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Chapter 3

Series and Residues

1. Sequences and Series

2. Taylor Series

3. Laurent Series

4. Zeros and Poles

5. Residues and Residue Theorem

6. Evaluation of Real Integrals
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1. Sequences and Series

Sequences

▪ A sequence {zn} is a function whose domain is the set of positive integers; in 

other words, to each integer n = 1, 2, 3, ..., we assign a complex number zn. 

For example, the sequence {1 + in} is
, , , , ,

, , , , ,

i i i

n n n n n

+ − +

= = = = =

1 0 1 2 1

1 2 3 4 5
    

▪ If                   we say the sequence {zn} is convergent.lim n
n
z L

→
=

{zn} converges to the number L if, for each positive number 

e, an N can be found such that |zn − L| < e whenever n > N.

The sequence {1 + in} is divergent.
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▪ Example 1: A Convergent Sequence

The sequence             converges, since

ni

n

+ 
 
 

1

lim
n

n

i

n

+

→
=

1
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i i

− − −
1 1

1
2 3 4 5

▪ Theorem 1 (Criterion for Convergence): A sequence {zn} converges to a 

complex number L if and only if Re(zn) converges to Re(L) and Im(zn) 

converges to Im(L).

▪ Example 2: The sequence                converges to i. since
ni

n i
 
 

+ 2
Re(zn) = 2n/(n2 + 4) → 0 and Im(zn) = n2 /(n2 + 4) → 1 as n → ∞
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Series

▪ An infinite series of complex numbers

1 2 31 k nk
z z z z z



=
= + + + + +

is convergent if the sequence of partial sums {Sn}, where

n nS z z z z= + + + +1 2 3

converges. If Sn → L as n → ∞, we say that the sum of the series is L.

Geometric Series
2 1

0
k n

k
az a az az az

 −

=
= + + + + +

( )
 when 
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n

n
n

a z
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k

k

az


=


1

converges when |z| < 1, and diverges when |z| > 1.

,/( ) /( )z z z z z z z z− = + + + + + = − + − +2 3 2 31 1 1 1 1 1 valid for |z| < 1

( )/( )n nz z z z z z −− − = + + + + +2 3 11 1 1

▪ Example 3: Convergent Geometric Series

( ) ( ) ( )k

k
k

i i i i

=

+ + + +
= + + +

2 3

2 3
1

1 2 1 2 1 2 1 2

55 5 5

is a geometric series with a = (1 + 2i)/5 and z = ( 1 + 2i)/5.

/z = < 5 5 1 the series converges
( )k i

k i
k

i i+

+
=

+
= =

−


1 2
5
1 2

1 5

1 2

1 25
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▪ Theorem 2 (Necessary Condition for Convergence): If converges, then:k
k

z


=


1

lim n
n
z

→
= 0

▪ Theorem 3 (The nth Term Test for Divergence): If , then the series:

k
k

z


=


1

lim n
n
z

→
 0

diverges.

For example, the series
k

k i

k



=

+

1

5
diverges since zn = (n + 5i)/n → 1 as n → ∞

▪ Definition: An infinite series          is absolutely convergent if            converges.k
k

z


=


1

k
k

z


=


1

For example, the series ( )/k

k

i k


=

 2

1

is absolutely convergent ( )/ /ki k k=2 21
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▪ Note: Absolute convergence implies convergence.

( )/k

k

i k


=

 2

1

is convergent

▪ Theorem 4 (Ratio Test): Suppose       is a series of nonzero complex terms 

such that

lim n

n
n

z
L

z
+

→
=1

k
k

z


=


1

(i) If L < 1, then the series converges absolutely.

(ii) If L > 1 or L = ∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.
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▪ Theorem 5 (Root Test): Suppose          is a series of complex terms such that:

lim n
n

n
z L

→
=

k
k

z


=


1

(i) If L < 1, then the series converges absolutely.

(ii) If L > 1 or L = ∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.

Power Series

( ) ( ) ( )k
k

k

a z z a a z z a z z


=

− = + − + − + 2
0 0 1 0 2 0

0

where the coefficients ak are complex constants, is called a power series in 

z − z0, centered at z0,
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Circle of Convergence

▪ Every complex power series has radius of convergence R, 

where R is a real number. 

▪ When 0 < R < ∞, a complex power series has a circle of 

convergence defined by |z − z0| = R.

▪ The power series converges absolutely for all z satisfying 

|z − z0| < R and diverges for |z − z0| > R. The radius R of convergence can be:

(i) zero (the power series converges at only z = z0),

(ii) a finite number (the power series converges at all interior points of the 

circle |z − z0| = R), or

(iii) ∞ (the power series converges for all z).
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▪ Example 4: Circle of Convergence

Consider the power series             . By the ratio test
k

k

z

k

+

=


1

1

lim lim

n

nn n

z
nn z z
nz

n

+

+→ →

+ = =
+

2

1
1

1

Thus the series converges absolutely for 

|z| < 1. The circle of convergence is |z| = 1 

and the radius of convergence is R = 1.

On the circle of convergence, the series does not converge absolutely.

It can be shown that the series converges at all points on the circle |z| = 1 

except at z = 1.

▪ Note: the radius of convergence is R = 1/L.                          or lim n

n
n

a
L

a
+

→
= 1 lim n

n
n

L a
→

=
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▪ Example 5: Radius of Convergence

Consider the power series ( )

k
k

k

k
z i

k



=

+ 
− 

+ 

1

6 1
2

2 5

lim limn
n

n n

n
a

n→ →

+
= =

+

6 1
3

2 5
The radius of convergence of the series is 

R = 1/3. The circle of convergence is |z − 2i| = 1/3, 

the series converges absolutely for |z − 2i| < 1/3.

2. Taylor Series

▪ A power series defines or represents a function f ; for a specified z within the 

circle of convergence, the number L to which the power series converges is 

defined to be the value of f at z; that is, f(z) = L.
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▪ Theorem 6 (Continuity): A power series                 represents a continuous 

function f within its circle of convergence |z − z0| = R, R  0.

( )kk
k

a z z


=

− 0
0

▪ Theorem 7 (Term-by-Term Integration): A power series               can be 

integrated term by term within its circle of convergence |z − z0| = R, R  0, for 

every contour C lying entirely within the circle of convergence.

( )kk
k

a z z


=

− 0
0

▪ Theorem 8 (Term-by-Term Differentiation): A power series                    can be 

differentiated term by term within its circle of convergence |z − z0| = R, R  0.

( )kk
k

a z z


=

− 0
0

Taylor Series

▪ A power series represents an analytic function within its circle of convergence.
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( ) ( )
( ) ( )

!

k
k

k

f z
f z z z

k



=

= − 0
0

0

Taylor series for f centered at z0.

( ) ( )
( )

!

k
k

k

f
f z z

k



=

= 
0

0
Maclaurin series for f.

▪ Theorem 9 (Taylor’s Theorem): Let f be analytic within a domain D and let z0 

be a point in D. Then f has the series representation
( ) ( )

( ) ( )
!

k
k

k

f z
f z z z

k



=

= − 0
0

0

valid for the largest circle C with center at z0 and radius R 

that lies entirely within D.
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! ! !

sin ( )
! ! ( )!

cos ( )
! ! ( )!

k
z

k

k
k

k

k
k

k

z z z
e

k

z z z
z z

k

z z z
z

k



=

+

=



=

= + + + =

= − + − = −
+

= − + − = −







2

0

3 5 2 1

0

2 4 2

0

1
1 2

1
3 5 2 1

1 1
2 4 2
are valid for all z

▪ Note: the radius of convergence R is the distance from the center z0 of the 

series to the nearest isolated singularity of f. An isolated singularity is a point 

at which f fails to be analytic but is, nonetheless, analytic at all other points 

throughout some neighborhood of the point.
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▪ Example 7: Maclaurin Series

( )
( )

f z
z

=
− 2

1

1
Find the Maclaurin expansion of

,z z z z
z

= + + + + <
−

2 31
1 1

1

▪ Example 6: Radius of Convergence

Suppose the function                         is expanded in a Taylor series with center 

z0 = 4 − 2i.What is its radius of convergence R?

( )
3

1

i
f z

i z

−
=

− +

The function is analytic at every point except at z = −1 + i, which is an 

isolated singularity of f. The distance from z = −1 + i to z0 = 4 − 2i is:

( ) ( ( ))2 2
0 1 4 1 2 34z z R− = − − + − − = =
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Differentiating both sides

,
( )

k

k

z z kz z
z


−

=

= + + + = <
−


2 1

2
1

1
1 2 3 1

1

▪ Example 8: Taylor Series

( )f z
z

=
−

1

1
Expand                     in a Taylor series with center z0 = 2i.

First Method:

( ) ( )! !
( ) ( )

( ) ( )

( )
( )

n n
n n

k
n

k

n n
f z f i

z i

z i
z i

+ +



+
=

=  =
− −

= −
− −



1 1

1
0

2
1 1 2

1 1
2

1 1 2
circle of convergence

(using ratio test)

z i− =2 5
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Second Method:

( )

( ) ( )
( ) ( )

z iz z i i i z i i
i

z i z i z i

z i i i i

z i z i
z i i i

= = =
−− − + − − − − −

−
−

 − − −   
= + + + +    

− − − − −     

= + − + − +
− − − −

2 3

2
2 3

1 1 1 1 1
21 1 2 2 1 2 2 1 2 1

1 2

1 1 2 2 2
1

1 1 2 1 2 1 2 1 2

1 1 1 1
2 2

1 1 2 1 2 1 2

▪ Note: we represented the same function 1/(1 − z) by 2 different power series. 

The first has center 0 and radius of convergence (ROC) 1. The second has 

center 2i and ROC      . The shaded region is where both series converge.5
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3. Laurent Series

▪ If a complex function f fails to be analytic at a point z = z0, then this point is 

said to be a singularity or a singular point of the function. 

▪ For example, the complex numbers z = 2i and z = −2i are singularities of the 

function f(z) = z/(z2 + 4) because f is discontinuous at each of these points.

Isolated Singularities

▪ Suppose that z = z0 is a singularity of a complex function f. The point z = z0 is 

said to be an isolated singularity of the function f if there exists some deleted 

neighborhood of z0, 0 < |z − z0| < R throughout which f is analytic.

▪ For example, z = ±2i are isolated singularities of f(z) = z/(z2 + 4) since f is 

analytic at every point in the neighborhood |z − 2i| < 1 except at z = 2i and at 

every point in the neighborhood |z − (−2i)| < 1 except at z = −2i.
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▪ On the other hand, the branch point z = 0 is not an isolated singularity of Log z 

since every neighborhood of z = 0 must contain points on the negative x-axis.

▪ We say that a singular point z = z0 of a function f is nonisolated if every 

neighborhood of z0 contains at least one singularity of f other than z0.

A New Kind of Series

▪ If z = z0 is a singularity of a function f, then certainly f cannot be expanded in a 

power series with z0 as its center. However, about an isolated singularity z = z0 

it is possible to represent f by a new kind of series:

▪ For example, the branch point z = 0 is a nonisolated singularity of Log z since 

every neighborhood of z = 0 contains points on the negative real axis.
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is called the principal part and will converge for |1/(z − z0)| < r* or equivalently 

for |z − z0| > 1/r* = r.

( )
( )

k k
k k

k k

a
a z z

z z

 
− −

−

= =

− =
−

 0
1 1 0

( )kk
k

a z z


=

− 0
0

is called the analytic part and will converge for |z − z0| < R.

( ) ( )kk
k

f z a z z


=−

= − 0 will converge for r < |z − z0| < R

( ) ( ) ( ) ( )k k k
k k k

k k k

f z a z z a z z a z z
  

−
−

=− = =

= − = − + −  0 0 0
1 0

Such series representation is called a Laurent series or a Laurent expansion 

of f.
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sin 
! ! !

z z z
z z= − + − +

3 5 7

3 5 7

converges for all |z| < ∞

analytic partprincipal part

sin 
( )

! ! ! !

3 5

4 3

1 1

3 5 7 9

z z z z
f z

zz z
= = − + − + −

▪ Example 9: A New Kind of Series

The function f(z) = (sin z)/z4 is not analytic at z = 0 and hence cannot be 

expanded in a Maclaurin series.

The analytic part of the series converges for |z| < ∞. The principal part is 

valid for |z| > 0 ⇒ the series converges for all z except at z = 0 (0 < |z| < ∞).

https://manara.edu.sy/


https://manara.edu.sy/Series and Residues 23/312023-2024

▪ Theorem 10 (Laurent’s Theorem): Let f be analytic within the annular domain 

D defined by r < |z − z0| < R. and let z0 be a point in D. Then f has the series 

representation:

( ) ( )kk
k

f z a z z


=−

= − 0

valid for r < |z − z0| < R. The coefficients ak are given by:

( )
, , 1, 2,

( )
k kC

f s
a ds k

i s z +
= =  

−
 1

0

1
0

2

where C is a simple closed curve that lies entirely within D 

and has z0 in its interior.

https://manara.edu.sy/


https://manara.edu.sy/Series and Residues 24/312023-2024

▪ Example 10: Laurent Expansions

| |

( ) [ ]

z

f z z z z
z z z

z z z
z

<

= − = − + + + +
−

= − − − − − −

2 3

2 3

1

1 1 1
1

1

1
1

Expand                         in a Laurent series valid for (a) 0 < |z| < 1, (b) 1 < |z|, 

(c) 0 < |z − 1| < 1, and (d) 1 < |z − 1|.

( )
( )

f z
z z

=
−

1

1

(a)

converges for 0 < |z| < 1

( )

z

f z
zz z z z

z
<

 
= = + + + + 

 −
2 2 2 3

1
1

1 1 1 1 1 1
1

1
1

(b)
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( )f z
z z z z

= + + + +
2 3 4 5

1 1 1 1
converges for 1 < |z|

| |

( )
( )

[ ( ) ( ) ( ) ]

z

f z
z z z z

z z z
z

− <

= =
− + − − + −

= − − + − − − +
−

2 3

1 1

1 1 1 1

1 1 1 1 1 1

1
1 1 1 1
1

(c)

converges for 0 < |z − 1| < 1( ) ( ) ( )f z z z
z

= − + − − − +
−

21
1 1 1

1

( )
( ) ( )

f z
z z z

z

= =
− + − − +

−

2

1 1 1 1
11 1 1 1 1
1

(d)
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( )
( ) ( ) ( )

z

f z
zz z z

<
−

 
= − + − + 

−− − − 
2 2 3

1
1

1

1 1 1 1
1

11 1 1

( )
( ) ( ) ( ) ( )

f z
z z z z

= − + − +
− − − −2 3 4 5

1 1 1 1

1 1 1 1
converges for 1 < |z − 1|

▪ Example 11: Laurent Expansions

Expand                                  in a Laurent series valid for (a) 0 < |z − 1| < 2, 

(b) 0 < |z − 3| < 2.

( )
( ) ( )

f z
z z

=
− −2

1

1 3
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( ) ( )( )
( ) , ,

! !

m m m m m m
z mz z z z m Q

− − −
+ = + + + + < 2 31 1 2
1 1 1

2 3

( )
( )( ) ( ) ( ) ( )

f z
zzz z z z

−
= = =

−− + −− − − − −
2 2 2

1 1 1 1 1
12 11 3 1 2 1 1
2

(a)

( ) ( )
( )

( )

( )
( )( )

z z z
f z

z

z
zz

 − − − −
= + + + + 

−  

= − − − − − −
−−

2 3

2 2 3

2

1 1 1 1
1

22 1 2 2

1 1 1 1
1

4 1 8 162 1

( )
( )( ) ( ) [ ( )]

z
f z

z zz z z

−
− 

= = = + − −− − + −  

2

2 2

1 1 1 1 3
1

3 4 3 21 3 2 3
(b)

using the general binomial theorem:

valid for 0 < |z − 1| < 2
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( ) ( )( )
( )

( ) ! !

z z
f z

z

 − − − − −   
= + + +    

−      

2
1 2 3 2 3 3

1
4 3 1 2 2 2

( ) ( ) ( )
( )

f z z z
z

= − + − − − +
−

21 1 3 1
3 3

4 3 4 16 8
valid for 0 < |z − 3| < 2

▪ Example 12: Laurent Expansions

Expand                          in a Laurent series valid for 0 < |z | < 1.( )
( )

z
f z

z z

+
=

−

8 1

1

( ) ( )
( )

z z
f z z z z

z z z z z

+ +  
= = = + + + + + 

− −  

2 38 1 8 1 1 1
8 1

1 1

( )f z z z
z

= + + + +2
1
9 9 9 valid for 0 < |z| < 1
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▪ Example 13: Laurent Expansions

Expand                          in a Laurent series valid for 1 < |z − 2| < 2.( )
( )

f z
z z

=
−

1

1

( ) ( ) ( )
( )

f z f z f z
z z z z

= = − + = +
− −

1 2

1 1 1

1 1

Find two series involving integer powers of z − 2: one 

converging for 1 < |z − 2| and the other converging for 

|z − 2| > 2.

( ) ( )
( )

z z z
f z

zz z

 − − −
= − = − = − = − − + − + −+ −  +

2 3

1 2 3

1 1 1 1 1 2 2 2
1

22 2 2 2 2 2 21
2
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( ) ( )
( )

z z z
f z

− − −
= − + − + −

2 3

1 2 3 4

1 2 2 2

2 2 2 2
converges for |z − 2| < 2

( )
( ) ( )

f z
z z z z z z

z

 
= = = − + − + 

+ − − − − − − +
−

2 2 3

1 1 1 1 1 1 1
1

11 2 2 2 2 2 21
2

( )
( ) ( ) ( )

f z
z z z z

= − + − +
− − − −

2 2 3 4

1 1 1 1

2 2 2 2
converges for 1 < |z − 2| 

( ) ( )
( )

( ) ( )

z z z
f z

zz z

− − −
= + − + − + − + −

−− −

2 3

3 2 2 3 4

1 1 1 1 2 2 2

2 22 2 2 2 2

converges for 1 < |z − 2| < 2 

https://manara.edu.sy/


https://manara.edu.sy/Series and Residues 31/312023-2024

▪ Example 14: Laurent Expansions

Expand                  in a Laurent series valid for |z| > 0./( ) zf z e= 3

! !

z z z
e z= + + + +

2 3

1
2 3

/

! !

ze
z z z

= + + + +
2 3

3
2 3

3 3 3
1

2 3
valid for |z| > 0
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