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Describing Function Analysis 
 

• The frequency response method is a powerful tool for the analysis 
and design of linear control systems. It is based on describing a linear 
system by a complex-valued function, the frequency response, 
instead of a differential equation. The power of the method comes 
from a number of sources. First, graphical representations can be 
used to facilitate analysis and design. Second, physical insights can be 
used, because the frequency response functions have clear physical 
meanings. Finally, the method's complexity only increases mildly with 
system order. Frequency domain analysis, however, cannot be directly 
applied to nonlinear systems because frequency response functions 
cannot be defined for nonlinear systems. 



Describing Function Analysis 
 

• Yet, for some nonlinear systems, an extended version of the 
frequency response method, called the describing function method, 
can be used to approximately analyze and predict nonlinear behavior. 
Even though it is only an approximation method, the desirable 
properties it inherits from the frequency response method, and the 
shortage of other systematic tools.   

• component of the bag of tools of practicing control engineers. The 
main use of describing function method is for the prediction of limit 
cycles in nonlinear systems, although the method has a number of 
other applications such as predicting subharmonics, and the response 
of nonlinear systems to sinusoidal inputs. 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

The interesting and classical Van der Pol equation 

 ẍ + α(x2 -l) ẋ + x = 0                              (1) 

where α is a positive constant. 

let us determine whether there exists a limit cycle in this system and, if so, 
calculate the amplitude and frequency of the limit cycle. 

To this effect, we first assume the existence of a limit cycle with 
undetermined amplitude and frequency, and then determine whether the 
system equation can indeed sustain such a solution. This is quite similar to 
the assumed-variable method in differential equation theory, where we 
first assume a solution of certain form, substitute it into the differential 
equation, and then attempt to determine the coefficients in the solution. 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

It is seen that the feedback system contains a linear block and a 
nonlinear block, where the linear block, although unstable, has low-
pass properties. 
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Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

Now let us assume that there is a limit cycle in the system and the oscillation signal 
x is in the form of 

 𝑥 𝑡 = 𝐴 sin𝜔𝑡 

with A being the limit cycle amplitude and 𝝎 being the frequency. Thus, 
𝑥 𝑡 = 𝐴𝜔 cos𝜔𝑡 

Therefore, the output of the nonlinear block is 

  
𝑤 = 𝑥2𝑥 = 𝐴2 sin2(𝜔𝑡) 𝐴𝜔 cos(𝜔𝑡) 

[sin2(𝜔𝑡) =
1

2
(1 − cos 2𝜔𝑡 )] 

  

𝑤 = −
𝐴3𝜔

2
(1 − cos 2𝜔𝑡 ) cos 𝜔𝑡 = −

𝐴3𝜔

4
(cos 𝜔𝑡 − cos 3𝜔𝑡 ) 

[2 cos 𝑎 cos 𝑏 = cos 𝑎 + 𝑏 + cos 𝑎 − 𝑏 ] 

 

 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

It is seen that w contains a third harmonic term. Since the linear block has low-pass 
properties, we can reasonably assume that this third harmonic term is sufficiently 
attenuated by the linear block and its effect is not present in the signal flow after 
the linear block. This means that we can approximate w by 

 

𝑤 ≈ −
𝐴3

4
𝜔(cos 𝜔𝑡 =

𝐴2

4

𝑑

𝑑𝑡
[−𝐴 𝑠𝑖𝑛 𝜔𝑡 ] 

𝑤 ≈
𝐴2

4

𝑑

𝑑𝑡
[− 𝑥 𝑡 ] 

 

 

so that the nonlinear block in Figure(1). can be approximated by the equivalent 
"quasi-linear" block in Figure(2). The "transfer function" of the quasi-linear block 
depends on the signal amplitude A, unlike a linear system transfer function (which 
is independent of the input magnitude). 

 

 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

In the frequency domain, this corresponds to 

𝑤 = 𝑁(𝐴,𝜔)(−𝑥)                               (2) 
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Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

In the frequency domain, this corresponds to 

𝑤 = 𝑁(𝐴,𝜔)(−𝑥)      (2) 
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Describing Function Fundamentals 
1- An Example of Describing Function Analysis 
 

𝑁 𝐴,𝜔 =
𝐴2

4
(𝑗𝜔) 

That is, the nonlinear block can be approximated by the frequency response 
function 𝑁 𝐴,𝜔 . Since the system is assumed to contain a sinusoidal 
oscillation, we have 
  

𝑥 𝑡 = 𝐴 sin 𝜔𝑡 = 𝐺 𝑗𝜔 𝑤 = 𝐺 𝑗𝜔 𝑁(𝐴,𝜔)(−𝑥) 

 
where 𝐺 𝑗𝜔 is the linear component transfer function. This implies that 

1 +
𝐴2(𝑗𝜔)

4

𝛼

(𝑗𝜔)2−𝛼 𝑗𝜔 + 1
= 0 

  
 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

  

 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 
 

Solving this equation, we obtain 
  

𝐴 = 2,   𝜔 = 1 
  

Note that in terms of the Laplace variable p, the closed-loop characteristic equation of this 
system is 
  

1 +
𝐴2𝑝

4

𝛼

𝑝2−𝛼𝑝+1
= 0                                                 (3) 

  

whose eigenvalues are 
 

𝜆1,2 = −
1

8
𝛼(𝐴2 − 4) ∓

1

64
𝛼2 𝐴2 − 4 2 − 1                                        (4) 

 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

 

Corresponding to A=2, we obtain the eigenvalues 𝝀𝟏,𝟐 = ∓𝒋  This 
indicates the existence of a limit cycle of amplitude 2 and frequency 1. 
It is interesting to note neither the amplitude nor the frequency 
obtained above depends on the parameter α in Equation (1). 

In the phase plane, the above approximate analysis suggests that the 
limit cycle is a circle of radius 2, regardless of the value of α. To verify 
the plausibility of this result, the real limit cycles corresponding to the 
different values of α are plotted (Figure (3)). It is seen that the above 
approximation is reasonable for small value of α, but that the 
inaccuracy grows as α increases. This is understandable because as α 
grows the nonlinearity becomes more significant and the quasi-linear 
approximation becomes less accurate. 

 

 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 
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Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

 

The stability of the limit cycle can also be studied using the above analysis. 
Let us assume that the limit cycle's amplitude A is increased to a value larger 
than 2. 

 Then, equation (4) 

[𝜆1,2 = −
1

8
𝛼(𝐴2 − 4) ∓

1

64
𝛼2 𝐴2 − 4 2 − 1] 

 shows that the closed-loop poles now have a negative real part. This 
indicates that the system becomes exponentially stable and thus the signal 
magnitude will decrease.  

Similar conclusions are obtained assuming that the limit cycle's amplitude A 
is decreased to a value less than 2. Thus, we conclude that the limit cycle is 
stable with an amplitude of 2. 

 

 



Describing Function Fundamentals 
1- An Example of Describing Function Analysis 

 

Note that, in the above approximate analysis, the critical step is to 
replace the nonlinear block by the quasi-linear block which has the 

frequency response function (
𝐴2

4
(𝑗𝜔)). Afterwards, the amplitude and 

frequency of the limit cycle can be determined for 

 1 + 𝐺 𝑗𝜔 𝑁 𝐴,𝜔 = 0. 

 The function 𝑁 𝐴,𝜔  is called the describing function of the nonlinear 
element. The above approximate analysis can be extended to predict 
limit cycles in other nonlinear systems which can be represented into 
the block diagram similar to Figure (1). 

 

 



Describing Function Fundamentals 
2- Applications Domain 

Simply speaking, any system which can be transformed into the 
configuration in Figure (4) can be studied using describing functions. 
There are at least two important classes of systems in this category. 
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Describing Function Fundamentals 
2- Applications Domain 

 

The first important class consists of "almost" linear systems. By 
"almost" linear systems, we refer to systems which contain hard 
nonlinearities in the control loop but are otherwise linear. Such systems 
arise when a control system is designed using linear control but its 
implementation involves hard nonlinearities, such as motor saturation, 
actuator or sensor dead-zones, Coulomb friction, or hysteresis in the 
plant. An example is shown in Figure (5), which involves hard 
nonlinearities in the actuator. 

 

 

 

 



Describing Function Fundamentals 
2- Applications Domain 
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Describing Function Fundamentals 
2- Applications Domain 

Example 1: A system containing only one nonlinearity 

 Consider the control system shown in Figure (5). The plant is linear and 
the controller is also linear. However, the actuator involves a hard 
nonlinearity. This system can be rearranged into the form of Figure (4) 
by regarding 𝐺𝑝𝐺𝑐𝐺𝑠 as the linear component G, and the actuator 
nonlinearity as the nonlinear element. 

"Almost" linear systems involving sensor or plant nonlinearities can be 

similarly rearranged into the form of Figure (4). 

The second class of systems consists of genuinely nonlinear systems 
whose dynamic equations can actually be rearranged into the form of 
Figure (4).  

 

 

 

 

 

 

 



Describing Function Fundamentals 
2- Applications Domain 

APPLICATIONS OF DESCRIBING FUNCTIONS 

For systems such as the one in Figure (5), limit cycles can often occur 
due to the nonlinearity. However, linear control cannot predict such 
problems. Describing functions, on the other hand, can be conveniently 
used to discover the existence of limit cycles and determine their 
stability, regardless of whether the nonlinearity is "hard" or "soft." The 
applicability to limit cycle analysis is due to the fact that the form of the 
signals in a limit-cycling system is usually approximately sinusoidal. This 

can be conveniently explained on the system in Figure (4). Indeed, 
assume that the linear element in Figure (4) has low-pass properties 
(which is the case of most physical systems) 

  

 

 

 

 

 

 



Describing Function Fundamentals 
2- Applications Domain 

APPLICATIONS OF DESCRIBING FUNCTIONS 

If there is a limit cycle in the system, then the system signals must all be 
periodic. Since, as a periodic signal, the input to the linear element in 
Figure (4) can be expanded as the sum of many harmonics, and since 
the linear element, because of its low-pass property, filters out higher 
frequency signals, the output y(t) must be composed mostly of the 
lowest harmonics. Therefore, it is appropriate to assume that the 
signals in the whole system are basically sinusoidal in form.  

 

 

 

 

 

 



Describing Function Fundamentals 
2- Applications Domain 

APPLICATIONS OF DESCRIBING FUNCTIONS 

Prediction of limit cycles is very important, because limit cycles can 
occur frequently in physical nonlinear system. Sometimes, a limit cycle 
can be desirable. This is the case of limit cycles in the electronic 
oscillators used in laboratories. Another example is the so-called dither 
technique which can be used to minimize the negative effects of 
Coulomb friction in mechanical systems. In most control systems, 
however, limit cycles are undesirable. This may be due to a number of 
reasons: 

  

 

 

 

 

 

 



Describing Function Fundamentals 
2- Applications Domain 

APPLICATIONS OF DESCRIBING FUNCTIONS 

 

1- limit cycle, as a way of instability, tends to cause poor control accuracy. 

  

2-the constant oscillation associated with the limit cycles can cause 
increasing wear or even mechanical failure of the control system hardware. 

 

3- limit cycling may also cause other undesirable effects, such as passenger 
discomfort in an aircraft under autopilot. 

  

 

 

 

 

 

 



Describing Function Fundamentals 
2- Applications Domain 

APPLICATIONS OF DESCRIBING FUNCTIONS 

 

In general, although a precise knowledge of the waveform of a limit 
cycle is usually not mandatory, the knowledge of the limit cycle's 
existence, as well as that of its approximate amplitude and frequency, 
is critical. The describing function method can be used for this purpose. 
It can also guide the design of compensators so as to avoid limit cycles. 

  

 

 

 

 

 

 



Describing Function Fundamentals 
3- Basic Assumptions 

Consider a nonlinear system in the general form of Figure (4). In order to 
develop the basic version of the describing function method, the system 
has to satisfy the following four conditions: 

 

1. there is only a single nonlinear component. 

2. the nonlinear component  is time-invariant. 

3.corresponding to a sinusoidal input    𝒙 = sin𝜔𝑡 , only the fundamental 
component 𝒘𝟏(𝒕) in the output 𝒘(𝒕)has to be considered. 

4. the nonlinearity is odd. 

 

 

 

 

 



Describing Function Fundamentals 
3- Basic Assumptions 

The first assumption implies that if there are two or more nonlinear 
components in a system, one either has to lump them together as a single 
nonlinearity (as can be done with two nonlinearities in parallel), or retain 
only the primary nonlinearity and neglect the others. 

 

The second assumption implies that we consider only autonomous 
nonlinear systems. It is satisfied by many nonlinearities in practice, such as 
saturation in amplifiers, backlash in gears, Coulomb friction between 
surfaces, and hysteresis in relays. The reason for this assumption is that the 
Nyquist criterion, on which the describing function method is largely 
based, applies only to linear time-invariant systems. 

 

 

 

 

 



Describing Function Fundamentals 
3- Basic Assumptions 

The third assumption is the fundamental assumption of the describing function 
method. It represents an approximation, because the output of a nonlinear 
element corresponding to a sinusoidal input usually contains higher harmonics 
besides the fundamental. This assumption implies that the higher-frequency 
harmonics can all be neglected in the analysis, as compared with the 
fundamental component. For this assumption to be valid, it is important for the 
linear element following the nonlinearity to have low-pass properties, i.e., 

  

𝑮(𝒋𝝎) ≫ 𝑮 𝒋𝒏𝝎   𝑓𝑜𝑟      𝑛 = 2,3, … .                            (5) 

  

This implies that higher harmonics in the output will be filtered out significantly. 
Thus, the third assumption is often referred to as the filtering hypothesis. 

 

 

 

 

 



Describing Function Fundamentals 
3- Basic Assumptions 

The fourth assumption means that the plot of the nonlinearity relation f(x) 
between the input and output of the nonlinear element is symmetric 
about the origin. This assumption is introduced for simplicity, i.e., so that 
the static term in the Fourier expansion of the output can be neglected. 
Note that the common nonlinearities discussed before all satisfy this 
assumption. 

The relaxation of the above assumptions has been widely studied in 
literature, leading to describing function approaches for general situations, 
such as multiple nonlinearities, time-varying nonlinearities, or multiple-
sinusoids. However, these methods based on relaxed conditions are usually 
much more complicated than the basic version, which corresponds to the 
above four assumptions. In this chapter, we shall mostly concentrate on 
the basic version. 

 

 

 

 

 

 



Describing Function Fundamentals 
4- Basic Definitions 

Let us now discuss how to represent a nonlinear component by a 
describing function. Let us consider a sinusoidal input to the 
nonlinear element, of amplitude A and frequency ω, i.e., x(t)=A 
sin(ωt), as shown in Figure (6). 

 The output of the nonlinear component 𝒘(𝒕) is often a periodic, 
though generally non-sinusoidal, function. Note that this is 
always the case if the nonlinearity f(x) is single-valued, because 
the output is 𝒇 𝑨 𝐬𝐢𝐧 𝝎 𝒕 + 𝟐𝝅 𝝎 = 𝒇 𝑨𝐬𝐢𝐧 𝝎𝒕 . Using Fourier 
series, the periodic function 𝒘(𝒕) can be expanded as 

 

 

 

 

 

 

 

 



Describing Function Fundamentals 
4- Basic Definitions 
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Describing Function Fundamentals 
4- Basic Definitions 

𝒘 𝒕 =
𝑎0

2
+ 𝑎𝑛 cos 𝑛𝜔𝑡 + 𝑏𝑛 sin 𝑛𝜔𝑡∞

𝑛=1               (6) 

where the Fourier coefficients 𝑎𝑖's and 𝑏𝑖's  are generally functions of A and 𝜔, 
determined by 

  

𝑎0 =
1

𝜋
 𝑤 𝑡 𝑑(𝜔𝑡)
𝜋

−𝜋
                                                                          (7a) 

  

  

𝑎𝑛 =
1

𝜋
 𝑤 𝑡 cos 𝑛𝜔𝑡 𝑑(𝜔𝑡)
𝜋

−𝜋
                                                         (7b) 

  

𝑏𝑛 =
1

𝜋
 𝑤 𝑡 sin 𝑛𝜔𝑡 𝑑(𝜔𝑡)
𝜋

−𝜋
                                                           (7c)       

 

 

 

 

 

 

 



Describing Function Fundamentals 
4- Basic Definitions 

Due to the fourth assumption above, one has 𝑎0 = 0. Furthermore, the 
third assumption implies that we only need to consider the fundamental 
component 𝑤1(𝑡), namely    

 𝒘 𝒕 ≈ 𝑤1(𝑡) = 𝑎1 cos 𝜔𝑡 + 𝑏1 sin 𝜔𝑡 = 𝑀 sin 𝜔𝑡 + ∅                (8) 

Where 

 𝑀 𝐴,𝜔 = 𝑎1
2 + 𝑏1

2     and     ∅ 𝐴,𝜔 = tan−1(𝑎1 𝑏1 ) 

Expression (8) indicates that the fundamental component corresponding to 
a sinusoidal input is a sinusoid at the same frequency. In complex 
representation, this sinusoid can be written as  

𝑤1 𝑡 = 𝑀𝑒𝑖 𝜔𝑡+∅ = (𝑏1 + 𝑖𝑎1)𝑒
𝑖𝜔𝑡  .          

 

 

 

 

 

 

 



Describing Function Fundamentals 
4- Basic Definitions 

Similarly to the concept of frequency response function, which is the 
frequency domain ratio of the sinusoidal input and the sinusoidal output of 
a system, we define the describing function of the nonlinear element to be 
the complex ratio of the fundamental component of the nonlinear element 
by the input sinusoid, i.e., 

 

 

𝑁 𝐴,𝜔 =
𝑀𝑒𝑖 𝜔𝑡+∅

𝐴𝑒𝑖𝜔𝑡
=

𝑀

𝐴
𝑒𝑖∅ =

1

𝐴
(𝑏1 + 𝑖𝑎1)                 (9) 

 

 

 

 

 

 

 



Describing Function Fundamentals 
4- Basic Definitions 

With a describing function representing the nonlinear component, the 
nonlinear element, in the presence of sinusoidal input, can be treated as if 
it were a linear element with a frequency response function 𝑁 𝐴, 𝜔 , as 
shown in Figure (6). The concept of a describing function can thus be 
regarded as an extension of the notion of frequency response. For a linear 
dynamic system with frequency response function 𝐻 𝑗𝜔 , the describing 
function is independent of the input gain, as can be easily shown. 

However, the describing function of a nonlinear element differs from the 
frequency response function of a linear element in that it depends on the 
input amplitude A. Therefore, representing the nonlinear element as in 
Figure (6) is also called quasi-linearization. 

 

 

 

 

 

 

 



Describing Function Fundamentals 
4- Basic Definitions 

Generally, the describing function depends on the frequency and 
amplitude of the input signal. There are, however, a number of special 
cases. When the nonlinearity is single-valued, the describing function 
𝑁 𝐴,𝜔 is real and independent of the input frequency 𝜔. The realness of N 
is due to the fact that 𝑎1 = 0, which is true because 𝑓 𝐴 sin𝜔𝑡 cos𝜔𝑡, 
the integrand in the expression (7b) for 𝑎1, is an odd function of 𝜔𝑡, and 
the domain of integration is the symmetric interval −𝜋 , 𝜋 . The 
frequency-independent nature is due to the fact that the integration of the 
single valued function 𝑓 𝐴 sin𝜔𝑡 sin𝜔𝑡 in expression (7c) is done  for the 
variable 𝜔𝑡 , which implies that 𝜔  does not explicitly appear in the 
integration. 

 

 

 

 

 

 

 



Describing Function Fundamentals 
4- Basic Definitions 

 

Although we have implicitly assumed the nonlinear element to be a scalar 
nonlinear function, the definition of the describing function also applies to 
the case when the nonlinear element contains dynamics (i.e., is described 
by differential equations instead of a function). The derivation of 
describing functions for such nonlinear elements is usually more 
complicated and may require experimental evaluation. 

 

 

 

 

 

 

 



Describing Function Fundamentals 
5- Computing Describing Functions 

 

A number of methods are available to determine the describing functions 
of nonlinear elements in control systems, based on definition (9). We now 
briefly describe three such methods: analytical calculation, experimental 
determination, and numerical integration. Convenience and cost in each 
particular application determine which method should be used. One thing 
to remember is that precision is not critical in evaluating describing 
functions of nonlinear elements, because the describing function method 
is itself an approximate method. 

 

 

 

 

 

 

 

 



Describing Function Fundamentals 
5- Computing Describing Functions 

ANALYTICAL CALCULATION 

  

For nonlinearities whose input-output relationship 𝑤 = 𝑓(𝑥) is given by 
graphs or tables, it is convenient to use numerical integration to evaluate 
the describing functions. The idea is, of course, to approximate integrals in 
(7)[𝑎0, 𝑎𝑛, 𝑏𝑛] by discrete sums over small intervals. Various numerical 
integration schemes can be applied for this purpose. It is obviously 
important that the numerical integration be easily implementable by 
computer programs. The result is a plot representing the describing 
function. 

 

 

 

 

 

 



Describing Function Fundamentals 
5- Computing Describing Functions 

EXPERIMENTAL EVALUATION 

The experimental method is particularly suitable for complex nonlinearities 
and dynamic nonlinearities. When a system nonlinearity can be isolated 
and excited with sinusoidal inputs of known amplitude and frequency, 
experimental determination of the describing function can be obtained by 
using a harmonic analyzer on the output of the nonlinear element. This is 
quite similar to the experimental determination of frequency response 
functions for linear elements. The difference here is that not only the 
frequencies, but also the amplitudes of the input sinusoidal should be 
varied. The results of the experiments are a set of curves on complex 
planes representing the describing function 𝑁 𝐴, 𝜔 , instead of analytical 
expressions.  

 

 

 

 

 

 



Describing Function Fundamentals 
5- Computing Describing Functions 

EXPERIMENTAL EVALUATION 

 Specialized instruments are available which automatically compute the 
describing functions of nonlinear elements based on the measurement of 
nonlinear element response to harmonic excitation. 

  

  

 

 

 

 

 

 



Describing Function Fundamentals 
5- Computing Describing Functions 

 

Let us illustrate on a simple nonlinearity how to evaluate describing functions 
using the analytical technique. 

Example 2: Describing function of a hardening spring 

The characteristics of a hardening spring are given by 

  
𝑤 = 𝑥 + 𝑥3 2  

 with x being the input and w being the output. Given an input x(t)=A sin(ωt)), 
the output 𝑤1(𝑡) = 𝐴 sin 𝜔𝑡 + 𝐴3 sin3 𝜔𝑡 /2 can be expanded as a Fourier 
series, with the fundamental being 

  
𝑤1(𝑡) = 𝑎1 cos 𝜔𝑡 + 𝑏1 sin 𝜔𝑡  

 

 

 

 

 



Describing Function Fundamentals 
5- Computing Describing Functions 
 
Because 𝑤(𝑡) is an odd function, one has 𝑎1 = 0, according to (7). The 
coefficient 𝑏1 is 
  

𝑏1 =
1

𝜋
 𝐴 sin 𝜔𝑡 + 𝐴3 sin3 𝜔𝑡 /2 sin 𝜔𝑡 𝑑 𝜔𝑡 = 𝐴 +

3

8
𝐴3

𝜋

−𝜋

 

 Therefore, the fundamental is 

𝑤1(𝑡) = (𝐴 +
3

8
𝐴3) sin 𝜔𝑡  

 and the describing function of this nonlinear component is 

 𝑁 𝐴,𝜔 = 𝑁 𝐴 = 1 +
3

8
𝐴2 

 Note that due to the odd nature of this nonlinearity, the describing function is 
real, being a function only of the amplitude of the sinusoidal input. 
 
 
 
 
 



Describing Function Fundamentals 
2 - Common Nonlinearities In Control Systems 

In this section, we take a closer look at the nonlinearities found in control 
systems. Consider the typical system block shown in Figure (7). It is 
composed of four parts: a plant to be controlled, sensors for 
measurement, actuators for control action, and a control law, usually 
implemented on a computer. Nonlinearities may occur in any part of the 
system, and thus make it a nonlinear control system.  

 

 

                   (7) 

                                    

 

 

 

 

 



Describing Function Fundamentals 
2 - Common Nonlinearities In Control Systems 

CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

 

Nonlinearities can be classified as continuous and discontinuous. Because 
discontinuous nonlinearities cannot be locally approximated by linear 
functions, they are also called "hard" nonlinearities. Hard nonlinearities 
are commonly found in control systems, both in small range operation and 
large range operation. Whether a system in small range operation should 
be regarded as nonlinear or linear depends on the magnitude of the hard 
nonlinearities and on the extent of their effects on the system 
performance. 

Because of the common occurence of hard nonlinearities, let us briefly 
discuss the characteristics and effects of some important ones. 

 

 

 

 

 



Describing Function Fundamentals 
2 - Common Nonlinearities In Control Systems 

CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

Saturation 

 When one increases the input to a physical device, the following 
phenomenon is often observed: when the input is small, its increase leads 
to a corresponding (often proportional) increase of output; but when the 
input reaches a certain level, its further increase does produces little or no 
increase of the output. The output simply stays around its maximum value. 
The device is said to be in saturation when this happens. Simple examples 
are transistor amplifiers and magnetic amplifiers. A saturation nonlinearity 
is usually caused by limits on component size, properties of materials, and 
available power. A typical saturation nonlinearity is represented in 
Figure(8), where the thick line is the real nonlinearity and the thin line is an 
idealized saturation nonlinearity. 
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CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

Saturation 

 Most actuators display saturation characteristics. For example, the output 
torque of a two-phase servo motor cannot increase infinitely and tends to 
saturate, due to the properties of the magnetic material. Similarly, valve-
controlled hydraulic servo motors are saturated by the maximum flow rate.  

Saturation can have complicated effects on control system performance. 

Roughly speaking, the occurence of saturation amounts to reducing the gain of 
the device (e.g., the amplifier) as the input signals are increased. As a result, if a 
system is unstable in its linear range, its divergent behavior may be suppressed 
into a selfsustained oscillation, due to the inhibition created by the saturating 
component on the system signals. On the other hand, in a linearly stable system, 
saturation tends to slow down the response of the system, because it reduces 
the effective gain. 
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CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

On-off nonlinearity 

 

 An extreme case of saturation is the on-off or relay nonlinearity. It occurs 
when the linearity range is shrunken to zero and the slope in the linearity 
range becomes vertical. Important examples of on-off nonlinearities 
include output torques of gas jets for spacecraft control and, of course, 
electrical relays. On-off nonlinearities have effects similar to those of 
saturation nonlinearities. Furthermore they can lead to "chattering" in 
physical systems due to their discontinuous nature.  
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On-off nonlinearity 

 

  



Describing Function Fundamentals 
2 - Common Nonlinearities In Control Systems 

CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

Dead-zone 

In many physical devices, the output is zero until the magnitude of the 
input exceeds a certain value. Such an input-output relation is called a 
dead-zone. Consider for instance a d.c. motor. In an idealistic model, we 
assume that any voltage applied to the armature windings will cause the 
armature to rotate, with small voltage causing small motion. In reality, due 
to the static friction at the motor shaft, rotation will occur only if the 
torque provided by the motor is sufficiently large. Similarly, when 
transmitting motion by connected mechanical components, dead zones 
result from manufacturing clearances. Similar dead-zone phenomena 
occur in valve-controlled pneumatic actuators and in hydraulic 
components. 
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Dead-zone 

Dead-zones can have a number of possible effects on 
control systems. Their most common effect is to 
decrease static output accuracy. They may also lead to 
limit cycles or system instability because of the lack of 
response in the dead zone. In some cases, however, 
they may actually stabilize a system or suppress self-
oscillations. For example, if a dead-zone is incorporated 
into an ideal relay, it may lead to the avoidance of the 
oscillation at the contact point of the relay, thus 
eliminating sparks and reducing wear at the contact 
point.  (9) 
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CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

Backlash and hysteresis 

Backlash often occurs in transmission systems. It is caused by the small gaps 
which exist in transmission mechanisms. In gear trains, there always exist 
small gaps between a pair of mating gears, due to the unavoidable errors in 
manufacturing and assembly. Figure (10) illustrates a typical situation. As a 
result of the gaps, when the driving gear rotates a smaller angle than the gap 
b, the driven gear does not move at all, which corresponds to the dead-zone 
(OA segment in Figure (10)); after contact has been established between the 
two gears, the driven gear follows the rotation of the driving gear in a linear 
fashion (AB segment). 
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CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

Backlash and hysteresis 

When the driving gear rotates in the reverse direction by a distance 
of 2b, the driven gear again does not move, corresponding to the BC 
segment in Figure (10). After the contact between the two gears is 
re-established, the driven gear follows the rotation of the driving 
gear in the reverse direction (CD segment). Therefore, if the driving 
gear is in periodic motion, the driven gear will move in the fashion 
represented by the closed path EBCD. Note that the height of B, C, D, 
E in this figure depends on the amplitude of the input sinusoidal. 
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CONTINUOUS AND DISCONTINUOUS NONLINEARITIES 

Backlash and hysteresis   

A critical feature of backlash is its multi-valued nature. 
Corresponding to each input, two output values are possible. Which 
one of the two occur depends on the history of the input. We 
remark that a similar multi-valued nonlinearity is hysteresis, which is 
frequently observed in relay components. 

Multi-valued nonlinearities like backlash and hysteresis usually lead 
to energy storage in the system. Energy storage is a frequent cause 
of instability and selfsustained oscillation.. 
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In this section, we shall compute the describing functions for a few 
common nonlinearities. This will not only allow us to familiarize 
ourselves with the frequency domain properties of these common 
nonlinearities, but also will provide further examples of how to 
derive describing functions for nonlinear elements. 
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SATURATION 

 The input-output relationship for a saturation nonlinearity is plotted 
in Figure (11), with a and k denoting the range and slope of the 
linearity. Since this nonlinearity is single-valued, we expect the 
describing function to be a real function of the input amplitude. 
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 Consider the input x(t)=A sin(ωt)). If A< a, then the input remains in the 
linear range, and therefore, the output is w(t)=kA sin(ωt)). Hence, the 
describing function is simply a constant k. 
Now consider the case A>a. The input and the output functions are 
plotted in Figure (11). The output is seen to be symmetric over the four 
quarters of a period. In the first quarter, it can be expressed as 
 
  

𝑤(𝑡) =  
𝒌𝑨 𝒔𝒊𝒏 𝝎𝒕                  0 ≤ 𝜔𝑡 ≤ 𝛾

𝑘𝑎                            𝛾 ≤ 𝜔𝑡 ≤ 𝜋 2 
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SATURATION 

 where 𝛾 < sin−1(𝑎 𝐴 ). The odd nature of w(t) implies that 𝑎1 = 0 
and the symmetry over the four quarters of a period implies that  

𝑏1 =
4

𝜋
 𝑤 𝑡 sin 𝜔𝑡 𝑑 𝜔𝑡
𝜋 2 

0

 

𝑏1 =
4

𝜋
 𝑘𝐴 sin2 𝜔𝑡 𝑑 𝜔𝑡 +

4

𝜋
 𝑘𝑎 sin 𝜔𝑡 𝑑 𝜔𝑡
𝜋 2 

𝛾

𝛾

0
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SATURATION 

 𝑏1 =
2𝑘𝐴

𝜋
[𝛾 +

𝑎

𝐴
1 −

𝑎2

𝐴2
]                                 (10) 

  

Therefore, the describing function is  

𝑁(𝐴) =
𝑏1

𝐴
=

2𝑘

𝜋
[sin−1

𝑎

𝐴
+

𝑎

𝐴
1 −

𝑎2

𝐴2
]             (11) 
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SATURATION 

 The normalized describing function (N(A)/k) is plotted in Figure (12) 
as a function of A/a . One can observe three features for this 
describing function: 

  

1. N(A) = k the input amplitude is in the linearity range. 

2. N(A) decreases as the input amplitude increases. 

3. there is no phase shift. 
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SATURATION 

 The first feature is obvious, because for small signals the saturation is 
not displayed. The second is intuitively reasonable, since saturation 
amounts to reduce the ratio of the output to input. The third is also 
understandable because saturation does not cause the delay of the 
response to input. 
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SATURATION 

 As a special case, one can obtain the describing function for the relay-
type (on-off) nonlinearity shown in Figure (13). This case corresponds 
to shrinking the linearity range in the saturation function to zero, i.e., 
𝒂 → 𝟎, 𝒌 → ∞, but ka = M. Though 𝒃𝟏can be obtained from (10) by 
taking the limit, it is more easily obtained directly as 

  

𝑏1 =
4

𝜋
 𝑀 sin 𝜔𝑡 𝑑 𝜔𝑡 ≈

4

𝜋

𝜋 2 

0

𝑀 
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SATURATION 

 Therefore, the describing function of 
the relay nonlinearity is 

𝑁(𝐴) =
4𝑀

𝜋𝐴
 

The normalized describing function 
(N/M) is plotted in Figure (13) as a 
function of input amplitude. 
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SATURATION 

 Although the describing function again has no phase shift, the flat 
segment seen in Figure(12) is missing in this plot, due to the 
completely nonlinear nature of the relay. The asymptic properties of 
the describing function curve in Figure (13) are particularly 
interesting. When the input is infinitely small, the describing 
function is infinitely large. When the input is infinitely large, the 
describing function is infinitely small. One can gain an intuitive 
understanding of these properties by considering the ratio of the 
output to input for the on-off nonlinearity. 
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                                                                       (13) 

 



Describing Function Fundamentals 
3- Describing Functions of Common Nonlinearities 

 DEAD-ZONE 

 

Consider the dead-zone characteristics shown in Figure (9), with the 
dead-zone width being 2𝛿  and its slope k. The response 
corresponding to a sinusoidal input x(t)=A sin(ωt)) into a dead-zone 
of width 2𝛿 and slope k, with 𝐴 ≥ 𝛿, is plotted in Figure (14). Since 
the characteristics is an odd function, 𝑎1=0. The response is also 
seen to be symmetric over the four quarters of a period. In one 
quarter of a period, i.e., when 0 ≤ 𝜔𝑡 ≤ 𝜋 2 , one has 
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𝑤(𝑡) =  

0                                                    0 ≤ 𝜔𝑡 ≤ 𝛾

𝑘(𝐴 𝑠𝑖𝑛 𝜔𝑡 − 𝛿)                            𝛾 ≤ 𝜔𝑡 ≤ 𝜋 2 
 

 
where 𝛾 = sin−1(𝛿 𝐴 ). The coefficient 𝑏1 can be computed as follows 
  

𝑏1 =
4

𝜋
 𝑤 𝑡 sin 𝜔𝑡 𝑑 𝜔𝑡
𝜋 2 

0

 

𝑏1 =
4

𝜋
 𝑘(𝐴 𝑠𝑖𝑛 𝜔𝑡 − 𝛿) sin 𝜔𝑡 𝑑 𝜔𝑡
𝜋 2 

𝛾
  

𝑏1 =
2𝑘𝐴

𝜋
(
𝜋

2
− sin−1

𝛿

𝐴
−

𝛿

𝐴
1 −

𝛿2

𝐴2
)                                                  (13) 
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 DEAD-ZONE 

 This leads to 

𝑁(𝐴) =
2𝑘

𝜋
(
𝜋

2
− sin−1

𝛿

𝐴
−
𝛿

𝐴
1 −

𝛿2

𝐴2
) 

This describing function 𝑁(𝐴) is a real function and, therefore, there is no phase 
shift. 

(reflecting the absence of time-delay). The normalized describing function is 
plotted in Figure (15). It is seen that 𝑁(𝐴) 𝑘   is zero when   𝐴 𝛿 < 1, and 
increases up to 1 with 𝐴 𝛿 . This increase indicates that the effect of the dead-
zone gradually diminishes as the amplitude of the input signal is increased, 
consistently with intuition. 
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 BACKLASH 

  

The evaluation of the describing functions for backlash nonlinearity 
is more tedious. Figure (16) shows a backlash nonlinearity, with 
slope k and width 2b. If the input amplitude is smaller than b, there 
is no output. In the following, let us consider the input being x(t) = A 
sin(ωt), 𝐴 ≥ 𝑏 . The output w(t) of the nonlinearity is as shown in 
the figure. In one cycle, the function w(t) can be represented as 
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 𝑤 𝑡 = 𝐴 − 𝑏 𝑘                                𝜋 2 < 𝜔𝑡 ≤ 𝜋 −  𝛾 

  
𝑤 𝑡 = 𝐴sin ωt + 𝑏 𝑘            𝜋 −  𝛾 < 𝜔𝑡 ≤ 3𝜋 2  

 
𝑤 𝑡 = − 𝐴 − 𝑏 𝑘                    3𝜋 2 < 𝜔𝑡 ≤ 2𝜋 −  𝛾 

  
𝑤 𝑡 = 𝐴sin ωt − 𝑏 𝑘        2𝜋 −  𝛾 < 𝜔𝑡 ≤ 5𝜋 2  

  

Where 𝛾 = sin−1(1 − 2𝑏 𝐴 ). 
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  Unlike the previous nonlinearities, the function w(t) here is neither odd nor 
even. Therefore, 𝒂𝟏 and 𝒃𝟏 are both nonzero. Using (7b) and (7c), we find 
through some tedious integrations that.  

 

𝑎1 =
4𝑘𝑏

𝜋
(
𝑏

𝐴
− 1) 

𝑏1 =
4

𝜋
 𝑤 𝑡 sin 𝜔𝑡 𝑑 𝜔𝑡
𝜋 2 

0

 

 

𝑏1 =
𝑘𝐴

𝜋
[
𝜋

2
− sin−1

2𝑏

𝐴
− 1 −

2𝑏

𝐴
− 1 1 −

2𝑏

𝐴
− 1

2

]            
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  Therefore, the describing function of the backlash is given by 

  

𝑁(𝐴) =
1

𝐴
𝑎1
2 + 𝑏1

2                               (14a) 

  
 𝑁(𝐴) = tan−1 (𝑎1 𝑏1)                          (14b) 

  

The amplitude of the describing function for backlash is plotted in 
Figure (17). We note a few interesting points: 
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𝑁(𝐴) = 0      𝑖𝑓   𝐴 = 𝑏 
𝑁(𝐴)   𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠  𝑤ℎ𝑒𝑛   𝑏 𝐴  decreases 

𝑁(𝐴) → 1      𝑎𝑠   𝑏 𝐴 → 0 
 
 The phase angle of the describing function is plotted in Figure (18). Note 
that a phase lag (up to 90°) is introduced, unlike the previous 
nonlinearities. This phase lag is the reflection of the time delay of the 
backlash, which is due to the gap b. Of course, a larger b leads to a larger 
phase lag, which may create stability problems in feedback control 
systems.  
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