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Chapter 2

Discrete-time signals and systems

1. Discrete-time signals

2. Discrete-time systems

3. Linear time-invariant (LTI) systems

4. Linear constant-coefficient difference equations (LCCDE)
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1. Discrete-time signals

▪ A discrete-time signal x[n] is a sequence of numbers defined for every value of 

the integer variable n.

▪ A discrete-time signal is not defined for noninteger values of n. For example, 

the value of x[3/2] is not zero, just undefined.

▪ When x[n] is obtained by sampling a continuous-time signal x(t), the interval Ts 

between two successive samples is known as the sampling period. 

▪ The quantity Fs = 1/Ts, called the sampling frequency, equals the number of 

samples per unit of time.

▪ The duration or length Lx of a discrete-time signal x[n] is the number of 

samples from the first nonzero sample x[n1] to the last nonzero sample x[n2], 

that is Lx = n2 - n1 + 1.
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• Tabular representation
n … -2 -1 0 1 2 3 …

x[n] … 0 0 1 1/2 1/4 1/8 …

• Sequence representation [ ] { , , 1, / , / , / , }0 1 2 1 4 1 8x n


=

• Graphical representation

The symbol ↑ denotes the index n = 0; it 

is omitted when the table starts at n = 0.

▪ The range n1 ≤ n ≤ n2, denoted by [n1, n2] is called the support of the sequence.

▪ There are several ways to represent a DT signal. The more widely used are:
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▪ The energy of a sequence x[n] is defined by: [ ]
2
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▪ The power of a sequence x[n] is defined by: lim [ ]
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Elementary discrete-time signals

▪ Unit impulse sequence: [ ]
,

1 0
0 0
n

n
n


=

=  

▪ Unit step sequence: [ ]
,

1 0
0 0
n

u n
n


=  

▪ Real sinusoidal sequence: [ ] cos( ),0x n A n n = + -    

where A (amplitude), 0 (frequency) and  (phase) are real constants.
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▪ If both A and a are real then x[n] is termed as a real exponential sequence.

• If |a| > 1, the magnitude of x[n] increases exponentially as n increases.

• If |a|  1, the magnitude of x[n] decreases exponentially as n increases.

• If |a| = 1, the magnitude of x[n] is a constant, independent of n.

• The values of x[n] alternate in sign when a is negative.

▪ Exponential sequence: [ ] ,nx n Aa n= -    

where A and a can take real or complex values.

▪ If A = |A|ej and             , then x[n] is termed as a complex sinusoid sequence.

Re{ [ ]} Im{ [ ]}

[ ] cos( ) sin( )0 0

x n x n

x n A n j A n   = + + +

Thus Re{x[n]} and Im{x[n]} are real sinusoids.
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▪ If both A = |A|ej and                  are complex numbers, then:

Re{ [ ]} Im{ [ ]}

[ ] cos( ) sin( )0 0
n n

x n x n

x n A a n j a A n   = + + +

Thus Re{x[n]} and Im{x[n]} are each the product of a real exponential and real 

sinusoid.

• If |a| > 1 Re{x[n]} and Im{x[n]} are the product of a real sinusoid and a 

growing real exponential.

• If |a|  1, Re{x[n]} and Im{x[n]} are the product of a real sinusoid and a 

decaying real exponential.

• If |a| = 1, Re{x[n]} and Im{x[n]} are real sinusoids.
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▪ A sequence x[n] is called periodic if x[n] = x[n + N], all n. The smallest value of 

N is known as the fundamental period or simply period of x[n].

▪ The sinusoidal sequence cos(0n + ) is periodic, if cos(0n + ) = cos(0n +

0N + ). This is possible if 0N = 2pk, where k is an integer (0/2p is a 

rational number). Therefor the fundamental period is the smallest integer of 

the form 2pk /0, where k is a positive integer.

 (for )
/

2
12 12 1

6

k
N k N k

p

p
= =  = =

/
Delay  sampling intervals

3
12 2

2

p

p
=  =

[ ] cos( )
6 3

x n A n
p p

= +
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2. Discrete-time systems

▪ A discrete-time system is a computational process or algorithm that 

transforms or maps a sequence x[n], called the input signal, into another 

sequence y[n], called the output signal.

[ ] { [ ] [ ] [ ]}1
3 1 2y n x n x n x n= + - + -•                                                         three-point moving average filter

[ ] median{ [ ], [ ], [ ], [ ] [ ]}1 2 1 2y n x n x n x n x n x n= - - + + +

▪ A system is called causal if the present value of the output does not depend 

on future values of the input, that is, y[n0] is determined by the values of x[n] 

for n ≤ n0, only.

▪ A system is said to be stable, in the Bounded-Input Bounded-Output (BIBO) 

sense, if every bounded input signal results in a bounded output signal, that is

•  
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[ ] [ ]x yx n M y n M      

The three-point moving average filter is stable

[ ] [ ] [ ] [ ] [ ]1 2 3x x yx n M y n x n x n x n M M   + - + - = =

The accumulator system defined by [ ] [ ]
0k

y n x n k


=

= -

is unstable because the bounded input x[n] = u[n] produces the output y[n] = 

(n + 1)u[n], which becomes unbounded as n → ∞.

▪ A system T is linear, if for all functions x1[n] and x2[n] and all complex 

constants a and b, the following condition holds:

T {ax1[n] + bx2[n]} = aT {x1[n]} + bT {x2[n]}

y[n] = x2[n] is nonlinear system.
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▪ An important consequence of linearity is that a linear system cannot produce 

an output without being excited. T {x[n] = 0} = y[n] = 0

▪ A system T is said to be time invariant (TI) if, for every function x[n] and every 

integer constant n0, the following condition holds:

T {x[n]} = y[n] ⇒ T {x[n - n0]} = y[n - n0]

• y[n] = x[n]cos0n is not time invariant system (time-varying).

• The downsampler system, y[n] = T {x[n]} = x[nM] is linear but time-varying,

▪ A system T is referred to as memoryless if the output y[n] at every value of n 

depends only on the input x[n] at the same value of n. Otherwise it is said to 

be dynamic.
y[n] = x2[n] is a memoryless system.
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Block Diagram Representation of Discrete-Time Systems

▪ Basic building blocks The most widely used operations for a block diagram 

representation of discrete-time systems are provided by the four elementary 

discrete-time systems (or building blocks) shown below. 

▪ The adder, defined by y[n] = x1[n] + x2[n], computes the sum of two sequences. 

▪ The constant multiplier, defined by y[n] = ax[n], produces the product of the 

input sequence by a constant. 

▪ The basic memory element is the unit delay system defined by y[n] = x[n - 1] 

and denoted by the z-1. The unit delay is a memory location which can hold 

(store) the value of a sample for one sampling interval. 

▪ Finally, the branching element is used to distribute a signal value to different 

branches.
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Basic building blocks and the corresponding signal flow graph elements

▪ Figure below shows the block 

diagram of a system which 

computes the first difference 

y[n] = x[n] - x[n - 1] of its input.
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▪ To illustrate these concepts, we consider a first-order IIR system described 

by: y[n] = b0x[n] + b1x[n - 1] - a1y[n - 1].

Structure for the first-order IIR system in block diagram, and signal flow graph

▪ A discrete-time system is called practically realizable if its practical 

implementation requires:

• (1) a finite amount of memory for the storage of signal samples and system 

parameters, and 

• (2) a finite number of arithmetic operations for the computation of each 

output sample.
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3. Linear time-invariant (LTI) systems

▪ The response of a linear time-invariant (LTI) system to any input can be 

determined from its response h[n] to the unit sample sequence  [n].

[ ] [ ] [ ],
k

x n x k n k n


=-
= - -    

[ ] [ ] [ ]
0

n

k k
u n n k k 



= =-
= - = 

 [ ] [ ] [ ] [ ] { [ ]} [ ] [ ]kk k k
y n x k n k x k n k x k h n 

  

=- =- =-
= - = - =  T T

hk[n] be the response of the system to the input  [n - k]

For example, the unit step can be written as:
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The property of time invariance implies that if h[n] is the response to  [n], then

the response to  [n - k] is h[n - k].

[ ] [ ] [ ],
k

y n x k h n k n


=-

= - -    

This equation is referred to as the convolution sum, [ ] [ ] [ ]y n x n h n= 

▪ Example 1: Compute the output y[n] of a LTI system when:

[ ] { , , , , }, [ ] { , , }1 2 3 4 5 1 2 1x n h n
 

= = -

[ ] [ ] [ ] ( )( )1 0 1 1 1 1y x h- = - = - = -

[ ] [ ] [ ] [ ] [ ] ( )( ) ( )( ) ,0 0 0 1 1 1 2 2 1 0y x h x h= + - = + - =

[ ] { , , , , , , }1 0 2 4 6 14 5y n


= -
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k -3 -2 -1 0 1 2 3 4 5 6 7
x[k] 1 2 3 4 5
h[k] -1 2 1

h[-1-k] 1 2 -1
h[-k] 1 2 -1

h[1-k] 1 2 -1
h[2-k] 1 2 -1
h[3-k] 1 2 -1
h[4-k] 1 2 -1
h[5-k] 1 2 -1

y[n] -1 0 2 4 6 14 5
n -3 -2 -1 0 1 2 3 4 5 6 7

The computation of convolution in tabular form

y[3] = 1x3 + 2x4 -1x5 = 6
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k -3 -2 -1 0 1 2 3 4 5 6 7
x[k] 1 2 3 4 5
h[k] -1 2 1

2 4 6 8 10
1 2 3 4 5

-1 -2 -3 -4 -5
y[n] -1 0 2 4 6 14 5

n -3 -2 -1 0 1 2 3 4 5 6 7

x

+

Computation of the convolution sum, the approach is similar to a pencil and 

paper multiplication calculation, except carries are not performed out of a 

column.

▪ Convolution using direct method
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▪ Convolution using matrix-vector multiplication

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

1 0 0 0 1 0 0
0 1 0 0 2 1 0
1 2 1 0 3 2 11 1
2 3 2 1 4 3 20 2
3 4 3 2 5 4 31 1
4 0 4 3 0 5 4
5 0 0 4 0 0 5

y x
y x x
y x x x h
y x x x h
y x x x h
y x x
y x

-     
     
     

- -  
     

  = =     
 

       
     
     
     

1
0
2
4
6
14
5

- 
 
 


 

 =  
 

 
 
 
 

The matrix form of convolution involves a matrix known as Toeplitz.

▪ A simpler approach, from a programming viewpoint, is to express the above 

equations as a linear combination of column vectors:
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[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ][ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

1 0 0 0
0 1 0 0
1 2 1 0
2 3 2 11 0 1
3 4 3 2
4 0 4 3
5 0 0 4

y x
y x x
y x x x
y x x xh h h
y x x x
y x x
y x

-       
       
       
       

= - + +
       
       
       
              

Properties of linear time-invariant systems

▪ Properties of Convolution

• Convolutional identity: x[n]  [n] = x[n]

• Commutative: x[n]  h[n] = h[n]  x[n]

• Associative: (x[n]  h1[n])  h2[n] = x[n]  (h1[n]  h2[n])
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• Distributive: x[n]  (h1[n] + h2[n]) = x[n]  h1[n] + x[n]  h2[n]

▪ Cascade interconnection of two LTI systems

▪ Note: The convolution of two non-periodic sequences: x[n], 0  n  M - 1 and 

h[n], 0  n  N - 1 has length M + N - 1.

▪ Parallel interconnection of two LTI systems
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▪ Causality and stability

• A LTI system is causal if its impulse response h[n] = 0 for n  0.

• A LTI system is stable if and only if its impulse response is absolutely 

summable, [ ]
n
h n



=-
 

Convolution in two dimensions

▪ Spatial filters are very popular and useful in the processing of digital images to 

implement visual effects like noise filtering, edge detection, etc.

▪ Smoothing images consists of replacing each pixel by its average over a local 

region.

▪ Consider a 3 × 3 region around the pixel x[m, n]. Then the smoothed pixel 

value y[m, n] can be computed as:

https://manara.edu.sy/


https://manara.edu.sy/Discrete-Time Signals and Systems 23/302023-2024

( )[ , ] [ , ]
k k

y m n x m k n l
=- =-

= - - 
1 1 1

91 1

We next define a 2D sequence h[m, n]

,
[ , ]

, otherwise

,m n
h m n

-  
= 



1
9 1 1

0

which can be seen as a spatial filter impulse response:

[ , ] [ , ] [ , ]
k k

y m n h k l x m k n k
=- =-

= - - 
1 1

1 1

which is a 2D convolution of image x[m, n] with a spatial filter h[m, n]. A 

general expression for 2D convolution, when the spatial filter has finite 

symmetric support (2K + 1) × (2L + 1), is given by:

[ , ] [ , ] [ , ]
K L

k K l L
y m n h k l x m k n l

=- =-
= - - 
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4. Linear constant-coefficient difference equations (LCCDE)

▪ An important class of LTI systems consists of those systems for which the 

input x[n] and the output y[n] satisfy an Nth-order linear constant-coefficient 

difference equation of the form:

[ ] [ ]
N M

k kk k
a y n k b x n k

= =
- = - 0 0

▪ Example 2: The accumulator system defined by: [ ] [ ]
n

k
y n x k

=-
= 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
n

k
y n x n x k x n y n y n y n x n

-

=-
= + = + -  - - =

1
1 1

Solution of Linear Constant-Coefficient Difference Equations

▪ The goal is to determine the output y[n], n ≥ 0, of the system given a specific 

input x[n], n ≥ 0, and a set of initial conditions.
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▪ A solution to a LCCDE can be obtained in the form: y[n] = yh[n] + yp[n].

where yh[n] is is the solution of the homogeneous linear difference equation 

found by setting x[n] = 0:
[ ]

N
kk
a y n k

=
- = 0

0

▪ A solution to LCCDE can also be obtained in the form: y[n] = yzi[n] + yzs[n].

where yzi[n] is is called the zero-input solution, due to the initial conditions 

alone (assuming they exist), and yzs[n] = h[n]  x[n] is called the zero-state 

solution, due to the input x[n] alone (initial conditions assumed to be zero).

and yp[n] is due to the input signal x[n] being applied to the system. It is 

referred to as the particular solution of the difference equation.

▪ A solution to LCCDE can also be obtained in the form: y[n] = ytr[n] + yss[n].
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where ytr[n] is the transient response due to the initial state of the system; It 

disappears over time, and yss[n] is the steady-state response; It remains.

▪ Example 3: A causal and stable LTI system

[ ] [ ] [ ],1 1y n ay n x n a= - + 

[ ] [ ] [ ],1
0

1 0
nn k
k

y n a y a x n k n+

=
= - + - 

We apply an input signal x[n] to the system for n ≥ 0.

We make no assumptions about the input signal for n  0, but we do assume 

the existence of the initial condition y[-1].

Computing successive values of y[n]:

If the system is initially relaxed at time n = 0, then its memory (i.e., the output 

of the delay) should be zero. Hence y[-1] = 0. We say that the system is at 

zero state and its corresponding output is called the zero-state response,
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[ ] [ ] [ ] [ ] [ ] ,1
0

1 0

-

nn k
zi zs k

zero input zero state

y n y n y n y a a x n k n+

=

-

= + = - + - 

[ ] [ ] [ ] [ ] ,
1

11
1 0

1 1
-

n
n

ss tr

steady state transient

a
y n y n y n y a n

a a

+
+= + = + - - 

- -

To obtain the step response of the system we set x[n] = u[n]:

Now, suppose that the system is initially nonrelaxed, y[-1]  0, and the input 

x[n] = 0 for all n. Then the output of the system with zero input is called the 

zero-input response: [ ] [ ] ,n
ziy n y a n+= - 11 0

Then, if y[-1] = 0, the system is LTI. If y[-1]  0, the system is linear in a more 

general sense that involves linearity with respect to both input and ICs.

[ ] [ ] [ ] [ ], [ ] [ ]
n k n

zs k
y n a x n k n hh n x nn a u n

=
= = -   = 0

0
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[ ] [ ] [ ]
1 1

1 11 1
1 1

1 1 1
- -

n n
n n

zero inputsteady state zero statetransient

a a
y n y a y a

a a a

+ +
+ +

-

-
= + - - = + -

- - -

▪ Note: In general, we have yzi[n]  ytr[n], and yss[n]  yzs[n].

▪ Note: If the system is stable yss[n] = limn→∞ yzs[n].

[ ] lim [ ] , [ ] [ ]
1

11
0 1 0

1 1

n
n

ss tr
n n

a
y n y n n y n y a

a a

+
+

→ →
= =  = - - →

- -

For a stable system, that is, when |a |  1, we have:
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[ ] [ ]
0

M

k
k

y n b x n k
=

= -

▪ If the impulse response of an LTI system is of infinite duration, then the 

system is called an infinite-duration impulse response (or IIR) filter. The 

following difference equation describes a recursive IIR filter:

[ ] [ ]
0

N

k
k

a y n k x n
=

- =

▪ If the unit impulse response of an LTI system is of finite duration, then the 

system is called a finite-duration impulse response (or FIR) filter. 

The following difference equation describes a causal FIR filter:

FIR versus IIR systems
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System Equation Linear
Time-

invariant
LTI Causal Stable

Multiplier y[n] = 2x[n] √ √ √ √ √

Offset y[n] = x[n] + 1 X √ X √ √

Squarer y[n] = x2[n] X √ X √ √

Delay y[n] = x[n - n0] √ √ √ n0 ≥ 0 √

Average y[n] = (x[n-1] +x[n] +x[n+1])/3 √ √ √ X √

Summer √ √ √ √ X

LCCDE √ √ √ √ √ or X

Switch y[n] = x[n]u[n] √ X X √ √

[ ] [ ]
=-

= 
n

k

y n x k

[ ] [ ]
= =

- = - 
N M

k k
k k

a y n k b x n k
0 0

Summary of system properties of example systems
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