

CEDC301: Engineering Mathematics Lecture Notes 4: Series and Residues: Part A

Ramez Koudsieh, Ph.D.

Faculty of Engineering Department of Robotics and Intelligent Systems Manara University

https://manara.edu.sy/

Chapter 3 Series and Residues Sequences and Series 1. 2. **Taylor Series** 3. Laurent Series 4. Zeros and Poles 5. Residues and Residue Theorem 6. Evaluation of Real Integrals

1. Sequences and Series

Sequences

A sequence {z_n} is a function whose domain is the set of positive integers; in other words, to each integer n = 1, 2, 3, ..., we assign a complex number z_n. For example, the sequence {1 + iⁿ} is

If lim z_n = L we say the sequence {z_n} is convergent.
 {z_n} converges to the number L if, for each positive number ε, an N can be found such that |z_n - L| < ε whenever n > N.
 The sequence {1 + iⁿ} is divergent.

- Theorem 1 (Criterion for Convergence): A sequence $\{z_n\}$ converges to a complex number L if and only if $Re(z_n)$ converges to Re(L) and $Im(z_n)$ converges to Im(L).
- Example 2: The sequence $\left\{\frac{ni}{n+2i}\right\}$ converges to *i*. since $Re(z_n) = 2n/(n^2 + 4) \rightarrow 0$ and $Im(z_n) = n^2/(n^2 + 4) \rightarrow 1$ as $n \rightarrow \infty$

Series

An infinite series of complex numbers

$$\sum_{k=1}^{\infty} z_k = z_1 + z_2 + z_3 + \dots + z_n + \dots$$

is convergent if the sequence of partial sums $\{S_n\}$, where

$$S_n = z_1 + z_2 + z_3 + \dots + z_n$$

converges. If $S_n \to L$ as $n \to \infty$, we say that the sum of the series is L.

Geometric Series

$$\sum_{k=0}^{\infty} az^{k} = a + az + az^{2} + \dots + az^{n-1} + \dots$$

$$S_{n} = a + az + az^{2} + \dots + az^{n-1} = \frac{a(1-z^{n})}{1-z} \xrightarrow[n \to \infty]{} \frac{a}{1-z} \text{ when } |z| < 1$$

https://manara.edu.sy/

$\sum_{k=1}^{\infty} az^{k} \text{ converges when } |z| < 1, \text{ and diverges when } |z| > 1.$ $\frac{1}{(1-z)} = 1 + z + z^{2} + z^{3} + \cdots, \qquad \frac{1}{(1+z)} = 1 - z + z^{2} - z^{3} + \cdots \text{ valid for } |z| < 1$ $\frac{(1-z^{n})}{(1-z)} = 1 + z + z^{2} + z^{3} + \cdots + z^{n-1}$

Example 3: Convergent Geometric Series

$$\sum_{k=1}^{\infty} \frac{(1+2i)^k}{5^k} = \frac{1+2i}{5} + \frac{(1+2i)^2}{5^2} + \frac{(1+2i)^3}{5^3} + \cdots$$

is a geometric series with a = (1 + 2i)/5 and z = (1 + 2i)/5.

$$z = \sqrt{5}/5 < 1 \Rightarrow$$
 the series converges $\sum_{k=1}^{\infty} \frac{(1+2i)^k}{5^k} = \frac{\frac{1+2i}{5}}{1-\frac{1+2i}{5}} = \frac{i}{2}$

Note: Absolute convergence implies convergence.

 $\sum_{k=1}^{\infty} (i^k)/k^2$ is convergent

• Theorem 4 (Ratio Test): Suppose $\sum_{k=1}^{\infty} z_k$ is a series of nonzero complex terms such that

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$$

- (i) If L < 1, then the series converges absolutely.
- (ii) If L > 1 or $L = \infty$, then the series diverges.
- (iii) If L = 1, the test is inconclusive.

- Theorem 5 (Root Test): Suppose
$$\sum_{k=1}^{\infty} z_k$$
 is a series of complex terms such that:
$$\lim_{n\to\infty} \sqrt[n]{|z_n|} = L$$

- (i) If L < 1, then the series converges absolutely.
- (ii) If L > 1 or $L = \infty$, then the series diverges.
- (iii) If L = 1, the test is inconclusive.

Power Series

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$$

where the coefficients a_k are complex constants, is called a power series in $z - z_0$, centered at z_0 ,

Circle of Convergence

- Every complex power series has radius of convergence R, where R is a real number.
- When 0 < R < ∞, a complex power series has a circle of convergence defined by |z z₀| = R.

- The power series converges absolutely for all z satisfying
 Description:
 - $|z z_0| < R$ and diverges for $|z z_0| > R$. The radius R of convergence can be:
 - (i) zero (the power series converges at only $z = z_0$),
 - (ii) a finite number (the power series converges at all interior points of the circle $|z z_0| = R$), or

(iii) ∞ (the power series converges for all z).

Example 4: Circle of Convergence

Consider the power series $\sum_{k=1}^{\infty} \frac{z^{k+1}}{k}$. By the ratio test

 $\lim_{n \to \infty} \left| \frac{z^{n+2}}{\frac{n+1}{2}} \right| = \lim_{n \to \infty} \frac{n}{n+1} |z| = |z|$ Thus the series converges absolutely for |z| < 1. The circle of convergence is |z| = 1 and the radius of convergence is R = 1.

On the circle of convergence, the series does not converge absolutely.

It can be shown that the series converges at all points on the circle |z| = 1 except at z = 1.

• Note: the radius of convergence is R = 1/L. $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ or $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

Example 5: Radius of Convergence

Consider the power series

$$\sum_{k=1}^{\infty} \left(\frac{6k+1}{2k+5}\right)^k (z-2i)^k$$

 $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{6n+1}{2n+5} = 3$ The radius of convergence of the series is R = 1/3. The circle of convergence is |z-2i| = 1/3, the series converges absolutely for |z-2i| < 1/3.

2. Taylor Series

A power series defines or represents a function *f*; for a specified *z* within the circle of convergence, the number *L* to which the power series converges is defined to be the value of *f* at *z*; that is, *f*(*z*) = *L*.

مًافعة لمَـنارة

- Theorem 7 (Term-by-Term Integration): A power series $\sum_{k=0}^{\infty} a_k (z z_0)^k$ can be integrated term by term within its circle of convergence $|z z_0| = R$, $R \neq 0$, for every contour *C* lying entirely within the circle of convergence.
- Theorem 8 (Term-by-Term Differentiation): A power series $\sum_{k=0}^{n} a_k (z z_0)^k$ can be differentiated term by term within its circle of convergence $|z z_0| = R$, $R \neq 0$.

Taylor Series

A power series represents an analytic function within its circle of convergence.

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)$$
$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^k$$

Taylor series for f centered at z_0 .

Maclaurin series for *f*.

Theorem 9 (Taylor's Theorem): Let *f* be analytic within a domain *D* and let *z*₀ be a point in *D*. Then *f* has the series representation

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$

valid for the largest circle *C* with center at z_0 and radius *R* that lies entirely within *D*.

D

• Note: the radius of convergence R is the distance from the center z_0 of the series to the nearest isolated singularity of f. An isolated singularity is a point at which f fails to be analytic but is, nonetheless, analytic at all other points throughout some neighborhood of the point.

Example 6: Radius of Convergence

Suppose the function $f(z) = \frac{3-i}{1-i+z}$ is expanded in a Taylor series with center $z_0 = 4 - 2i$. What is its radius of convergence *R*?

The function is analytic at every point except at z = -1 + i, which is an isolated singularity of *f*. The distance from z = -1 + i to $z_0 = 4 - 2i$ is:

$$|z - z_0| = \sqrt{(-1 - 4)^2 + (1 - (-2))^2} = \sqrt{34} = R$$

Example 7: Maclaurin Series

Find the Maclaurin expansion of $f(z) = \frac{1}{(1-z)^2}$

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots, \quad |z| < 1$$

Differentiating both sides

$$\frac{1}{(1-z)^2} = 1 + 2z + 3z^2 + \dots = \sum_{k=1}^{\infty} kz^{k-1}, \quad |z| < 1$$

Example 8: Taylor Series

Expand $f(z) = \frac{1}{1-z}$ in a Taylor series with center $z_0 = 2i$.

First Method:

$$f^{(n)}(z) = \frac{n!}{(1-z)^{n+1}} \Rightarrow f^{(n)}(2i) = \frac{n!}{(1-2i)^{n+1}}$$

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} \frac{1}{(1-2i)^{n+1}} (z-2i)^k \qquad \text{circle of convergence } |z-2i| = \sqrt{5}$$

(using ratio test)

Second Method:

$$\frac{1}{1-z} = \frac{1}{1-z+2i-2i} = \frac{1}{1-2i-(z-2i)} = \frac{1}{1-2i} \frac{1}{1-2i} \frac{1}{1-\frac{z-2i}{1-2i}}$$
$$\frac{1}{1-z} = \frac{1}{1-2i} \left[1 + \frac{z-2i}{1-2i} + \left(\frac{z-2i}{1-2i}\right)^2 + \left(\frac{z-2i}{1-2i}\right)^3 + \cdots \right]$$
$$\frac{1}{1-z} = \frac{1}{1-2i} + \frac{1}{(1-2i)^2} (z-2i) + \frac{1}{(1-2i)^3} (z-2i)^2 + \cdots$$

• Note: we represented the same function 1/(1 - z) by 2 different power series. The first has center 0 and radius of convergence (ROC) 1. The second has center 2*i* and ROC $\sqrt{5}$. The shaded region is where both series converge.

3. Laurent Series

- If a complex function f fails to be analytic at a point $z = z_0$, then this point is said to be a singularity or a singular point of the function.
- For example, the complex numbers z = 2i and z = -2i are singularities of the function $f(z) = z/(z^2 + 4)$ because *f* is discontinuous at each of these points.

Isolated Singularities

- Suppose that $z = z_0$ is a singularity of a complex function f. The point $z = z_0$ is said to be an isolated singularity of the function f if there exists some deleted neighborhood of z_0 , $0 < |z z_0| < R$ throughout which f is analytic.
- For example, z = ±2i are isolated singularities of f(z) = z/(z² + 4) since f is analytic at every point in the neighborhood |z 2i| < 1 except at z = 2i and at every point in the neighborhood |z (-2i)| < 1 except at z = -2i.</p>

- On the other hand, the branch point z = 0 is not an isolated singularity of Log z since every neighborhood of z = 0 must contain points on the negative x-axis.
- We say that a singular point $z = z_0$ of a function f is nonisolated if every neighborhood of z_0 contains at least one singularity of f other than z_0 .
- For example, the branch point z = 0 is a nonisolated singularity of Log z since every neighborhood of z = 0 contains points on the negative real axis.

A New Kind of Series

• If $z = z_0$ is a singularity of a function *f*, then certainly *f* cannot be expanded in a power series with z_0 as its center. However, about an isolated singularity $z = z_0$ it is possible to represent *f* by a new kind of series:

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k = \sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

Such series representation is called a Laurent series or a Laurent expansion of *f*.

$$\sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z - z_0)^k}$$

is called the principal part and will converge for $|1/(z - z_0)| < r^*$ or equivalently for $|z - z_0| > 1/r^* = r$.

 $\sum_{k=0}^{\infty} a_k (z - z_0)^k \text{ is called the analytic part and will converge for } |z - z_0| < R.$ $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \text{ will converge for } r < |z - z_0| < R$

Example 9: A New Kind of Series

The function $f(z) = (\sin z)/z^4$ is not analytic at z = 0 and hence cannot be expanded in a Maclaurin series.

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots$$

converges for all $|z| < \infty$

 $f(z) = \frac{\sin z}{z^4} = \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \frac{z^3}{7!} + \frac{z^5}{9!} - \cdots$

The analytic part of the series converges for $|z| < \infty$. The principal part is valid for $|z| > 0 \Rightarrow$ the series converges for all z except at z = 0 ($0 < |z| < \infty$).

• Theorem 10 (Laurent's Theorem): Let f be analytic within the annular domain D defined by $r < |z - z_0| < R$. and let z_0 be a point in D. Then f has the series representation:

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$$

valid for $r < |z - z_0| < R$. The coefficients a_k are given by:

$$a_k = \frac{1}{2\pi i} \oint_C \frac{f(s)}{(s-z_0)^{k+1}} ds, \quad k = 0, \pm 1, \pm 2, \dots$$

where *C* is a simple closed curve that lies entirely within *D* and has z_0 in its interior.

Example 10: Laurent Expansions

Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for (a) 0 < |z| < 1, (b) 1 < |z|, (c) 0 < |z - 1| < 1, and (d) 1 < |z - 1|. (a) $f(z) = -\frac{1}{z} \frac{1}{1-z} = -\frac{1}{z} \underbrace{\left[1+z+z^2+z^3+\cdots\right]}_{z+1}$ 0 $= -\frac{1}{z} - 1 - z - z^2 - z^3 - \cdots$ converges for 0 < |z| < 1(b) $f(z) = \frac{1}{z^2} \frac{1}{1 - \frac{1}{z^2}} = \frac{1}{z^2} \left[1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right]$ 0 \mathcal{Z}

24/31

$$f(z) = \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \frac{1}{z^5} + \cdots \text{ converges for } 1 < |z|$$
(c) $f(z) = \frac{1}{1-1+z} \frac{1}{z-1} = \frac{1}{z-1} \frac{1}{1+(z-1)}$

$$= \frac{1}{z-1} [\underbrace{1-(z-1)+(z-1)^2-(z-1)^3+\cdots}_{|z-1|<1}]$$

$$f(z) = \frac{1}{z-1} - 1 + (z-1) - (z-1)^2 + \cdots \text{ converges for } 0 < |z-1| < 1$$
(d) $f(z) = \frac{1}{z-1} \frac{1}{1+(z-1)} = \frac{1}{(z-1)^2} \frac{1}{1+\frac{1}{z-1}}$

$$f(z) = \frac{1}{(z-1)^2} \left[1 - \frac{1}{z-1} + \frac{1}{(z-1)^2} - \frac{1}{(z-1)^3} + \cdots \right] \\ |\frac{1}{|z-1|} < 1$$

$$f(z) = \frac{1}{(z-1)^2} - \frac{1}{(z-1)^3} + \frac{1}{(z-1)^4} - \frac{1}{(z-1)^5} + \cdots \text{ converges for } 1 < |z-1|$$

Example 11: Laurent Expansions

Expand $f(z) = \frac{1}{(z-1)^2(z-3)}$ in a Laurent series valid for (a) 0 < |z-1| < 2, (b) 0 < |z-3| < 2.

(a)
$$f(z) = \frac{1}{(z-1)^2(z-3)} = \frac{1}{(z-1)^2} \frac{1}{-2 + (z-1)} = \frac{-1}{2(z-1)^2} \frac{1}{1 - \frac{z-1}{2}}$$
$$f(z) = \frac{-1}{2(z-1)^2} \left[1 + \frac{z-1}{2} + \frac{(z-1)^2}{2^2} + \frac{(z-1)^3}{2^3} + \cdots \right]$$
$$= -\frac{1}{2(z-1)^2} - \frac{1}{4(z-1)} - \frac{1}{8} - \frac{1}{16}(z-1) - \cdots \text{ valid for } 0 < |z-1| < 2$$
(b)
$$f(z) = \frac{1}{(z-1)^2(z-3)} = \frac{1}{z-3} \frac{1}{[2 + (z-3)]^2} = \frac{1}{4(z-3)} \left[1 + \frac{z-3}{2} \right]^{-2}$$
using the general binomial theorem:
$$(1+z)^m = 1 + mz + \frac{m(m-1)}{2!} z^2 + \frac{m(m-1)(m-2)}{3!} z^3 + \cdots, \quad |z| < 1, m \in Q$$

Series and Residues

$$f(z) = \frac{1}{4(z-3)} \left[1 + \frac{(-2)}{1!} \left(\frac{z-3}{2} \right) + \frac{(-2)(-3)}{2!} \left(\frac{z-3}{2} \right)^2 + \cdots \right]$$

$$f(z) = \frac{1}{4(z-3)} \left[1 + \frac{3}{2!} \left(\frac{z-3}{2} \right) + \frac{(z-3)^2}{2!} + \cdots \right]$$
Valid for $0 < |z| = 1$

$$f(z) = \frac{1}{4(z-3)} - \frac{1}{4} + \frac{3}{16}(z-3) - \frac{1}{8}(z-3)^2 + \dots \text{ valid for } 0 < |z-3| < 2$$

Example 12: Laurent Expansions

Expand $f(z) = \frac{8z+1}{z(1-z)}$ in a Laurent series valid for 0 < |z| < 1. $f(z) = \frac{8z+1}{z(1-z)} = \frac{8z+1}{z} \frac{1}{1-z} = \left(8 + \frac{1}{z}\right)(1+z+z^2+z^3+\cdots)$ $f(z) = \frac{1}{z} + 9 + 9z + 9z^2 + \cdots$ valid for 0 < |z| < 1

Example 13: Laurent Expansions

Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for 1 < |z-2| < 2.

Find two series involving integer powers of z - 2: one converging for 1 < |z - 2| and the other converging for |z - 2| > 2.

$$f(z) = \frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1} = f_1(z) + f_2(z)$$

$$f_1(z) = -\frac{1}{z} = -\frac{1}{2+z-2} = -\frac{1}{2}\frac{1}{1+\frac{z-2}{2}} = -\frac{1}{2}\left[1-\frac{z-2}{2}+\frac{(z-2)^2}{2^2}-\frac{(z-2)^3}{2^3}+\cdots\right]$$

$$f_1(z) = -\frac{1}{2} + \frac{z-2}{2^2} - \frac{(z-2)^2}{2^3} + \frac{(z-2)^3}{2^4} - \dots \quad \text{converges for } |z-2| < 2$$

$$f_2(z) = \frac{1}{1+z-2} = \frac{1}{z-2} \frac{1}{1+\frac{1}{z-2}} = \frac{1}{z-2} \left[1 - \frac{1}{z-2} + \frac{1}{(z-2)^2} - \frac{1}{(z-2)^3} + \cdots \right]$$

$$f_2(z) = \frac{1}{z-2} - \frac{1}{(z-2)^2} + \frac{1}{(z-2)^3} - \frac{1}{(z-2)^4} + \dots \text{ converges for } 1 < |z-2|$$

$$f(z) = \dots + \frac{1}{(z-2)^3} - \frac{1}{(z-2)^2} + \frac{1}{z-2} - \frac{1}{2} + \frac{z-2}{2^2} - \frac{(z-2)^2}{2^3} + \frac{(z-2)^3}{2^4} - \dots$$
converges for $1 < |z-2| < 2$

2023-2024

30/31

Example 14: Laurent Expansions

Expand $f(z) = e^{3/z}$ in a Laurent series valid for |z| > 0.

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots$$

$$e^{3/z} = 1 + \frac{3}{z} + \frac{3^{2}}{2!z^{2}} + \frac{3^{3}}{3!z^{3}} + \cdots \quad \text{valid for } |z| > 0$$