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Chapter 4
Laplace Transform

1. Definition of the Laplace Transform
2. The Inverse Transform and Transforms of Derivatives
3. Translation Theorems
4, Additional Operational Properties
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1. Definition of the Laplace Transform
» |aplace transform offer simple and efficient strategies for solving many science
and engineering problems, including: control systems; signal processing;

mechanical networks; electrical networks and communications systems.

» The purpose of the Laplace Transform is to transform ordinary differential
equations (ODEs) into algebraic equations, which makes it easier to solve.

» The Laplace Transform is a generalized Fourier Transform, since it allows one
to obtain transforms of functions that have no Fourier Transforms.

* One of the advantages of using the Laplace Transform to solve differential
equations is that all initial conditions are automatically included during the
process of transformation, so one does not have to find the homogeneous
solutions and the particular solution separately.
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= More importantly, the use of the unit step function (Heaviside function) and
Dirac’s delta make the Laplace transform particularly powerful for problems
with inputs that have discontinuities or represent short impulses or complicated

periodic functions.

IVP AP Solving Solution
Initial Value == Algebraic s AP —|  of the
Problem @ Problem @ by Algebra @ IVP

Solving an IVP by Laplace transforms
= Definition: The Laplace transform of a function f{(¢) is defined as:

L{f(b)} = Fs) = [ f(t)e ™t
provided that the integral converges.
where s = o+ w», the independent variable of the transform.
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= There are two important variants:

Unilateral (or one-sided): F(s) = ;O f(t)e™dt;

Bilateral (or two sided):  F(s) = [~ f(t)e dt;

= When we refer to Laplace transform (LT) without the qualifier word “bilateral”
or “unilateral”, we will always imply the unilateral LT.

= Note: The unilateral Laplace transform is applied for functions that are defined
for t > 0.

= Example 1: Laplace transform
Evaluate £{1}
F . x —St . © st w - @ st _1
(s)-j@_f(t)e dt_jo_e dt_hmj_e dt ==, Re{s}>0

a—»o0 S
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» Example 2: Laplace transform
Evaluate L{e*}
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00 _ 00 g 1
F(s) = I_f(t)e Tdt = J-_eate ‘dt = , Re{s}>a
0 0 S—a
= Example 3: Laplace transform
Evaluate £{sin 2t} t .
. o 3 —e "'sin 2t 2 (o Y
L{sin2t} = J_sm e " dt = + —J- cos 2te”"dt
S S
0
2 oo —St
=—] cos 2te 'dt, Re{s} >0
S
2| —e *cos 2t ) 2 o . ot 2 4 .
= — ——| sin2te “dt | = — — — L{sin 2t}
S S 80 s° s
L 0 —
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2
s +4

L{sin 2t} = . Rels)>0

Linearity of the Laplace Transform

» Theorem 1 (Linearity of the Laplace Transform): The LT is a linear operation;
that is, for any functions f(t) and ¢(t) whose Laplace transforms exist and any
constants « and b, the Laplace transform of af + bg exists, and

Liaf(?) + bg(8)} = aL{f(1)} + bL{g(1)}
= Example 4: Laplace transform of sin and cos
sinot = & ¢ —e "' | = Lisinot} = L[ L{e”} - L{e} ]

21

L{sina)t}:l[ SN }: @ Re{s) > 0

5 . . b
21l s — w1 S+ w1 ° +
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cos wt = %[ew’t + _w’t} = £“{c\0s ot} = %[.E{ei“’t} + .E{e_i”t}]

1 1 1
L{cosa)t}:—[ - + }: 28 =, Re{s} >0
2| s—w1 s+ wi s+ w

Some Functions f(t) and Their Laplace Transforms L(/)

Re{s} >0
2 i on = O, 1, 2, ... n!/s”+1 Re{s}>0
3 t% a>0 ['a+1)/sott Re{s}>0
4 et 1/(s— a) Re{s} > a
5 i nl/(s — a)™? Re{s}> a
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6 cos wt s/(s? + a?) Re{s}>0
7 sin wt af(s* + @?) Re{s}>0
8 cosh at s/(s? — a?) Re{s}>0
9 sinh at af(s? — a?) Re{s}>0
S—a
10 e’ cos wt Re{s}> a
(s —a)’ + @ s}

11 e’ sin wt Re{s}> a

(s —a)’ + @

" is the so-called gamma function: T'(a) = _[: t*le'dt,a > 0
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Existence of Laplace Transforms
= Definition: A function f is said to be of exponential order if there exist
constants ¢, M > 0, and T'> 0 such that |f(?)| < Me“ forall t> T.

* |f fis an increasing function, then the condition |f(t)| £ Me* for all ¢t > T, simply
states that the graph of f on the interval (7, ) does not grow faster than the

graph of the exponential function Me‘, where c is a positive constant.

£ Me“ (¢ > 0)

2
flt) = e’ is not of
exponential order

(1)

I

|

|

|
T

Function fis of exponential order
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= Theorem 2 (Sufficient Conditions for'Existence): If () Is piecewise continuous
on the interval [0, o) and of exponential order, then L{f(t)} exists for s > c.

2. The Inverse Transform and Transforms of Derivatives
Inverse Transforms
= |f F(s) represents the Laplace transform of a function f(t), that is, L{f(t)} = F(s),

we then say f(f) is the inverse Laplace transform of F(s) and write
f(t) = L. F(s)}. For example:

s el ol
S S S +

= Note: Partial fractions play an important role in finding inverse Laplace
transforms.
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= Example 5: Partial Fractions and Linearity

Evaluate [1{ s" +65+9 }
(s—1)(s—2)(s+4)

s +6s+9 __16/5 25/6 1/30
(s—1)(s—2)(s+4) s—1 s-2 s+4

fl{ s2 +65+9 }:_Efl{ 1 }+2_5£1{ 1 }+Lfl{ 1 }
(s—1)(s—2)(s+4) 5 s—1 6 s —2 30 s+4
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Transforms of Derivatives
= Theorem 3 (Transform of a Derivative): If f, f, ..., f(»~1) are continuous on
[0, ) and are of exponential order and if f(")(¢) is piecewise continuous on

[0, ), then:
L)} = 8" F(s) =" f(07) =" 2f1(07) == (07
where F(s) = L{f(1)}.
L{f'(t)} = sF(s) = f(07)
L{f"(t)} = s"F(s) = sf(07) = f'(07)
Solving Linear ODEs

dn dn—l
n 7:’Ly T an—l n—zly
dt dt

Laplace Transform

a

+ ot ayy = g(t), y(()_) = Yy, y'(O_) = Yy enns y(N—l)(O_) =Y, 4
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where the coefficients a, :=0, 1, ..., nand yy, ¥4, . - . , ¥, ¢ are constants.
dny dn—ly
a L +a L + .o+ a. L = L1qg(t
n {dtn} n—1 {dtnl} 0 {y} {g( )}
a,[s"Y (s)—s""y(07) —--- =y "V (07)]
+a, [8"7Y(8) =" y(07) = =y (O0)] + -+ + a Y (5) = G(5)

where L{y(1)} = Y(s) and L{g(1)} = G(5s).

= Note: The Laplace transform of a linear differential equation with constant
coefficients becomes an algebraic equation in Y(s).

V(s) = Q) , G(s)
P(s) P(s)

P(s)=as" +a, 8" +--+a, degQ(s)<n-1
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» Example 6: Solving a First-Order IVP

Use the Laplace transform to solve the initial-value problem

jg;+3y—13s1n2t y(0) =6

.£{¢?}+31% } =13L{sin 2t}
dt
2

SY(5) — 6+ 3Y(8) = o2 = V(5) = —o + 20

s° +4 (s+3)(s” +4)

2

Y(s) = 6s° + 50 _ 8 N 25+ 6

(s+3)(s°+4) s+3 s +4

1 2
t)y=8L" 2£1{ }+3£1{ }
y(t) {3+3} s +4 s +4
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y(t) = 8" — 2cos 2t + 3sin 2t

» Example 7: Solving a Second-Order IVP
Solve " -3y +2y=¢*, 0 )=1, ¢'0)=5
L{y"}-3L{y} +2L{y} = L{e]

Y () = sy(07) = (07 = 3[3Y () = y(0)] + 2¥ (5) = ——
s+ 2 1 s> +65+9
= Y () = + =
(s—1D(s—-2) (s—1)(s—2)(s+4) (s—1)(s—2)(s+4)
_ 16, 20 o 1
y(t) = - e + - e + = e
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» Note: The next theorem indicates that not every arbitrary function of s is a
Laplace transform of a piecewise-continuous function of exponential order.

= Theorem 4 (Behavior of F(s) as s — o0): If fis piecewise continuous on [0, )

and of exponential order, then:
lim L{f(t)} =0

§—>0

* The Laplace transform is well adapted to linear dynamical systems

_Q(s) | G(s) _ 1) Q) 1JG(s) | _
Y(s) = P(s) + PGs) y(t) =L {P(S)}Jrf {P(s)} = Yo (1) + 4, (1)

= |f the input is ¢(t) = 0, then the solution of the problem is y,(t) = L{Q(s)/ P(s)}.
This solution is called the zero-input response of the system.

Laplace Transform https://manara.edu.sy/ 2023-2024 17/31


https://manara.edu.sy/

6)liaJl

= The function y,(¢) = L7{G(s)/ P(s)} is the output due to the input q(1).
» |f the initial state of the system is the zero state (all the initial conditions are

zero), then Q)(s) = 0, and so the only solution of the initial-value problem is
1y1(t), which is called the zero-state response of the system.

= 1(?) is a solution of the IVP consisting of the associated homogeneous
equation with the given initial conditions, and ,(?) is a solution of the IVP
consisting of the nonhomogeneous equation with zero initial conditions.

* |[n example 7:

1 5+2 _at 2t
yO(t)_f{(S—l)(s—Q)}_ 3e + 4e

y1(t):£_1 1 =—let+162t+i6‘4t
(s =D(s=2)(s +4) 5 6 30
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3. Translation Theorems

Translation on the s-axis

= Theorem 5 (First Translation Theorem): If L{f(t)} = F(s) and a is any real
number, then

L{e"f(t)y=F(s—a) or L {F(s—a)}=e"f(t)
= Example 8: Damped Vibrations

Find the inverse of the transform L{/(?)} = 35 40

s? +92s + 401

f(t) = L 3(s+1)—140 _ ol s+1 o 20
- (5 + 1) + 400 (5 +1)% + 207 (5 +1)% + 207

f(t) = e (3cos 20t — 7sin 20¢)
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= We shall now reach the point where the Laplace transform shows its real
power in applications. We shall introduce two auxiliary functions, the unit step
function or Heaviside function u(¢ — a) and Dirac’s delta &t — a).
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* These functions are suitable for séhll\'/ﬁi"r'\g ODEs with complicated right sides of
considerable engineering interest, such as single waves, inputs that are
discontinuous or act for some time only, periodic inputs more general than just

cosine and sine, or impulsive forces acting for an instant.

Unit Step Function
= Definition: The unit step function u(¢ — a) is defined to be
0, t<a
u(t —a) = { , a=0
1, t>a

u(t) u(t—a)
1 1

0 t 0 a t
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—st 0 —as
Liu(t—a)} = [“u(t—a)edt = [ edt =—"— ==—, Re{s}>0
L S . S

= Note: Let f(t) = 0 for all negative t. Then fit — a)u(t — a) with a > 0 is f(t) shifted
(translated) to the right by the amount a.

f(t)
51 5 5
il .
- L -1 |
0 T 2r t 2 2m 2m t 0> m+2 2m+2
5 5| 5|
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_I |
| |
| |
1 A 6 ¢ \ PR |
I | | | | | |
—k— — 0 2 4 6 8 10 7

Flu(t—1) —2u(t —4) + u(t —6)]  4sin(5 7t)[u(t) — u(t —2) + u(t —4) —u(t —6) +---

Translation on the t-axis
= Theorem 6 (Second Translation Theorem): If L{f(t)} = F(s) and a > 0, then
L{f(t—a)u(t—a) =e™F(s) or f(t—a)u(t—a)=L"{e™F(s)}

: f(1)
» Example 9: Second Translation Theorem fgr__

Find the Laplace transform of the function f whose + |

graph is given in the figure. ]
14 —
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f(t) =2 —-3u(t —2) +u(t - 3)
L{f(t) = 2L = 3L{u(t —2)} + L{u(t - 3)}

9 3
2 3 e
E— +
S S S

= Example 10: An Initial-Value Problem

0, 0<t<nrx
Solve y’ + y = f(1), ¥(07) = 5, where /(i) = {

3cost, t=>rm
Ly + L{y} = 3L{costu(t — )} = -3L{cos(t — m)u(t — 7)}
S 5 3S —7S8

e = Y(s) = — e
s° +1 (5) s+1 (s+1)(s° +1)

1 1
Y(s) = L —é[— e +—5—e "+ 28 e”s}
s+1 2| s+1 s +1 s“+1

sY(s)—y(0)+Y(s)=-3
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y(t) = 5e’ + ge_(t_”)u(t —- ) — gsin(t — ) u(t — 1) — gcos(t — ) u(t — 7)
3
— —1 e —(t—ﬂ') . _ 5 =
be +2[e +smt+cost]u(t T) A
3E
~|5e, 0<t<unm 4 //\\ g
e+ 31”7 Lsint +cost], t>x o \_/ \gr
2 T - -1t 5
-7E 3

1 o I
4. Additional Operational Properties
Derivatives of Transforms

= Theorem 7 (Derivatives of Transforms): If L{f(#)} = F(s) and n=1, 2, 3, .., then:

LU F(1)} = (~1)" j

F(s)
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= Example 11: Using Theorem
Evaluate L{t sin kt}
d k 2ks

d
Litsinkt! = —— L{sinkt! = — —
{ } ds { j ds s +k°  (s*+k°)

Convolution

If functions f and ¢ are piecewise continuous on the interval [0, o), then the
convolution of fand g, denoted by the symbol f * ¢, is a function defined by the
integral:

frg= f(o)g(t-r)dz

sint *sint = I()t sin(7)sin(t — r)dr = %j; [cos (27 —t) — cos()]dr

= —%tcostJr%sint
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= Example 12: Convolution of Two Functions
Evaluate (a) e * sin ¢ (b) L{e! * sin t}

t
(a) ¢ *sint:j efsin(t—r)dr:%(—sint—cost+et)

0
(b) L{et*sint}:_l%_l 25 +l | 4 12
2s5°+1 28 +1 2s-1 (s=1)(s"+1)

Properties of Convolution
* |s commutative. For any two functions fand ¢, f* g= ¢ * f.
» |s associative. For any functions f, g, and h, (f * g) * h=f * (g * h).

» |s distributive with respect to addition. For any functions f ¢, and #,
frlg+h)=f*g+f*h
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= Theorem 8 (Convolution Theorem): If j(t) and ¢(t) are piecewise continuous on
[0, o) and of exponential order, then:

L{f* g} = L{(0)} L{g(D)} = F(s)G(s)
LHF(5)G(s)} = f*g
Transform of an Integral

= When ¢(t) = 1, the convolution theorem implies that the Laplace transform of
the integral of fis

L{jotf(r)dr}zF(s) or fl{F(S)} [ foydr

S

= Example 13: An Integral Equation
2 ¢ ‘ t—1
Solve f(t) =3t" —¢ " — .[o f(r)e “dr
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[, foyedr = f(ty ¢
2 1 1 6 6 1 2
F(s)=3—— — F(s = F(§)=—F——F+——
(#) s s+1 ()3—1 (%) s st s s+l

f() =3t -t +1-2¢"

Series Circuits

= The voltage drops across an inductor, resistor, and ;
capacitor are, respectively, SR
di(t) | 1 ot |
v, =L T vp = Ru(l), v, = EIO i(7)dt C
di(1) . L ¢t B
L=+ Ri(t) + |, i(x)dr = E(1)
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= Example 14: An Integrodifferential EdﬂLlation

Determine the current i(¢) in a single-loop LR C-circuit when L=0.1H, R=2 Q,

C'=0.1F, ¢0°) =0, and the impressed voltage is E(t) = 120¢ — 120t u(t — 1).

di(t)
dt

0.1

0.1sI(s) + 21(s) + 10@ = 120[

S

1 1

__6_

I(s) = 1200{

1/100  1/100

s(s+102 s(s+102  (s+10)

I(s) = 1200{

s s+10 (s+10)

+2i(t) + 10]5 i()dr = 120t — 120 u(t —1)
6_8}

1/100 _,
— e
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1/100 _, /10 _ 1 s
+ e + 7€ 5 €
s+ 10 (s +10) (s +10)

i(t) = 12[1 — w(t — D] = 12[e ™ — e Dyt — 1)]
—120te™"" —1080(t — 1)e " Vy(t - 1)

[}
20IIIIIIIIIIIIIIIIIIIIIIIII

10 .
0 t

_10k |
20k |
30k |

0 0.5 I 1.5

I~ -
[
L
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