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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• The basic idea in this method is that of isoclines. Consider the dynamics in
(ẋ1=f1(x1, x2), ẋ2=f2(x1, x2)). At a point (x1, x2) in the phase plane, the slope of the
tangent to the trajectory can be determined by (𝒅𝒙𝟐

𝒅𝒙𝟏
=
𝒇𝟐(𝒙𝟏,𝒙𝟐)

𝒇𝟏(𝒙𝟏,𝒙𝟐
). An isocline is

defined to be the locus of the points with a given tangent slope. An isocline with
slope 𝜶 is thus defined to be

𝒅𝒙𝟐
𝒅𝒙𝟏

= 𝒇𝟐(𝒙𝟏,𝒙𝟐)
𝒇𝟏(𝒙𝟏,𝒙𝟐)

= 𝜶

This is to say that points on the curve
𝒇𝟐(𝒙𝟏, 𝒙𝟐) = 𝜶𝒇𝟏(𝒙𝟏, 𝒙𝟐)

all have the same tangent slope 𝜶.
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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• In the method of isoclines, the phase portrait of a system is generated in two
steps. In the first step, a field of directions of tangents to the trajectories is
obtained. In the second step, phase plane trajectories are formed from the field
of directions .

• Let us explain the isocline method on the mass-spring system in (ẍ + x = 0 ). The
slope of the trajectories is easily seen to be

𝒅𝒙𝟐
𝒅𝒙𝟏

= −
𝒙𝟏
𝒙𝟐

• Therefore, the isocline equation for a slope 𝜶 is
𝒙𝟏 + 𝜶𝒙𝟐 = 𝟎
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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• Therefore, the isocline equation for a slope 𝜶 is
𝒙𝟏 + 𝜶𝒙𝟐 = 𝟎

• i.e., a straight line. Along the line, we can draw a lot of short line segments with
slope 𝜶. By taking 𝜶 to be different values, a set of isoclines can be drawn, and
a field of directions of tangents to trajectories are generated, as shown in
Figure(7). To obtain trajectories from the field of directions, we assume that the
tangent slopes are locally constant. Therefore, a trajectory starting from any
point in the plane can be found by connecting a sequence of line segments.
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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• (7)
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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• Let us use the method of isoclines to study the Van der Pol equation, a
nonlinear equation.

• For the Van der Pol equation

ẍ+0.2(x2-1) ẋ+ x=0

• an isocline of slope a is defined by
𝒅 ሶ𝒙

𝒅𝒙
= −

𝟎. 𝟐 𝒙𝟐 − 𝟏 ሶ𝒙 + 𝒙

ሶ𝒙
= 𝜶

• Therefore, the points on the curve
𝟎. 𝟐 𝒙𝟐 − 𝟏 ሶ𝒙 + 𝒙 + 𝜶 ሶ𝒙 = 𝟎

• all have the same slope 𝜶 .
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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• By taking 𝜶 of different values, different isoclines can be obtained, as plotted in
Figure(8). Short line segments are drawn on the isoclines to generate a field of
tangent directions. The phase portraits can then be obtained, as shown in the
plot. It is interesting to note that there exists a closed curve in the portrait, and
the trajectories starting from both outside and inside converge to this curve.
This closed curve corresponds to a limit cycle, as will be discussed.
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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• (8)
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• Constructing Phase Portraits

• THE METHOD OF ISOCLINES

• Note that the same scales should be used for the x1 axis and x2 axis of the phase
plane, so that the derivative dx2/dx1 equals the geometric slope of the
trajectories. Also note that, since in the second step of phase portrait
construction we essentially assume that the slope of the phase plane
trajectories is locally constant, more isoclines should be plotted in regions
where the slope varies quickly, to improve accuracy.
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• Constructing Phase Portraits

• Determining Time from Phase Portraits 

• Note that time t does not explicitly appear in the phase plane having x1 and x2
as coordinates. However, in some cases, we might be interested in the time
information. For example, one might want to know the time history of the
system states starting from a specific initial point. Another relevant situation is
when one wants to know how long it takes for the system to move from a point
to another point in a phase plane trajectory. We now describe two techniques
for computing time history from phase portraits. Both techniques involve a step-
by step procedure for recovering time.
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• Constructing Phase Portraits

• Determining Time from Phase Portraits 

• Obtaining time from ∆𝐭 ≅ Τ∆𝒙 ሶ𝒙

• In a short time ∆𝐭, the change of x is approximately
∆𝒙 ≅ ∆𝐭 ሶ𝒙

• where ሶ𝒙 is the velocity corresponding to the increment ∆𝒙. Note that for a ∆𝒙
of finite magnitude, the average value of velocity during a time increment 
should be used to improve accuracy. From (Figure 8), the length of time 
corresponding to the increment ∆𝒙 is

∆𝐭 ≅ Τ∆𝒙 ሶ𝒙
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• Constructing Phase Portraits

• Determining Time from Phase Portraits 

• Obtaining time from ∆𝐭 ≅ Τ∆𝒙 ሶ𝒙

• The above reasoning implies that, in order to obtain the time corresponding to
the motion from one point to another point along a trajectory, one should
divide the corresponding part of the trajectory into a number of small segments
(not necessarily equally spaced), find the time associated with each segment,
and then add up the results. To obtain the time history of states corresponding
to a certain initial condition, one simply computes the time t for each point on
the phase trajectory, and then plots 𝒙 with respect to t and ሶ𝒙 with respect to t,
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• Constructing Phase Portraits

• Determining Time from Phase Portraits 

• Obtaining time from 𝐭 =  Τ(𝟏 ሶ𝒙)𝒅𝒙

• Since Τሶ𝒙 = (𝒅𝒙 𝒅𝒕), we can write 𝒅𝒕 Τ= (𝒅𝒙 ሶ𝒙). Therefore,

𝐭 − 𝐭𝟎 = න

𝒙𝟎

𝒙

Τ(𝟏 ሶ𝒙)𝒅𝒙

• where x corresponds to time t and 𝒙𝟎 corresponds to time 𝒕𝟎 . This equation 
implies that, if we plot a phase plane portrait with new coordinates x and Τ(𝟏 ሶ𝒙)
, then the area under the resulting curve is the corresponding time interval.

Phase Plane Analysis
Concepts of Phase Plane Analysis



• Phase Plane Analysis of Linear Systems

• we describe the phase plane analysis of linear systems. Besides allowing us to
visually observe the motion patterns of linear systems, this will also help the
development of nonlinear system analysis in the next, because a nonlinear
systems behaves similarly to a linear system around each equilibrium point.

• The general form of a linear second-order system is

ሶ𝒙𝟏 = 𝐚𝒙𝟏 + 𝒃𝒙𝟐 (9a)
ሶ𝒙𝟐 = 𝐜𝒙𝟏 + 𝒅𝒙𝟐 (9b)

• To facilitate later discussions, let us transform this equation into a scalar second-
order differential equation.
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• Phase Plane Analysis of Linear Systems

• Note from (9a) and (9b) that
𝒃 ሶ𝒙𝟐 = 𝒃𝒄𝒙𝟏 + 𝒅( ሶ𝒙𝟏 − 𝒂𝒙𝟏)

• Consequently, differentiation of (9a) and then substitution of (9b) leads to
ሷ𝒙𝟏 = (𝒂 + 𝒅) ሶ𝒙𝟏 + (𝒄𝒃 − 𝒂𝒅)𝒙𝟏

• Therefore, we will simply consider the second-order linear system described by

ሷ𝒙 + 𝒂 ሶ𝒙 + 𝒃𝒙 = 𝟎 (10)

• To obtain the phase portrait of this linear system, we first solve for the time 
history

𝒙 𝒕 = 𝒌𝟏𝒆
𝝀𝟏𝒕 + 𝒌𝟐𝒆

𝝀𝟐𝒕 𝒇𝒐𝒓 𝝀𝟏 ≠ 𝝀𝟐 (11.a)

𝒙 𝒕 = 𝒌𝟏𝒆
𝝀𝟏𝒕 + 𝒌𝟐𝒕𝒆

𝝀𝟏𝒕 𝒇𝒐𝒓 𝝀𝟏 = 𝝀𝟐 (11.b)
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• Phase Plane Analysis of Linear Systems

• where the constants 𝝀𝟏 and 𝝀𝟐 are the solutions of the characteristic equation
𝒔𝟐 + 𝒂𝒔 + 𝒃 = (𝒔 − 𝝀𝟏)(𝒔 − 𝝀𝟐)

• The roots 𝝀𝟏 and 𝝀𝟐 can be explicitly represented as

𝝀𝟏 = ൗ(−𝒂 + 𝒂𝟐 − 𝟒𝒃) 𝟐

𝝀𝟐 = ൗ(−𝒂 − 𝒂𝟐 − 𝟒𝒃) 𝟐

• For linear systems described by ( ሷ𝒙 + 𝒂 ሶ𝒙 + 𝒃𝒙 = 𝟎 ), there is only one singular
point (assuming 𝒃 ≠ 0), namely the origin. However, the trajectories in the
vicinity of this singularity point can display quite different characteristics,
depending on the values of a and b.
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• Phase Plane Analysis of Linear Systems

• The following cases can occur

1. 𝝀𝟏 and 𝝀𝟐 are both real and have the same sign (positive or negative)

2. 𝝀𝟏 and 𝝀𝟐are both real and have opposite signs

3. 𝝀𝟏 and 𝝀𝟐are complex conjugate with non-zero real parts

4. 𝝀𝟏 and 𝝀𝟐are complex conjugates with real parts equal to zero

• We now briefly discuss each of the above four cases.
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• Phase Plane Analysis of Linear Systems

• STABLE OR UNSTABLE NODE

• The first case corresponds to a node. A node can be stable or unstable. If the
eigenvalues are negative, the singularity point is called a stable node because both 𝒙
and ሶ𝒙 converge to zero exponentially, as shown in Figure (a). If both eigenvalues are
positive, the point is called an unstable node, because both 𝒙 and ሶ𝒙 diverge from zero
exponentially, as shown in Figure (b). Since the eigenvalues are real, there is no
oscillation in the trajectories.
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• Phase Plane Analysis of Linear Systems

• SADDLE POINT

• The second case (say 𝝀𝟏 < 𝟎 and 𝝀𝟐 > 𝟎) corresponds to a saddle point (Figure (c)).
The phase portrait of the system has the interesting "saddle" shape shown in Figure
(c). Because of the unstable pole 𝝀𝟐 , almost all of the system trajectories diverge to
infinity. In this figure, one also observes two straight lines passing through the origin.
The diverging line (with arrows pointing to infinity) corresponds to initial conditions
which make 𝒌𝟐 (i.e., the unstable component) equal zero. The converging straight line
corresponds to initial conditions which make 𝒌𝟏 equal zero.
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• Phase Plane Analysis of Linear Systems

• STABLE OR UNSTABLE  FOCUS

• The third case corresponds to a focus. A stable focus occurs when the real part of the
eigenvalues is negative, which implies that 𝒙(𝒕) and ሶ𝒙 (t) both converge to zero. The
system trajectories in the vicinity of a stable focus are depicted in Figure (d). Note that
the trajectories encircle the origin one or more times before converging to it, unlike
the situation for a stable node. If the real part of the eigenvalues is positive, then 𝒙(𝒕)
and ሶ𝒙 (t) both diverge to infinity, and the singularity point is called an unstable focus.
The trajectories corresponding to an unstable focus are sketched in Figure (e).
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• Phase Plane Analysis of Linear Systems

• CENTER POINT

• The last case corresponds to a center point, as shown in Figure (f). The name
comes from the fact that all trajectories are ellipses and the singularity point is
the center of these ellipses. The phase portrait of the undamped mass-spring
system belongs to this category.

• Note that the stability characteristics of linear systems are uniquely determined
by the nature of their singularity points. This, however, is not true for nonlinear
systems.
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• Phase Plane Analysis of Nonlinear System

• In discussing the phase plane analysis of nonlinear systems, two points should
be kept in mind. Phase plane analysis of nonlinear systems is related to that of
linear systems, because the local behavior of a nonlinear system can be
approximated by the behavior of a linear system. Yet, nonlinear systems can
display much more complicated patterns in the phase plane, such as multiple
equilibrium points and limit cycles. We now discuss these points in more detail.
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• Phase Plane Analysis of Nonlinear System

• LOCAL BEHAVIOR OF NONLINEAR SYSTEMS

• In the phase portrait of Figure 2, one notes
that, in contrast to linear systems, there are
two singular points, (0,0) and (-3,0).
However, we also note that the features of
the phase trajectories in the neighborhood
of the two singular points look very much
like those of linear systems, with the first
point corresponding to a stable focus and
the second to a saddle point. This similarity
to a linear system in the local region of each
singular point can be formalized by
linearizing the nonlinear system, as we now
discuss.
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• Phase Plane Analysis of Nonlinear System

• LOCAL BEHAVIOR OF NONLINEAR SYSTEMS

• If the singular point of interest is not at the origin, by defining the difference
between the original state and the singular point as a new set of state variables,
one can always shift the singular point to the origin. Therefore, without loss of
generality, we may simply consider Equation (ẋ1=f1(x1, x2), ẋ2=f2(x1, x2) with a
singular point at 0. Using Taylor expansion, Equations (ẋ1=f1(x1, x2)) and (ẋ2=f2(x1,
x2) can be rewritten as

ሶ𝒙𝟏 = 𝐚𝒙𝟏 + 𝒃𝒙𝟐 + 𝒈𝟏(𝒙𝟏, 𝒙𝟐)
ሶ𝒙𝟐 = 𝐜𝒙𝟏 + 𝒅𝒙𝟐 + 𝒈𝟐(𝒙𝟏, 𝒙𝟐)

• where 𝒈𝟏 and 𝒈𝟐 contain higher order terms.
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• Phase Plane Analysis of Nonlinear System

• LOCAL BEHAVIOR OF NONLINEAR SYSTEMS

• In the vicinity of the origin, the higher order terms can be neglected, and
therefore, the nonlinear system trajectories essentially satisfy the linearized
equation

ሶ𝒙𝟏 = 𝐚𝒙𝟏 + 𝒃𝒙𝟐
ሶ𝒙𝟐 = 𝐜𝒙𝟏 + 𝒅𝒙𝟐

• As a result, the local behavior of the nonlinear system can be approximated by 
the patterns shown in Figure 9.
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• Phase Plane Analysis of Nonlinear System

• LOCAL BEHAVIOR OF NONLINEAR SYSTEMS

• (9)
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• Phase Plane Analysis of Nonlinear
System

• LIMIT CYCLES
• In the phase portrait of the nonlinear

Van der Pol equation, shown in Figure.8,
one observes that the system has an
unstable node at the origin.
Furthermore, there is a closed curve in
the phase portrait. Trajectories inside
the curve and those outside the curve
all tend to this curve, while a motion
started on this curve will stay on it
forever, circling periodically around the
origin. This curve is an instance of the
so-called "limit cycle" phenomenon.
Limit cycles are unique features of
nonlinear systems.
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• Phase Plane Analysis of Nonlinear System

• LIMIT CYCLES

• In the phase plane, a limit cycle is defined as an isolated closed curve. The
trajectory has to be both closed, indicating the periodic nature of the motion,
and isolated, indicating the limiting nature of the cycle (with nearby trajectories
converging or diverging from it). Thus, while there are many closed curves in the
phase portraits of the mass-spring-damper system in Example 1 or the satellite
system in Example 5, these are not considered limit cycles in this definition,
because they are not isolated.
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• Phase Plane Analysis of Nonlinear System

• LIMIT CYCLES

• Depending on the motion patterns of the trajectories in the vicinity of the limit 
cycle, one can distinguish three kinds of limit cycles

1. Stable Limit Cycles: all trajectories in the vicinity of the limit cycle converge to 
it as 𝒕 → ∞ (Figure 10(a));

2. Unstable Limit Cycles: all trajectories in the vicinity of the limit cycle diverge 
from it as 𝒕 → ∞ (Figure 10(b));

3. Semi-Stable Limit Cycles: some of the trajectories in the vicinity converge to it, 
while the others diverge from it as 𝒕 → ∞ (Figure 10(c));
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• Phase Plane Analysis of
Nonlinear System

• LIMIT CYCLES

• As seen from the phase
portrait of Figure 8, the
limit cycle of the Van der
Pol equation is clearly
stable. Let us consider
some additional examples
of stable, unstable, and
semi-stable limit cycles.

Phase Plane Analysis
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• Phase Plane Analysis of Nonlinear System

• LIMIT CYCLES

• Example 2.7: stable, unstable, and semi-stable limit cycles

• Consider the following nonlinear systems

• 𝒂 ሶ𝒙𝟏 = 𝒙𝟐 − 𝒙𝟏 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 − 𝟏 ሶ𝒙𝟐 = 𝒙𝟏 − 𝒙𝟐 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 − 𝟏 (𝟐. 𝟏𝟐)

• 𝒃 ሶ𝒙𝟏 = 𝒙𝟐 + 𝒙𝟏 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 − 𝟏 ሶ𝒙𝟐 = −𝒙𝟏 + 𝒙𝟐 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 − 𝟏 (𝟐. 𝟏𝟑)

• 𝒄 ሶ𝒙𝟏 = 𝒙𝟐 − 𝒙𝟏 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 − 𝟏
𝟐

ሶ𝒙𝟐 = −𝒙𝟏 − 𝒙𝟐 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 − 𝟏
𝟐

(𝟐. 𝟏𝟒)

• Let us study system (a) first. By introducing polar coordinates
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• Phase Plane Analysis of Nonlinear System
• LIMIT CYCLES
• Let us study system (a) first. By introducing polar coordinates

𝒓 = 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 Τ𝟏 𝟐

𝜽 = 𝐭𝐚𝐧−𝟏 Τ(𝒙𝟐 𝒙𝟏)

• the dynamic equations (12) are transformed as
𝒅𝒓

𝒅𝒕
= −𝒓 𝒓𝟐 − 𝟏

𝒅𝜽

𝒅𝒕
= −1

• When the state starts on the unit circle, the above equation shows that ŕ(t) = 0.
Therefore, the state will circle around the origin with a period 1/2π. When r < 1, then
ŕ > 0. This implies that the state tends to the circle from inside. When r > 1, then ŕ < 0.
This implies that the state tends toward the unit circle from outside. Therefore, the
unit circle is a stable limit cycle.
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• Phase Plane Analysis of Nonlinear System
• LIMIT CYCLES
• When the state starts on the unit circle, the above equation shows that ŕ(t) = 0.

Therefore, the state will circle around the origin with a period 1/2π. When r < 1, then
ŕ > 0. This implies that the state tends to the circle from inside. When r > 1, then ŕ < 0.
This implies that the state tends toward the unit circle from outside. Therefore, the
unit circle is a stable limit cycle.

• This can also be concluded by examining the analytical solution of (12)

• 𝒓 𝒕 = 𝟏

(𝟏+𝒄𝟎𝒆
−𝟐𝒕) Τ𝟏 𝟐

𝜽 𝒕 = 𝜽𝟎 − 𝒕

• Where

• 𝒄𝟎 =
𝟏

𝒓𝟎
𝟐 − 𝟏

• Similarly, one can find that the system (b) has an unstable limit cycle and system (c) 
has a semistable limit cycle.
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• Phase Plane Analysis of Nonlinear System

• Existence of Limit Cycles

• It is of great importance for control engineers to predict the existence of limit
cycles in control systems. In this section, we state three simple classical
theorems to that effect. These theorems are easy to understand and apply.

• The first theorem to be presented reveals a simple relationship between the
existence of a limit cycle and the number of singular points it encloses. In the
statement of the theorem, we use N to represent the number of nodes,
centers, and foci enclosed by a limit cycle, and S to represent the number of
enclosed saddle points.

• Theorem 1 (Poincare) if a limit cycle exists in the second-order autonomous
system (1), then N = S + 1 .
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• Phase Plane Analysis of Nonlinear System

• Existence of Limit Cycles

• This theorem is sometimes called the index theorem. Its proof is mathematically involved
(actually, a family of such proofs led to the development of algebraic topology) and shall be
omitted here. One simple inference from this theorem is that a limit cycle must enclose at
least one equilibrium point. The theorem's result can be verified easily on Figures 8 and 10.

• The second theorem is concerned with the asymptotic properties of the trajectories of
second-order systems.

• Theorem 2 (Poincare-Bendixson) If a trajectory of the second-order autonomous system
remains in a finite region Ω, then one of the following is true:

• (a) the trajectory goes to an equilibrium point

• (b) the trajectory tends to an asymptotically stable limit cycle

• (c) the trajectory is itself a limit cycle

• While the proof of this theorem is also omitted here, its intuitive basis is easy to see, and can
be verified on the previous phase portraits.
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• Phase Plane Analysis of Nonlinear System

• Existence of Limit Cycles

• The third theorem provides a sufficient condition for the non-existence of limit cycles.

• Theorem 3 (Bendixson) For the nonlinear system (1), no limit cycle can exist in a region Ω. of the 
phase plane in which  Τ𝝏𝒇𝟏 𝝏𝒙𝟏 + Τ𝝏𝒇𝟐 𝝏𝒙𝟐 does not vanish and does not change sign.

• Proof: Let us prove this theorem by contradiction. First note that, from (5), the equation

• 𝒇𝟐𝒅𝒙𝟏 − 𝒇𝟏𝒅𝒙𝟐 = 𝟎 (15)

• is satisfied for any system trajectories, including a limit cycle. Thus, along the closed curve L of a limit 
cycle, we have

• 
𝑳
(𝒇𝟐𝒅𝒙𝟏 − 𝒇𝟏𝒅𝒙𝟐) = 𝟎 (16)

• Using Stokes' Theorem in calculus, we have

•

• 
𝑳
(𝒇𝟐𝒅𝒙𝟏 − 𝒇𝟏𝒅𝒙𝟐) = ) Τ𝝏𝒇𝟏 𝝏𝒙𝟏 + Τ𝝏𝒇𝟐 𝝏𝒙𝟐)𝒅𝒙𝟏 𝒅𝒙𝟐

• where the integration on the right-hand side is carried out on the area enclosed by the limit cycle.
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• Phase Plane Analysis of Nonlinear System

• Existence of Limit Cycles

• By Equation (16), the left-hand side must equal zero. This, however, contradicts
the fact that the right-hand side cannot equal zero because by hypothesis

Τ𝝏𝒇𝟏 𝝏𝒙𝟏 + Τ𝝏𝒇𝟐 𝝏𝒙𝟐 does not vanish and does not change sign.
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• Phase Plane Analysis of Nonlinear System

• Let us illustrate the result on an example

• Example 8: Consider the nonlinear system

• ሶ𝒙𝟏 = 𝒈 𝒙𝟐 + 𝟒𝒙𝟏𝒙𝟐
𝟐

• ሶ𝒙𝟐 = 𝒉 𝒙𝟏 + 𝟒𝒙𝟏
𝟐𝒙𝟐

• Since

•
𝝏𝒇𝟏

𝝏𝒙𝟏
+

𝝏𝒇𝟐

𝝏𝒙𝟐
= 𝟒(𝒙𝟏

𝟐 + 𝒙𝟐
𝟐)

• which is always strictly positive (except at the origin), the system does not have any
limit cycles anywhere in the phase plane.

• The above three theorems represent very powerful results. It is important to notice,
however, that they have no equivalent in higher-order systems, where exotic
asymptotic behaviors other than equilibrium points and limit cycles can occur.
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• Summary

• Phase plane analysis is a graphical method used to study second-order dynamic

systems. The major advantage of the method is that it allows visual examination
of the global behavior of systems. The major disadvantage is that it is mainly
limited to second-order systems (although extensions to third-order systems are
often achieved with the aid of computer graphics). The phenomena of multiple
equilibrium points and of limit cycles are clearly seen in phase plane analysis. A
number of useful classical theorems for the prediction of limit cycles in second-
order systems are also presented.
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