

CEDC606: Digital Signal Processing Lecture Notes 2: Discrete-Time Signals and Systems

Ramez Koudsieh, Ph.D.

Faculty of Engineering

Department of Robotics and Intelligent Systems

Manara University

https://manara.edu.sy/

Chapter 2

Discrete-time signals and systems

- 1. Discrete-time signals
- 2. Discrete-time systems
- 3. Linear time-invariant (LTI) systems
- 4. Linear constant-coefficient difference equations (LCCDE)

1. Discrete-time signals

- A discrete-time signal x[n] is a sequence of numbers defined for every value of the integer variable n.
- A discrete-time signal is not defined for noninteger values of n. For example, the value of x[3/2] is not zero, just undefined.
- When x[n] is obtained by sampling a continuous-time signal x(t), the interval T_s between two successive samples is known as the sampling period.
- The quantity $F_s = 1/T_s$, called the sampling frequency, equals the number of samples per unit of time.
- The duration or length L_x of a discrete-time signal x[n] is the number of samples from the first nonzero sample $x[n_1]$ to the last nonzero sample $x[n_2]$, that is $L_x = n_2 n_1 + 1$.

- The range $n_1 \le n \le n_2$, denoted by $[n_1, n_2]$ is called the support of the sequence.
- There are several ways to represent a DT signal. The more widely used are:
 - Functional representation $x[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & n \ge 0\\ 0, & n < 0 \end{cases}$

 - Sequence representation $x[n] = \{\dots, 0, 1, 1/2, 1/4, 1/8, \dots\}$
 - x[n] 1 The symbol \uparrow denotes the index n = 0; it is omitted when the table starts at n = 0.
 - Graphical representation -1012345

 $n = -\infty$

- The energy of a sequence x[n] is defined by: $\mathcal{E}_x = \sum |x[n]|^2$
- The power of a sequence x[n] is defined by: $\mathcal{P}_x = \lim_{L \to \infty} \left| \frac{1}{2L+1} \sum_{n=-L}^{L} |x[n]|^2 \right|$ Elementary discrete-time signals
- Unit impulse sequence: $\delta[n] = \begin{cases} 1 & n = 0 \\ 0, & n \neq 0 \end{cases}$
- Unit step sequence: $u[n] = \begin{cases} 1 & n \ge 0 \\ 0, & n < 0 \end{cases}$
- Real sinusoidal sequence: $x[n] = A\cos(\omega_0 n + \phi)$, $-\infty < n < \infty$ where A (amplitude), ω_0 (frequency) and ϕ (phase) are real constants.

- Exponential sequence: $x[n] = Aa^n$, $-\infty < n < \infty$ where A and a can take real or complex values.
- If both A and a are real then x[n] is termed as a real exponential sequence.
 - If |a| > 1, the magnitude of x[n] increases exponentially as n increases.
 - If |a| < 1, the magnitude of x[n] decreases exponentially as n increases.
 - If |a| = 1, the magnitude of x[n] is a constant, independent of n.
 - The values of *x*[*n*] alternate in sign when *a* is negative.
- If $A = |A|e^{j\phi}$ and $a = e^{j\omega_0}$, then x[n] is termed as a complex sinusoid sequence.

$$x[n] = |A|\cos(\omega_0 n + \phi) + j|A|\sin(\omega_0 n + \phi)$$

 $\operatorname{Re}\{x[n]\}$

Thus $\operatorname{Re}\{x[n]\}\$ and $\operatorname{Im}\{x[n]\}\$ are real sinusoids.

 $\operatorname{Im}\{x[n]\}$

• If both
$$A = |A|e^{j\phi}$$
 and $a = |a|e^{j\omega_0}$ are complex numbers, then:

$$x[n] = \underbrace{|A||a|^n \cos(\omega_0 n + \phi)}_{\text{Re}\{x[n]\}} + j|a|^n \underbrace{|A|\sin(\omega_0 n + \phi)}_{\text{Im}\{x[n]\}}$$

Thus $Re{x[n]}$ and $Im{x[n]}$ are each the product of a real exponential and real sinusoid.

- If $|a| > 1 \operatorname{Re}\{x[n]\}$ and $\operatorname{Im}\{x[n]\}\$ are the product of a real sinusoid and a growing real exponential.
- If |a| < 1, Re{x[n]} and Im{x[n]} are the product of a real sinusoid and a decaying real exponential.
- If |a| = 1, Re{x[n]} and Im{x[n]} are real sinusoids.

- A sequence x[n] is called periodic if x[n] = x[n + N], all n. The smallest value of N is known as the fundamental period or simply period of x[n].
- The sinusoidal sequence $\cos(\omega_0 n + \phi)$ is periodic, if $\cos(\omega_0 n + \phi) = \cos(\omega_0 n + \omega_0 N + \phi)$. This is possible if $\omega_0 N = 2\pi k$, where k is an integer $(\omega_0/2\pi)$ is a rational number). Therefore the fundamental period is the smallest integer of the form $2\pi k/\omega_0$, where k is a positive integer.

2. Discrete-time systems

- A discrete-time system is a computational process or algorithm that transforms or maps a sequence x[n], called the input signal, into another sequence y[n], called the output signal.
 - $y[n] = \frac{1}{3} \{x[n] + x[n-1] + x[n-2]\}$ three-point moving average filter
 - $y[n] = median\{x[n-1], x[n-2], x[n], x[n+1] + x[n+2]\}$
- A system is called causal if the present value of the output does not depend on future values of the input, that is, y[n₀] is determined by the values of x[n] for n ≤ n₀, only.
- A system is said to be stable, in the Bounded-Input Bounded-Output (BIBO) sense, if every bounded input signal results in a bounded output signal, that is

The three-point moving average filter is stable

 $\left|x[n]\right| \leq M_x \Rightarrow \left|y[n]\right| \leq \left|x[n]\right| + \left|x[n-1]\right| + \left|x[n-2]\right| = 3M_x = M_y$

The accumulator system defined by $y[n] = \sum_{k=0}^{\infty} x[n-k]$

is unstable because the bounded input x[n] = u[n] produces the output y[n] = (n + 1)u[n], which becomes unbounded as $n \to \infty$.

• A system \mathcal{T} is linear, if for all functions $x_1[n]$ and $x_2[n]$ and all complex constants α and β , the following condition holds:

 $\mathcal{T}\{\alpha x_1[n] + \beta x_2[n]\} = \alpha \mathcal{T}\{x_1[n]\} + \beta \mathcal{T}\{x_2[n]\}$

 $y[n] = x^2[n]$ is nonlinear system.

- An important consequence of linearity is that a linear system cannot produce an output without being excited. $\mathcal{T}{x[n] = 0} = y[n] = 0$
- A system T is said to be time invariant (TI) if, for every function x[n] and every integer constant n₀, the following condition holds:

 $\mathcal{T}{x[n]} = y[n] \Rightarrow \mathcal{T}{x[n - n_0]} = y[n - n_0]$

- $y[n] = x[n] \cos \omega_0 n$ is not time invariant system (time-varying).
- The downsampler system, $y[n] = \mathcal{T}{x[n]} = x[nM]$ is linear but time-varying,
- A system T is referred to as memoryless if the output y[n] at every value of n depends only on the input x[n] at the same value of n. Otherwise it is said to be dynamic.
 y[n] = x²[n] is a memoryless system.

Block Diagram Representation of Discrete-Time Systems

- Basic building blocks The most widely used operations for a block diagram representation of discrete-time systems are provided by the four elementary discrete-time systems (or building blocks) shown below.
- The adder, defined by $y[n] = x_1[n] + x_2[n]$, computes the sum of two sequences.
- The constant multiplier, defined by y[n] = ax[n], produces the product of the input sequence by a constant.
- The basic memory element is the unit delay system defined by y[n] = x[n 1] and denoted by the z⁻¹. The unit delay is a memory location which can hold (store) the value of a sample for one sampling interval.
- Finally, the branching element is used to distribute a signal value to different branches.

https://manara.edu.sy/

To illustrate these concepts, we consider a first-order IIR system described
 by: y[n] = b₀x[n] + b₁x[n - 1] - a₁y[n - 1].

Structure for the first-order IIR system in block diagram, and signal flow graph

- A discrete-time system is called practically realizable if its practical implementation requires:
 - (1) a finite amount of memory for the storage of signal samples and system parameters, and
 - (2) a finite number of arithmetic operations for the computation of each output sample.

3. Linear time-invariant (LTI) systems

• The response of a linear time-invariant (LTI) system to any input can be determined from its response h[n] to the unit sample sequence $\delta[n]$.

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k], \quad -\infty < n < \infty$$

For example, the unit step can be written as: $u[n] = \sum_{k=0}^{\infty} \delta[n-k] = \sum_{k=-\infty}^{n} \delta[k]$ $y[n] = \mathcal{T}\left\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right\} = \sum_{k=-\infty}^{\infty} x[k]\mathcal{T}\left\{\delta[n-k]\right\} = \sum_{k=-\infty}^{\infty} x[k]h_k[n]$ $h_k[n]$ be the response of the system to the input $\delta[n-k]$

The property of time invariance implies that if h[n] is the response to $\delta[n]$, then the response to $\delta[n - k]$ is h[n - k].

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k], \quad -\infty < n < \infty$$

This equation is referred to as the convolution sum, y[n] = x[n] * h[n]

• Example 1: Compute the output *y*[*n*] of a LTI system when:

$$x[n] = \{1, 2, 3, 4, 5\}, \quad h[n] = \{-1, 2, 1\}$$
$$y[-1] = x[0]h[-1] = (1)(-1) = -1$$
$$y[0] = x[0]h[0] + x[1]h[-1] = (1)(2) + (2)(-1) = 0, \quad \cdots$$
$$y[n] = \{-1, 0, 2, 4, 6, 14, 5\}$$

Convolution using direct method

k	-3	-2	-1	0	1	2	3	4	5	6	7	
x[k]				1	2	3	4	5				
h[k]			-1	2	1							X
				2	4	6	8	10				
					1	2	3	4	5			
			-1	-2	-3	-4	-5					+
y[n]			-1	0	2	4	6	14	5			
\overline{n}	-3	-2	-1	0	1	2	3	4	5	6	7	

Computation of the convolution sum, the approach is similar to a pencil and paper multiplication calculation, except carries are not performed out of a column.

Convolution using matrix-vector multiplication

$\left\lceil y[-1] \right\rceil$		x[0]	0	0		$\lceil 1 \rceil$	0	0		$\begin{bmatrix} -1 \end{bmatrix}$
y[0]		x[1]	x[0]	0		2	1	0		0
y[1]		x[2]	x[1]	x[0]	$\left\lceil h[-1] \right\rceil$	3	2	1	$\begin{bmatrix} -1 \end{bmatrix}$	2
<i>y</i> [2]	=	x[3]	x[2]	<i>x</i> [1]	h[0] =	4	3	2	2 =	4
<i>y</i> [3]		x[4]	x[3]	x[2]	h[1]	5	4	3	1	6
y[4]		0	x[4]	<i>x</i> [3]		0	5	4		14
<i>y</i> [5]		0	0	x[4]		0	0	5		5

The matrix form of convolution involves a matrix known as Toeplitz.

 A simpler approach, from a programming viewpoint, is to express the above equations as a linear combination of column vectors:

Properties of linear time-invariant systems

- Properties of Convolution
 - Convolutional identity: $x[n] * \delta[n] = x[n]$
 - Commutative: x[n] * h[n] = h[n] * x[n]
 - Associative: $(x[n] * h_1[n]) * h_2[n] = x[n] * (h_1[n] * h_2[n])$

- Distributive: $x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$
- Note: The convolution of two non-periodic sequences: *x*[*n*], 0 ≤ *n* ≤ *M* − 1 and *h*[*n*], 0 ≤ *n* ≤ *N* − 1 has length *M* + *N* − 1.
- Cascade interconnection of two LTI systems

Discrete-Time Signals and Systems

https://manara.edu.sy/

2023-2024

- Causality and stability
 - A LTI system is causal if its impulse response h[n] = 0 for n < 0.
 - A LTI system is stable if and only if its impulse response is absolutely summable, $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$

Convolution in two dimensions

- Spatial filters are very popular and useful in the processing of digital images to implement visual effects like noise filtering, edge detection, etc.
- Smoothing images consists of replacing each pixel by its average over a local region.
- Consider a 3 × 3 region around the pixel x[m, n]. Then the smoothed pixel value y[m, n] can be computed as:

$$y[m, n] = \sum_{k=-1}^{1} \sum_{k=-1}^{1} \left(\frac{1}{9}\right) x[m-k, n-l]$$

We next define a 2D sequence $h[m, n]$
 $h[m, n] = \begin{cases} \frac{1}{9}, & -1 \le m, n \le 1\\ 0, & \text{otherwise} \end{cases}$

which can be seen as a spatial filter impulse response:

$$y[m, n] = \sum_{k=-1}^{1} \sum_{k=-1}^{1} h[k, l] x[m-k, n-k]$$

which is a 2D convolution of image x[m, n] with a spatial filter h[m, n]. A general expression for 2D convolution, when the spatial filter has finite symmetric support $(2K + 1) \times (2L + 1)$, is given by:

$$y[m, n] = \sum_{k=-K}^{K} \sum_{l=-L}^{L} h[k, l] x[m-k, n-l]$$

W

4. Linear constant-coefficient difference equations (LCCDE)

An important class of LTI systems consists of those systems for which the input x[n] and the output y[n] satisfy an Nth-order linear constant-coefficient difference equation of the form:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

• Example 2: The accumulator system defined by: $y[n] = \sum_{k=-\infty}^{n} x[k]$ $y[n] = x[n] + \sum_{k=-\infty}^{n-1} x[k] = x[n] + y[n-1] \Rightarrow y[n] - y[n-1] = x[n]$

Solution of Linear Constant-Coefficient Difference Equations

The goal is to determine the output *y*[*n*], *n* ≥ 0, of the system given a specific input *x*[*n*], *n* ≥ 0, and a set of initial conditions.

• A solution to a LCCDE can be obtained in the form: $y[n] = y_h[n] + y_p[n]$.

where $y_h[n]$ is is the solution of the homogeneous linear difference equation found by setting x[n] = 0: $\sum_{k=0}^{N} a_k y[n-k] = 0$

and $y_p[n]$ is due to the input signal x[n] being applied to the system. It is referred to as the particular solution of the difference equation.

- A solution to LCCDE can also be obtained in the form: $y[n] = y_{zi}[n] + y_{zs}[n]$. where $y_{zi}[n]$ is is called the zero-input solution, due to the initial conditions alone (assuming they exist), and $y_{zs}[n] = h[n] * x[n]$ is called the zero-state solution, due to the input x[n] alone (initial conditions assumed to be zero).
- A solution to LCCDE can also be obtained in the form: $y[n] = y_{tr}[n] + y_{ss}[n]$.

where $y_{tr}[n]$ is the transient response due to the initial state of the system; It disappears over time, and $y_{ss}[n]$ is the steady-state response; It remains.

• Example 3: A causal and stable LTI system y[n] = ay[n-1] + x[n], |a| < 1

We apply an input signal x[n] to the system for $n \ge 0$.

We make no assumptions about the input signal for n < 0, but we do assume the existence of the initial condition y[-1].

Computing successive values of $y[n]: y[n] = a^{n+1}y[-1] + \sum_{k=0}^{n} a^k x[n-k], n \ge 0$

If the system is initially relaxed at time n = 0, then its memory (i.e., the output of the delay) should be zero. Hence y[-1] = 0. We say that the system is at zero state and its corresponding output is called the zero-state response,

$$y_{zs}[n] = h[n] * x[n] = \sum_{k=0}^{n} a^{k} x[n-k], n \ge 0 \quad \Rightarrow \quad h[n] = a^{n} u[n]$$

Now, suppose that the system is initially nonrelaxed, $y[-1] \neq 0$, and the input x[n] = 0 for all n. Then the output of the system with zero input is called the zero-input response: $y_{zi}[n] = y[-1]a^{n+1}$, $n \ge 0$

$$y[n] = y_{zi}[n] + y_{zs}[n] = \underbrace{y[-1]a^{n+1}}_{zero-input} + \underbrace{\sum_{k=0}^{n} a^{k}x[n-k]}_{zero-state}, \quad n \ge 0$$

Then, if y[-1] = 0, the system is LTI. If $y[-1] \neq 0$, the system is linear in a more general sense that involves linearity with respect to both input and ICs. To obtain the step response of the system we set x[n] = u[n]:

$$y[n] = y_{ss}[n] + y_{tr}[n] = \frac{1}{1-a} + \underbrace{y[-1]a^{n+1} - \frac{a^{n+1}}{1-a}}_{transient}, \quad n \ge 0$$

- Note: In general, we have $y_{zi}[n] \neq y_{tr}[n]$, and $y_{ss}[n] \neq y_{zs}[n]$.
- Note: If the system is stable $y_{ss}[n] = \lim_{n \to \infty} y_{zs}[n]$.

Discrete-Time Signals and Systems

https://manara.edu.sy/

2023-2024

FIR versus IIR systems

If the unit impulse response of an LTI system is of finite duration, then the system is called a finite-duration impulse response (or FIR) filter.

The following difference equation describes a causal FIR filter:

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

If the impulse response of an LTI system is of infinite duration, then the system is called an infinite-duration impulse response (or IIR) filter. The following difference equation describes a recursive IIR filter:

$$\sum_{k=0}^{N} a_k y[n-k] = x[n]$$

https://manara.edu.sy/

System	Equation	Linear	Time- invariant	LTI	Causal	Stable
Multiplier	y[n] = 2x[n]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Offset	y[n] = x[n] + 1	X	\checkmark	X	\checkmark	\checkmark
Squarer	$y[n] = x^2[n]$	X	\checkmark	X	\checkmark	\checkmark
Delay	$y[n] = x[n - n_0]$	\checkmark	\checkmark	\checkmark	n ₀ ≥ 0	\checkmark
Average	y[n] = (x[n-1] + x[n] + x[n+1])/3	\checkmark	\checkmark	\checkmark	X	\checkmark
Summer	$y[n] = \sum_{k=-\infty}^{n} x[k]$	\checkmark	\checkmark	\checkmark	\checkmark	X
LCCDE	$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$	\checkmark	\checkmark	\checkmark	\checkmark	√or X
Switch	y[n] = x[n]u[n]	\checkmark	X	X	\checkmark	\checkmark

Summary of system properties of example systems

https://manara.edu.sy/