ can be integrated term by term within its circle of convergence $\left|z-z_{0}\right|=R, R \neq 0$, for every contour C lying entirely within the circle of convergence.
- Theorem 8 (Term-by-Term Differentiation): A power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ can be differentiated term by term within its circle of convergence $\left|z-z_{0}\right|=R, R \neq 0$.

Taylor Series

- A power series represents an analytic function within its circle of convergence.
$f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} \quad$ Taylor series for f centered at z_{0}.
$f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^{k} \quad$ Maclaurin series for f.
- Theorem 9 (Taylor's Theorem): Let f be analytic within a domain D and let z_{0} be a point in D. Then f has the series representation

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}
$$

valid for the largest circle C with center at z_{0} and radius R that lies entirely within D.

$$
\begin{gathered}
e^{z}=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\cdots=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \\
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k+1}}{(2 k+1)!} \\
\cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k}}{(2 k)!} \\
\text { are valid for all } z
\end{gathered}
$$

- Note: the radius of convergence R is the distance from the center z_{0} of the series to the nearest isolated singularity of f. An isolated singularity is a point at which f fails to be analytic but is, nonetheless, analytic at all other points throughout some neighborhood of the point.
- Example 6: Radius of Convergence

Suppose the function $f(z)=\frac{3-i}{1-i+z}$ is expanded in a Taylor series with center $z_{0}=4-2 i$.What is its radius of convergence R ?

The function is analytic at every point except at $z=-1+i$, which is an isolated singularity of f. The distance from $z=-1+i$ to $z_{0}=4-2 i$ is:

$$
\left|z-z_{0}\right|=\sqrt{(-1-4)^{2}+(1-(-2))^{2}}=\sqrt{34}=R
$$

- Example 7: Maclaurin Series

Find the Maclaurin expansion of $f(z)=\frac{1}{(1-z)^{2}}$

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots, \quad|z|<1
$$

Differentiating both sides

$$
\frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+\cdots=\sum_{k=1}^{\infty} k z^{k-1}, \quad|z|<1
$$

- Example 8: Taylor Series

Expand $f(z)=\frac{1}{1-z}$ in a Taylor series with center $z_{0}=2 i$.
First Method:

$$
\begin{aligned}
& f^{(n)}(z)=\frac{n!}{(1-z)^{n+1}} \Rightarrow f^{(n)}(2 i)=\frac{n!}{(1-2 i)^{n+1}} \\
& \frac{1}{1-z}=\sum_{k=0}^{\infty} \frac{1}{(1-2 i)^{n+1}}(z-2 i)^{k} \quad \begin{array}{l}
\text { circle of convergence }|z-2 i|=\sqrt{5} \\
\text { (using ratio test) }
\end{array}
\end{aligned}
$$

Second Method:

$$
\begin{aligned}
& \frac{1}{1-z}=\frac{1}{1-z+2 i-2 i}=\frac{1}{1-2 i-(z-2 i)}=\frac{1}{1-2 i} \frac{1}{1-\frac{z-2 i}{1-2 i}} \\
& \frac{1}{1-z}=\frac{1}{1-2 i}\left[1+\frac{z-2 i}{1-2 i}+\left(\frac{z-2 i}{1-2 i}\right)^{2}+\left(\frac{z-2 i}{1-2 i}\right)^{3}+\cdots\right] \\
& \frac{1}{1-z}=\frac{1}{1-2 i}+\frac{1}{(1-2 i)^{2}}(z-2 i)+\frac{1}{(1-2 i)^{3}}(z-2 i)^{2}+\cdots
\end{aligned}
$$

- Note: we represented the same function $1 /(1-z)$ by 2 different power series. The first has center 0 and radius of convergence (ROC) 1. The second has center $2 i$ and ROC $\sqrt{5}$. The shaded region is where both series converge.

3. Laurent Series

- If a complex function f fails to be analytic at a point $z=z_{0}$, then this point is said to be a singularity or a singular point of the function.
- For example, the complex numbers $z=2 i$ and $z=-2 i$ are singularities of the function $f(z)=z /\left(z^{2}+4\right)$ because f is discontinuous at each of these points.

Isolated Singularities

- Suppose that $z=z_{0}$ is a singularity of a complex function f. The point $z=z_{0}$ is said to be an isolated singularity of the function f if there exists some deleted neighborhood of $z_{0}, 0<\left|z-z_{0}\right|<R$ throughout which f is analytic.
- For example, $z= \pm 2 i$ are isolated singularities of $f(z)=z\left(z^{2}+4\right)$ since f is analytic at every point in the neighborhood $|z-2 i|<1$ except at $z=2 i$ and at every point in the neighborhood $|z-(-2 i)|<1$ except at $z=-2 i$.
- On the other hand, the branch point $z=0$ is not an isolated singularity of $\log z$ since every neighborhood of $z=0$ must contain points on the negative x-axis.
- We say that a singular point $z=z_{0}$ of a function f is nonisolated if every neighborhood of z_{0} contains at least one singularity of f other than z_{0}.
- For example, the branch point $z=0$ is a nonisolated singularity of $\log z$ since every neighborhood of $z=0$ contains points on the negative real axis.

A New Kind of Series

- If $z=z_{0}$ is a singularity of a function f, then certainly f cannot be expanded in a power series with z_{0} as its center. However, about an isolated singularity $z=z_{0}$ it is possible to represent f by a new kind of series:

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}=\sum_{k=1}^{\infty} a_{-k}\left(z-z_{0}\right)^{-k}+\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

Such series representation is called a Laurent series or a Laurent expansion of f.

$$
\sum_{k=1}^{\infty} a_{-k}\left(z-z_{0}\right)^{-k}=\sum_{k=1}^{\infty} \frac{a_{-k}}{\left(z-z_{0}\right)^{k}}
$$

is called the principal part and will converge for $\left|1 /\left(z-z_{0}\right)\right|<r^{*}$ or equivalently for $\left|z-z_{0}\right|>1 / r^{*}=r$.
$\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ is called the analytic part and will converge for $\left|z-z_{0}\right|<R$.

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k} \quad \text { will converge for } r<\left|z-z_{0}\right|<R
$$

- Example 9: A New Kind of Series

The function $f(z)=(\sin z) / z^{4}$ is not analytic at $z=0$ and hence cannot be expanded in a Maclaurin series.

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots
$$

converges for all $|z|<\infty$

$$
f(z)=\frac{\sin z}{z^{4}}=\overbrace{\frac{1}{z^{3}}-\frac{1}{3!z}}^{\text {principal part }}+\overbrace{\frac{z}{5!}-\frac{z^{3}}{7!}+\frac{z^{5}}{9!}-\cdots}^{\text {analytic part }}
$$

The analytic part of the series converges for $|z|<\infty$. The principal part is valid for $|z|>0 \Rightarrow$ the series converges for all z except at $z=0(0<|z|<\infty)$.

- Theorem 10 (Laurent's Theorem): Let f be analytic within the annular domain D defined by $r<\left|z-z_{0}\right|<R$. and let z_{0} be a point in D. Then f has the series representation:

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

valid for $r<\left|z-z_{0}\right|<R$. The coefficients a_{k} are given by:

$$
a_{k}=\frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{\left(s-z_{0}\right)^{k+1}} d s, \quad k=0, \pm 1, \pm 2, \ldots
$$

where C is a simple closed curve that lies entirely within D and has z_{0} in its interior.

- Example 10: Laurent Expansions

Expand $f(z)=\frac{1}{z(z-1)}$ in a Laurent series valid for (a) $0<|z|<1$, (b) $1<|z|$,
(c) $0<|z-1|<1$, and (d) $1<|z-1|$.
(a) $f(z)=-\frac{1}{z} \frac{1}{1-z}=-\frac{1}{z} \underbrace{\left[1+z+z^{2}+z^{3}+\cdots\right]}_{|z|<1}$

$$
=-\frac{1}{z}-1-z-z^{2}-z^{3}-\cdots \quad \text { converges for } 0<|z|<1
$$

$$
f(z)=\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}+\frac{1}{z^{5}}+\cdots \quad \text { converges for } 1<|z|
$$

(c) $f(z)=\frac{1}{1-1+z} \frac{1}{z-1}=\frac{1}{z-1} \frac{1}{1+(z-1)}$

$$
=\frac{1}{z-1} \underbrace{\left[1-(z-1)+(z-1)^{2}-(z-1)^{3}+\cdots\right]}_{|z-1|<1}
$$

$$
\begin{aligned}
& f(z)=\frac{1}{z-1}-1+(z-1)-(z-1)^{2}+\cdots \\
& f(z)=\frac{1}{z-1} \frac{1}{1+(z-1)}=\frac{1}{(z-1)^{2}} \frac{1}{1+\frac{1}{z-1}}
\end{aligned}
$$

$$
f(z)=\frac{1}{(z-1)^{2}} \underbrace{\left[1-\frac{1}{z-1}+\frac{1}{(z-1)^{2}}-\frac{1}{(z-1)^{3}}+\cdots\right]}_{\left|\frac{1}{z-1}\right|<1}
$$

$$
f(z)=\frac{1}{(z-1)^{2}}-\frac{1}{(z-1)^{3}}+\frac{1}{(z-1)^{4}}-\frac{1}{(z-1)^{5}}+\cdots \text { converges for } 1<|z-1|
$$

- Example 11: Laurent Expansions

Expand $f(z)=\frac{1}{(z-1)^{2}(z-3)} \quad$ in a Laurent series valid for (a) $0<|z-1|<2$,
(b) $0<|z-3|<2$.
(a) $f(z)=\frac{1}{(z-1)^{2}(z-3)}=\frac{1}{(z-1)^{2}} \frac{1}{-2+(z-1)}=\frac{-1}{2(z-1)^{2}} \frac{1}{1-\frac{z-1}{2}}$

$$
f(z)=\frac{-1}{2(z-1)^{2}}\left[1+\frac{z-1}{2}+\frac{(z-1)^{2}}{2^{2}}+\frac{(z-1)^{3}}{2^{3}}+\cdots\right]
$$

$$
=-\frac{1}{2(z-1)^{2}}-\frac{1}{4(z-1)}-\frac{1}{8}-\frac{1}{16}(z-1)-\cdots \quad \text { valid for } 0<|z-1|<2
$$

(b) $f(z)=\frac{1}{(z-1)^{2}(z-3)}=\frac{1}{z-3} \frac{1}{[2+(z-3)]^{2}}=\frac{1}{4(z-3)}\left[1+\frac{z-3}{2}\right]^{-2}$
using the general binomial theorem:

$$
(1+z)^{m}=1+m z+\frac{m(m-1)}{2!} z^{2}+\frac{m(m-1)(m-2)}{3!} z^{3}+\cdots, \quad|z|<1, m \in Q
$$

$$
\begin{aligned}
& f(z)=\frac{1}{4(z-3)}\left[1+\frac{(-2)}{1!}\left(\frac{z-3}{2}\right)+\frac{(-2)(-3)}{2!}\left(\frac{z-3}{2}\right)^{2}+\cdots\right] \\
& f(z)=\frac{1}{4(z-3)}-\frac{1}{4}+\frac{3}{16}(z-3)-\frac{1}{8}(z-3)^{2}+\cdots \quad \text { valid for } 0<|z-3|<2
\end{aligned}
$$

- Example 12: Laurent Expansions

Expand $f(z)=\frac{8 z+1}{z(1-z)}$ in a Laurent series valid for $0<|z|<1$.

$$
\begin{aligned}
& f(z)=\frac{8 z+1}{z(1-z)}=\frac{8 z+1}{z} \frac{1}{1-z}=\left(8+\frac{1}{z}\right)\left(1+z+z^{2}+z^{3}+\cdots\right) \\
& f(z)=\frac{1}{z}+9+9 z+9 z^{2}+\cdots \quad \text { valid for } 0<|z|<1
\end{aligned}
$$

- Example 13: Laurent Expansions

Expand $f(z)=\frac{1}{z(z-1)}$ in a Laurent series valid for $1<|z-2|<2$.
Find two series involving integer powers of $z-2$: one converging for $1<|z-2|$ and the other converging for $|z-2|>2$.

$$
f(z)=\frac{1}{z(z-1)}=-\frac{1}{z}+\frac{1}{z-1}=f_{1}(z)+f_{2}(z)
$$

$$
f_{1}(z)=-\frac{1}{z}=-\frac{1}{2+z-2}=-\frac{1}{2} \frac{1}{1+\frac{z-2}{2}}=-\frac{1}{2}\left[1-\frac{z-2}{2}+\frac{(z-2)^{2}}{2^{2}}-\frac{(z-2)^{3}}{2^{3}}+\cdots\right]
$$

$$
\begin{aligned}
& f_{1}(z)=-\frac{1}{2}+\frac{z-2}{2^{2}}-\frac{(z-2)^{2}}{2^{3}}+\frac{(z-2)^{3}}{2^{4}}-\cdots \quad \text { converges for }|z-2|<2 \\
& f_{2}(z)=\frac{1}{1+z-2}=\frac{1}{z-2} \frac{1}{1+\frac{1}{z-2}}=\frac{1}{z-2}\left[1-\frac{1}{z-2}+\frac{1}{(z-2)^{2}}-\frac{1}{(z-2)^{3}}+\cdots\right] \\
& f_{2}(z)=\frac{1}{z-2}-\frac{1}{(z-2)^{2}}+\frac{1}{(z-2)^{3}}-\frac{1}{(z-2)^{4}}+\cdots \quad \text { converges for } 1<|z-2| \\
& f(z)=\cdots+\frac{1}{(z-2)^{3}}-\frac{1}{(z-2)^{2}}+\frac{1}{z-2}-\frac{1}{2}+\frac{z-2}{2^{2}}-\frac{(z-2)^{2}}{2^{3}}+\frac{(z-2)^{3}}{2^{4}}-\cdots \\
& \text { converges for } 1<|z-2|<2
\end{aligned}
$$

- Example 14: Laurent Expansions

Expand $f(z)=e^{3 / z}$ in a Laurent series valid for $|z|>0$.

$$
\begin{aligned}
& e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
& e^{3 / z}=1+\frac{3}{z}+\frac{3^{2}}{2!z^{2}}+\frac{3^{3}}{3!z^{3}}+\cdots \quad \text { valid for }|z|>0
\end{aligned}
$$

