حَــامعة
الـَمــنارة

CRIDC606: Digital Signal Processing

Lecture Notes 2: Discrete-Time Signals and Systems

Ramez Koudsieh, Ph.D.

Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

Chapter 2

Discrete-time signals and systems

1. Discrete-time signals
2. Discrete-time systems
3. Linear time-invariant (LTI) systems
4. Linear constant-coefficient difference equations (LCCDE)

1. Discrete-time signals

- A discrete-time signal $x[n]$ is a sequence of numbers defined for every value of the integer variable n.
- A discrete-time signal is not defined for noninteger values of n. For example, the value of $x[3 / 2]$ is not zero, just undefined.
- When $x[n]$ is obtained by sampling a continuous-time signal $x(t)$, the interval T_{s} between two successive samples is known as the sampling period.
- The quantity $F_{s}=1 / T_{s}$, called the sampling frequency, equals the number of samples per unit of time.
- The duration or length L_{x} of a discrete-time signal $x[n]$ is the number of samples from the first nonzero sample $x\left[n_{1}\right]$ to the last nonzero sample $x\left[n_{2}\right]$, that is $L_{x}=n_{2}-n_{1}+1$.
- The range $n_{1} \leq n \leq n_{2}$, denoted by $\left[n_{1}, n_{2}\right]$ is called the support of the sequence.
- There are several ways to represent a DT signal. The more widely used are:
- Functional representation $x[n]= \begin{cases}\left(\frac{1}{2}\right)^{n}, & n \geq 0 \\ 0, & n<0\end{cases}$
- Tabular representation

n	\ldots	-2	-1	0	1	2	3	\ldots
$x[n]$	\ldots	0	0	1	$1 / 2$	$1 / 4$	$1 / 8$	\ldots

- Sequence representation $x[n]=\{\cdots, 0,1,1 / 2,1 / 4,1 / 8, \cdots\}$
- Graphical representation

- The energy of a sequence $x[n]$ is defined by: $\mathscr{E}_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}$
- The power of a sequence $x[n]$ is defined by: $\mathscr{P}_{x}=\lim _{L \rightarrow \infty}\left[\frac{1}{2 L+1} \sum_{n=-L}^{L}|x[n]|^{2}\right]$ Elementary discrete-time signals
- Unit impulse sequence: $\delta[n]= \begin{cases}1 & n=0 \\ 0, & n \neq 0\end{cases}$
- Unit step sequence: $u[n]= \begin{cases}1 & n \geq 0 \\ 0, & n<0\end{cases}$
- Real sinusoidal sequence: $x[n]=A \cos \left(\omega_{0} n+\phi\right), \quad-\infty<n<\infty$ where A (amplitude), ω_{0} (frequency) and ϕ (phase) are real constants.
- Exponential sequence: $x[n]=A a^{n}, \quad-\infty<n<\infty$ where A and a can take real or complex values.
- If both A and a are real then $x[n]$ is termed as a real exponential sequence.
- If $|a|>1$, the magnitude of $x[n]$ increases exponentially as n increases.
- If $|a|<1$, the magnitude of $x[n]$ decreases exponentially as n increases.
- If $|a|=1$, the magnitude of $x[n]$ is a constant, independent of n.
- The values of $x[n]$ alternate in sign when a is negative.
- If $A=|A| e^{j \phi}$ and $a=e^{j \omega_{0}}$, then $x[n]$ is termed as a complex sinusoid sequence.

$$
\begin{aligned}
& x[n]=\underbrace{|A| \cos \left(\omega_{0} n+\phi\right)}_{\operatorname{Re}\{x[n]\}}+j \underbrace{|A| \sin \left(\omega_{0} n+\phi\right)}_{\operatorname{Im}\{x[n]\}} \\
& \text { soids. }
\end{aligned}
$$

Thus $\operatorname{Re}\{x[n]\}$ and $\operatorname{Im}\{x[n]\}$ are real sinusoids.

- If both $A=|A| e^{j \phi}$ and $a=|a| e^{j \omega_{0}}$ are complex numbers, then:

$$
x[n]=\underbrace{|A||a|^{n} \cos \left(\omega_{0} n+\phi\right)}_{\operatorname{Re}\{x[n]\}}+j|a|^{n} \underbrace{|A| \sin \left(\omega_{0} n+\phi\right)}_{\operatorname{Im}\{x[n]\}}
$$

Thus $\operatorname{Re}\{x[n]\}$ and $\operatorname{Im}\{x[n]\}$ are each the product of a real exponential and real sinusoid.

- If $|a|>1 \operatorname{Re}\{x[n]\}$ and $\operatorname{Im}\{x[n]\}$ are the product of a real sinusoid and a growing real exponential.
- If $|a|<1, \operatorname{Re}\{x[n]\}$ and $\operatorname{Im}\{x[n]\}$ are the product of a real sinusoid and a decaying real exponential.
- If $|a|=1, \operatorname{Re}\{x[n]\}$ and $\operatorname{Im}\{x[n]\}$ are real sinusoids.
- A sequence $x[n]$ is called periodic if $x[n]=x[n+N]$, all n. The smallest value of N is known as the fundamental period or simply period of $x[n]$.
- The sinusoidal sequence $\cos \left(\omega_{0} n+\phi\right)$ is periodic, if $\cos \left(\omega_{0} n+\phi\right)=\cos \left(\omega_{0} n+\right.$ $\omega_{0} N+\phi$). This is possible if $\omega_{0} N=2 \pi k$, where k is an integer ($\omega_{0} / 2 \pi$ is a rational number). Therefor the fundamental period is the smallest integer of the form $2 \pi k / \omega_{0}$, where k is a positive integer.

$$
x[n]=A \cos \left(\frac{\pi}{6} n+\frac{\pi}{3}\right)
$$

$N=\frac{2 \pi k}{\pi / 6}=12 k \Rightarrow N=12($ for $k=1)$
Delay $=12 \times \frac{\pi / 3}{2 \pi}=2$ sampling intervals

2. Discrete-time systems

- A discrete-time system is a computational process or algorithm that transforms or maps a sequence $x[n]$, called the input signal, into another sequence $y[n]$, called the output signal.
- $y[n]=\frac{1}{3}\{x[n]+x[n-1]+x[n-2]\}$ three-point moving average filter
- $y[n]=\operatorname{median}\{x[n-1], x[n-2], x[n], x[n+1]+x[n+2]\}$
- A system is called causal if the present value of the output does not depend on future values of the input, that is, $y\left[n_{0}\right]$ is determined by the values of $x[n]$ for $n \leq n_{0}$, only.
- A system is said to be stable, in the Bounded-Input Bounded-Output (BIBO) sense, if every bounded input signal results in a bounded output signal, that is

$$
|x[n]| \leq M_{x}<\infty \Rightarrow|y[n]| \leq M_{y}<\infty
$$

The three-point moving average filter is stable

$$
|x[n]| \leq M_{x} \Rightarrow|y[n]| \leq|x[n]|+|x[n-1]|+|x[n-2]|=3 M_{x}=M_{y}
$$

The accumulator system defined by $y[n]=\sum_{k=0}^{\infty} x[n-k]$
is unstable because the bounded input $x[n]=u[n]$ produces the output $y[n]=$ $(n+1) u[n]$, which becomes unbounded as $n \rightarrow \infty$.

- A system \mathcal{T} is linear, if for all functions $x_{1}[n]$ and $x_{2}[n]$ and all complex constants α and β, the following condition holds:

$$
\mathcal{T}\left\{\alpha x_{1}[n]+\beta x_{2}[n]\right\}=\alpha \mathcal{T}\left\{x_{1}[n]\right\}+\beta \mathcal{T}\left\{x_{2}[n]\right\}
$$

$y[n]=x^{2}[n]$ is nonlinear system.

- An important consequence of linearity is that a linear system cannot produce an output without being excited. $\tau\{x[n]=0\}=y[n]=0$
- A system \mathcal{T} is said to be time invariant (TI) if, for every function $x[n]$ and every integer constant n_{0}, the following condition holds:

$$
\mathcal{T}\{x[n]\}=y[n] \Rightarrow \mathcal{T}\left\{x\left[n-n_{0}\right]\right\}=y\left[n-n_{0}\right]
$$

- $y[n]=x[n] \cos \omega_{0} n$ is not time invariant system (time-varying).
- The downsampler system, $y[n]=\mathcal{T}\{x[n]\}=x[n M]$ is linear but time-varying,
- A system \mathcal{T} is referred to as memoryless if the output $y[n]$ at every value of n depends only on the input $x[n]$ at the same value of n. Otherwise it is said to be dynamic.

$$
y[n]=x^{2}[n] \text { is a memoryless system. }
$$

Block Diagram Representation of Discrete-Time Systems

- Basic building blocks The most widely used operations for a block diagram representation of discrete-time systems are provided by the four elementary discrete-time systems (or building blocks) shown below.
- The adder, defined by $y[n]=x_{1}[n]+x_{2}[n]$, computes the sum of two sequences.
- The constant multiplier, defined by $y[n]=a x[n]$, produces the product of the input sequence by a constant.
- The basic memory element is the unit delay system defined by $y[n]=x[n-1]$ and denoted by the z^{-1}. The unit delay is a memory location which can hold (store) the value of a sample for one sampling interval.
- Finally, the branching element is used to distribute a signal value to different branches.
- Figure below shows the block diagram of a system which computes the first difference $y[n]=x[n]-x[n-1]$ of its input.

Block Diagram Elements

Splitter

Pick-off node

Basic building blocks and the corresponding signal flow graph elements

- To illustrate these concepts, we consider a first-order IIR system described by: $y[n]=b_{0} x[n]+b_{1} x[n-1]-a_{1} y[n-1]$.

Structure for the first-order IIR system in block diagram, and signal flow graph

- A discrete-time system is called practically realizable if its practical implementation requires:
- (1) a finite amount of memory for the storage of signal samples and system parameters, and
- (2) a finite number of arithmetic operations for the computation of each output sample.

3. Linear time-invariant (LTI) systems

- The response of a linear time-invariant (LTI) system to any input can be determined from its response $h[n]$ to the unit sample sequence $\delta[n]$.

$x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k], \quad-\infty<n<\infty$
For example, the unit step can be written as: $u[n]=\sum_{k=0}^{\infty} \delta[n-k]=\sum_{k=-\infty}^{n} \delta[k]$

$$
y[n]=\mathcal{T}\left\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\right\}=\sum_{k=-\infty}^{\infty} x[k] \mathcal{T}\{\delta[n-k]\}=\sum_{k=-\infty}^{\infty} x[k] h_{k}[n]
$$

$h_{k}[n]$ be the response of the system to the input $\delta[n-k]$

The property of time invariance implies that if $h[n]$ is the response to $\delta[n]$, then the response to $\delta[n-k]$ is $h[n-k]$.

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k], \quad-\infty<n<\infty
$$

This equation is referred to as the convolution sum, $y[n]=x[n] * h[n]$

- Example 1: Compute the output $y[n]$ of a LTI system when:

$$
\begin{aligned}
& \qquad x[n]=\{\underset{\uparrow}{1}, 2,3,4,5\}, \quad h[n]=\{-1, \underset{\uparrow}{2}, 1\} \\
& y[-1]=x[0] h[-1]=(1)(-1)=-1 \\
& y[0]=x[0] h[0]+x[1] h[-1]=(1)(2)+(2)(-1)=0, \quad \cdots \\
& y[n]=\{-1, \underset{\uparrow}{0}, 2,4,6,14,5\}
\end{aligned}
$$

- Convolution using direct method

k	-3	-2	-1	0	1	2	3	4	5	6
$[k]$			1	2	3	4	5			
$h[k]$		-1	2	1						
			2	4	6	8	10			
				1	2	3	4	5		
		-1	-2	-3	-4	-5				
$y[n]$		-1	0	2	4	6	14	5		
n	-3	-2	-1	0	1	2	3	4	5	6

Computation of the convolution sum, the approach is similar to a pencil and paper multiplication calculation, except carries are not performed out of a column.

- Convolution using matrix-vector multiplication

$$
\left[\begin{array}{c}
y[-1] \\
y[0] \\
y[1] \\
y[2] \\
y[3] \\
y[4] \\
y[5]
\end{array}\right]=\left[\begin{array}{ccc}
x[0] & 0 & 0 \\
x[1] & x[0] & 0 \\
x[2] & x[1] & x[0] \\
x[3] & x[2] & x[1] \\
x[4] & x[3] & x[2] \\
0 & x[4] & x[3] \\
0 & 0 & x[4]
\end{array}\right]\left[\begin{array}{c}
h[-1] \\
h[0] \\
h[1]
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
4 & 3 & 2 \\
5 & 4 & 3 \\
0 & 5 & 4 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
2 \\
4 \\
6 \\
14 \\
5
\end{array}\right]
$$

The matrix form of convolution involves a matrix known as Toeplitz.

- A simpler approach, from a programming viewpoint, is to express the above equations as a linear combination of column vectors:
$\left[\begin{array}{c}y[-1] \\ y[0] \\ y[1] \\ y[2] \\ y[3] \\ y[4] \\ y[5]\end{array}\right]=h[-1]\left[\begin{array}{c}x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ 0 \\ 0\end{array}\right]+h[0]\left[\begin{array}{c}0 \\ x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ 0\end{array}\right]+h[1]\left[\begin{array}{c}0 \\ 0 \\ x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4]\end{array}\right]$

Properties of linear time-invariant systems

- Properties of Convolution
- Convolutional identity: $x[n] * \delta[n]=x[n]$
- Commutative: $x[n] * h[n]=h[n] * x[n]$
- Associative: $\left(x[n] * h_{1}[n]\right) * h_{2}[n]=x[n] *\left(h_{1}[n] * h_{2}[n]\right)$
- Distributive: $x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n]$
- Note: The convolution of two non-periodic sequences: $x[n], 0 \leq n \leq M-1$ and $h[n], 0 \leq n \leq N-1$ has length $M+N-1$.
- Cascade interconnection of two LTI systems

- Parallel interconnection of two LTI systems

- Causality and stability
- A LTI system is causal if its impulse response $h[n]=0$ for $n<0$.
- A LTI system is stable if and only if its impulse response is absolutely summable,

$$
\sum_{n=-\infty}^{\infty}|h[n]|<\infty
$$

Convolution in two dimensions

- Spatial filters are very popular and useful in the processing of digital images to implement visual effects like noise filtering, edge detection, etc.
- Smoothing images consists of replacing each pixel by its average over a local region.
- Consider a 3×3 region around the pixel $x[m, n]$. Then the smoothed pixel value $y[m, n]$ can be computed as:
$y[m, n]=\sum_{k=-1}^{1} \sum_{k=-1}^{1}\left(\frac{1}{9}\right) x[m-k, n-l]$
We next define a 2D sequence $h[m, n]$
$h[m, n]=\left\{\begin{array}{cc}\frac{1}{9}, & -1 \leq m, n \leq 1 \\ 0, & \text { otherwise }\end{array}\right.$

which can be seen as a spatial filter impulse response:
$y[m, n]=\sum_{k=-1}^{1} \sum_{k=-1}^{1} h[k, l] x[m-k, n-k]$
which is a 2D convolution of image $x[m, n]$ with a spatial filter $h[m, n]$. A general expression for 2D convolution, when the spatial filter has finite symmetric support $(2 K+1) \times(2 L+1)$, is given by:

$$
y[m, n]=\sum_{k=-K}^{K} \sum_{l=-L}^{L} h[k, l] x[m-k, n-l]
$$

4. Linear constant-coefficient difference equations (LCCDE)

- An important class of LTI systems consists of those systems for which the input $x[n]$ and the output $y[n]$ satisfy an Nth-order linear constant-coefficient difference equation of the form:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- Example 2: The accumulator system defined by: $y[n]=\sum_{k=-\infty}^{n} x[k]$

$$
y[n]=x[n]+\sum_{k=-\infty}^{n-1} x[k]=x[n]+y[n-1] \Rightarrow y[n]-y[n-1]=x[n]
$$

Solution of Linear Constant-Coefficient Difference Equations

- The goal is to determine the output $y[n], n \geq 0$, of the system given a specific input $x[n], n \geq 0$, and a set of initial conditions.
- A solution to a LCCDE can be obtained in the form: $y[n]=y_{h}[n]+y_{p}[n]$. where $y_{h}[n]$ is is the solution of the homogeneous linear difference equation found by setting $x[n]=0$:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=0
$$

and $y_{p}[n]$ is due to the input signal $x[n]$ being applied to the system. It is referred to as the particular solution of the difference equation.

- A solution to LCCDE can also be obtained in the form: $y[n]=y_{z i}[n]+y_{z s}[n]$. where $y_{z i}[n]$ is is called the zero-input solution, due to the initial conditions alone (assuming they exist), and $y_{z s}[n]=h[n] * x[n]$ is called the zero-state solution, due to the input $x[n]$ alone (initial conditions assumed to be zero).
- A solution to LCCDE can also be obtained in the form: $y[n]=y_{t r}[n]+y_{s s}[n]$.
where $y_{t r}[n]$ is the transient response due to the initial state of the system; It disappears over time, and $y_{s s}[n]$ is the steady-state response; It remains.
- Example 3: A causal and stable LTI system

$$
y[n]=a y[n-1]+x[n], \quad|a|<1
$$

We apply an input signal $x[n]$ to the system for $n \geq 0$.

We make no assumptions about the input signal for $n<0$, but we do assume the existence of the initial condition $y[-1]$.
Computing successive values of $y[n]: y[n]=a^{n+1} y[-1]+\sum_{k=0}^{n} a^{k} x[n-k], \quad n \geq 0$ If the system is initially relaxed at time $n=0$, then its memory (i.e., the output of the delay) should be zero. Hence $y[-1]=0$. We say that the system is at zero state and its corresponding output is called the zero-state response,

$$
y_{z s}[n]=h[n] * x[n]=\sum_{k=0}^{n} a^{k} x[n-k], n \geq 0 \quad \Rightarrow \quad h[n]=a^{n} u[n]
$$

Now, suppose that the system is initially nonrelaxed, $y[-1] \neq 0$, and the input $x[n]=0$ for all n. Then the output of the system with zero input is called the zero-input response: $y_{z i}[n]=y[-1] a^{n+1}, \quad n \geq 0$
$y[n]=y_{z i}[n]+y_{z s}[n]=\underbrace{y[-1] a^{n+1}}_{\text {zero-input }}+\underbrace{\sum_{k=0}^{n} a^{k} x[n-k]}_{\text {zero-state }}, \quad n \geq 0$
Then, if $y[-1]=0$, the system is LTI. If $y[-1] \neq 0$, the system is linear in a more general sense that involves linearity with respect to both input and ICs.
To obtain the step response of the system we set $x[n]=u[n]$:

$$
y[n]=y_{s s}[n]+y_{t r}[n]=\underset{\text { steady-state }}{\frac{1}{1-a}}+\underbrace{y[-1] a^{n+1}-\frac{a^{n+1}}{1-a}}_{\text {transient }}, \quad n \geq 0
$$

For a stable system, that is, when $|a|<1$, we have:

$$
\begin{gathered}
y_{s s}[n]=\lim _{n \rightarrow \infty} y[n]=\frac{1}{1-a}, n \geq 0 \quad y_{t r}[n]=y[-1] a^{n+1}-\frac{a^{n+1}}{1-a} \rightarrow 0 \\
y[n]=\underset{\text { steady-state }}{\frac{1}{1-a}}+\underbrace{y[-1] a^{n+1}-\frac{a^{n+1}}{1-a}}_{\text {transient }}=\underbrace{\frac{1-a^{n+1}}{1-a}}_{\text {zero-state }}+\underbrace{y[-1] a^{n+1}}_{\text {zero-input }}
\end{gathered}
$$

- Note: In general, we have $y_{z i}[n] \neq y_{t r}[n]$, and $y_{s s}[n] \neq y_{z s}[n]$.
- Note: If the system is stable $y_{s s}[n]=\lim _{n \rightarrow \infty} y_{z s}[n]$.

FIR versus IIR systems

- If the unit impulse response of an LTI system is of finite duration, then the system is called a finite-duration impulse response (or FIR) filter.
The following difference equation describes a causal FIR filter:

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- If the impulse response of an LTI system is of infinite duration, then the system is called an infinite-duration impulse response (or IIR) filter. The following difference equation describes a recursive IIR filter:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=x[n]
$$

System	Equation	Linear	Timeinvariant	LTI	Causal	Stable
Multiplier	$y[n]=2 x[n]$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Offset	$y[n]=x[n]+1$	χ	$\sqrt{ }$	χ	$\sqrt{ }$	$\sqrt{ }$
Squarer	$y[n]=x^{2}[n]$	χ	$\sqrt{ }$	X	$\sqrt{ }$	$\sqrt{ }$
Delay	$y[n]=x\left[n-n_{0}\right]$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$n_{0} \geq 0$	$\sqrt{ }$
Average	$y[n]=(x[n-1]+x[n]+x[n+1]) / 3$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	χ	$\sqrt{ }$
Summer	$y[n]=\sum_{k=-\infty}^{n} x[k]$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	x
LCCDE	$\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$ or \times
Switch	$y[n]=x[n] u[n]$	\checkmark	x	x	\checkmark	\checkmark

